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Abstract

Two-phase dispersed and slug flows in a pipe are investigated using proper orthogonal
decomposition (POD). The data are acquired through tomographic reconstruction of X-
ray measurements, where holdup, cross-sectional phase distributions and phase interface
characteristics are obtained. Instantaneous phase fractions of the flow fields are analyzed
and reduced order descriptions of the flow are achieved. The dispersed flow displays coherent
features for the first few modes near the center of the pipe, representing the liquid-liquid
interface location while the slug flow case shows coherent features that correspond to the
cyclical formation of the slug in the first ten modes. For slug flow, the first two modes
capture the liquid-dominated slug body region and the Taylor bubble/liquid film region,
respectively. The reconstructions of the fields indicate that main features are observed in
the low order descriptions utilizing less than one per cent of the degrees of freedom of the
full order description. POD temporal coefficients a1, as and a3 show interdependence for
the slug flow case. The coefficients also describe the phase fraction holdup as a function of
time for both dispersed and slug flow.

Keywords: Slug flow, dispersed flow, two-phase flow, multiphase flow, X-ray computed
tomography, Proper orthogonal decomposition, Reduced order description

1. Introduction

Dispersed and slug flows appear in numerous industrial and environmental applications
including petroleum production and transportation systems, bubble column reactors, boiler
and heat exchanger tubes (Lindken & Merzkirch, 2002; Carneiro et al., 2011; Balachandar
& Eaton, 2010). These flow regimes are highly complex, containing pressure and density
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gradients at the interface. The complexity of multiphase flows render many experimental
measurement methods to be unusable and hinder numerical simulation accuracy (Hu et al.,
2014).

Dispersed flow, often turbulent, is characterized by the distribution of one fluid, the
dispersed phase, within another fluid, the continuous carrier phase. Phase inversion is the
phenomenon where the dispersed phase and the carrier phase spontaneously invert due to a
small change in the operational conditions. Brauner & Ullmann (2002) developed a model
to predict this phenomenon in a two-phase pipe flow system. The model is found to be
useful, in particular, on critical water holdup values leading to phase inversion.

Although interface development is considered of secondary importance to the droplet
size distribution in most studies on dispersed flows, droplet break-up and coalescence pro-
cesses are correlated with the geometric characteristics of the interface (Balachandar &
Eaton, 2010). In addition to experimental campaigns to perform detailed measurements,
numerical simulations are also employed to analyze and characterize dispersed flows due to
advancements in both computing power and storage availability. The complexity and scale
of the dispersed fluid, however, deem these simulations either not accurate enough at the
macroscale level or computationally expensive at the fully resolved scale (Balachandar &
Eaton, 2010).

Industrially, one of the most interesting flow problems is considered to be slug flow,
often occurring in transportation pipelines, networks and grids. Depending on the slug
initiation mechanism, slug flows are divided into two groups. The first is terrain slugging
which is an unsteady phenomenon and caused by the terrain effects in combination with
liquid accumulation, gas blocking, pressure build-up, blow-out and suction. It is therefore
dominated by kinematic effects coupled to the compressibility of the gas. The second group
is called hydrodynamic slugging, the case studied in the paper. It appears due to unstable
hydrodynamic interactions between the fluid phases and can achieve statistical stationarity.
Contrary to the terrain slugging, the gas phase in hydrodynamic slugging is incompressible
and the flow is dominated by the dynamic effects. Hydrodynamic slugging is intermittent
and originates from stratified two- or three-phase flow where small perturbations create
interface waves to grow via Kelvin-Helmholtz instabilities causing one phase to entirely
occupy the cross-sectional area (Taitel & Dukler, 1976). Other causes of slug flow include
wave coalescence at high flow rates and ramp-up of production or flow rates (Al-Safran et al.,
2005; Woods et al., 2006).

Characterization of the slug flow is often carried out via determination of slug length
and frequency, gas and liquid holdups and more recently turbulent velocity fluctuations
and entrainment processes. From an operational perspective, tracking and predicting slug
formation are crucial for steady processes and production. This is because most flow and
processes simulators have models for slugging. Understanding the formation and develop-
ment of slugs is therefore critical in mitigating the intermittent loading it inflicts on pipeline
infrastructure over the life time of pipeline operation. Serious problems can occur as a result
of pipe wall damages, especially in hydrocarbon production and transportation lines, leading
to severe safety risks (Kvernvold et al., 1984). In order to tune the system, and optimize the
processes and production, one has to have information about slug characteristics because it
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Figure 1: Diagram of slug unit with a length of L in the pipe.

can easily overload the processing equipment waiting in the end of the pipeline and causing
an unwanted slow down, or perhaps unexpected halt in production.

The slug flow is depicted in figure 1. The elongated gas bubbles are shown in
white and form along the top of the pipe and its translational velocity is denoted
by Ur, which is also the translational velocity of a slug unit propagating along
the pipe. The schematic includes the length of the liquid slug, Lg, the length of
the slug unit, L, and the length of the film (or elongated bubble), L.

The slug (body) duration can be defined as the time interval between the
passage of two successive slug body fronts (or Taylor bubble fronts) at a partic-
ular position and is determined by the gas volume fraction reaching a critical
value at the top of the pipe. Given the translation velocity of elongated bubble
(or the slug unit), Ur, time for passage of a slug unit is

At =L/Ur. (1)

The slug frequency is determined by the number of slugs that pass through an area of interest
during a controlled time interval. The average slug frequency is defined as

)= 371 2 5 )

where M is the total number of slugs recorded and (-) indicates time-averaging. In what is
often called fully developed slug flow, the statistical time and length scales for the
slugs does not change with position along the pipe. Individual slugs, of course,
differ from each other. Slug stability in this sense has been subject in many
studies in literature. As detailed in Cook & Behnia (2000), minimum stable
slug length is found to be approximately 10 pipe diameters in near horizontal
conditions. The study indicated that the development length for stable slugs
is close to 500-600 pipe diameters while average slug length is about 15 pipe
diameters.

Numerical and experimental studies have been performed to improve our understanding
on slug flows and develop predictive models in particular for the length and shape distribu-
tion within the flow field (Carneiro et al., 2011; Taitel & Dukler, 1976; Cook & Behnia, 2000).
The two-fluid model, used frequently in numerical analysis, is formulated by considering the
cross-sectional averaged governing equations of mass and momentum for each phase. Issa &
Kempf (2003) took a mechanistic approach to the prediction of slug development, based on
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the numerical solution of the one-dimensional transient two-fluid model equations. This ap-
proach minimized the need for phenomenological models which are significantly sensitive to
change in boundary and initial conditions. Given the simplicity of the model, the results of
the computations for slug characteristics and data obtained from literature have remarkable
agreement.

Carneiro et al. (2011) examined slug flow both numerically and experimentally. The slug
flow was simulated using the two-fluid model and the results were verified via experimental
measurements. The two-fluid model was successful to predict frequency, velocity and slug
length with differences varying from 10% to 20% for frequency and slug length compared to
the experimental data.

In this study, the applicability of the proper orthogonal decomposition (POD) technique
to multiphase flow is investigated. The POD has been used extensively in turbulence and
other areas of mechanics ranging from structural vibration to fluid structure interaction.
The application of proper orthogonal decomposition on the complex multiphase flow can
be used to characterize the flow according to its modal components. Cizmas et al. (2003)
studied the interactions of gas and solid phases in fluidized beds numerically to explore the
implementation of a reduced order model via Galerkin methods. The data were obtained
by simulating the two-dimensional uniform-minimal fluidization flow field. Phase space pro-
jections of the first three coefficients illustrated the presence of a low dimensional attractor.
They found that the most dominant characteristics of the motion can be captured by a small
number of POD modes.

In another study, Brenner et al. (2012) presented the derivation and implementation of a
reduced-order model (ROM) based on proper orthogonal decomposition for non-isothermal
multiphase flow. The ROM results were in agreement with the full order model at reference
conditions. They generated a number of snapshot databases for both isothermal and non-
isothermal flow to investigate effects of sampling rate for the test case. They found that as
additional snapshots were added, error decreased as expected.

The POD examples discussed in the previous paragraphs use data produced by numerical
simulations due to lack of experimental data needed to construct the kernel of POD integral
equation, which is Fredholm integral equation of the second kind. In this paper, the POD
analysis is performed on the flow using measurement data and focus mainly on two flow
regimes, dispersed and slug flow, in a pipe. The instantaneous local phase fraction across
the pipe cross-section is the main parameter to construct the kernel of proper orthogonal
decomposition in this case.

The mathematical framework and application of the theory on multiphase flow is dis-
cussed in §2, and a brief description of the experimental setup is provided in §3. Results
and discussion are presented in §4 and our conclusion follows in §5.

2. Theory

To gain further understanding of interface features and in turn characterize the me-
chanics of slug evolution, proper orthogonal decomposition is implemented. The POD was
introduced to fluid mechanics as a decomposition technique to analyze turbulent velocity
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signals (Lumley, 1967). The method of snapshots was developed by Sirovich (1987) and uti-
lized when the flow measurements contain high spatial resolution in comparison to temporal
resolution (cf. Holmes et al. (1998)).

The state variable is the instantaneous local phase fraction (volume fraction),
¢(x,t), to be used in the kernel for the decomposition. The instantaneous phase
fraction describes the amount of a specified phase at a given location and time from 0 to 1,
where 0 and 1 equate to non existence and only existing phase, respectively. In the following
theoretical development, bold math symbols represent vectorial quantities.

The POD organizes the flow in an orthonormal basis of functions solution of the Fredholm
integral equation:

/ R(x,x) P (x)dx’ = \P ¥V (x), p=12,... (3)
Q

where () is the spatial domain considered, W(x) is the set of basis functions and the eigen-
values are represented by A\. The term p represents the denumerable mode numbers in a
bounded domain, and is limited by the number of grid points across the pipe cross-section,
in this study given the quantity of interest is a scalar. The kernel of the POD, R(x,x’), is
the spatial correlation tensor and is defined as

Rixx) = 1 D 6(x 19, 1), (1)

where the matrix ¢(x,¢") is the discretized phase fraction field. On index form, it can
be written as ¢j; = ¢(xy,y;,t"), where x;,1;,t" represent the discretized z-, y- and time-
axes, respectively. Below, t" is the time for sample n, and N refers to the total number of
snapshots. The prime represents the spatial coordinate of another point in the domain. The
kernel, R(x,x’), is discrete (with four indices if x and x" are discretized coordinates in a 2D
pipe cross section). Introducing an unknown coefficient vector A, the deterministic field can
be assumed to be:

U(x) =) A(t")p(x.1"), (5)

which has the largest projection on the stochastic phase fraction field in a mean square
sense. Through substitution of equations 4 and 5 into equation 3 and discretization, the
integral equation can be expressed as an eigenvalue problem in the form:

CA = )A. (6)

The eigenvector of coefficients A = [A(th), A(t?), ...,A(t")}T where n = 1,...,N, Cis a
symmetric N x N matrix with components Cy,, = 1/N(¢7(x,™)¢(x,t")) where m,n =
1,2,..., N and X is a diagonal matrix of N eigenvalues which are ordered by their variance
contribution, A\!' > A2 > X3 > ... > \*. Note that the eigenvalue problem defined by
equation 6 needs to solved for every discretized position x.
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The solution of the eigenvalue problem results in a set of eigenfunctions, A™ where
m=1,...,N. According to equation 5, the POD modes are constructed from elements of
A™) and the original data. Normalization results in a final expression for the orthogonal
basis,

‘Il(m)(x): Z%1A(m)(tn)¢(x>tn) 7
122 A () (x, )]

The instantaneous phase fraction tomograms may be reconstructed using the eigenfunctions
as

m=1,...,N. (7)

N,
o(x,t") = Z Uy ) (x,t"), (8)

where the set of coefficients, a,,, are obtained by back-projecting the stochastic phase fraction
tomograms onto the POD modes and N, is the reduced number of modes. A suitable value
for the latter can be obtained by inspection of the convergence rate for the sum on the
right-hand side of equation 8, as will be discussed below. In the domain €2, the coefficients
are defined as

am(t™) :/Qqﬁ(x,t")\l'(m)(x',t")dx'. (9)

Each set of coefficients expresses the amplitude of the associated eigenmode as a function of
time and the ordered basis functions allow for the largest structures of the flow to be derived
from the POD. Therefore, by employing the instantaneous phase fraction as the kernel,
the interface is characterized spatially via dominant structures in the critical eigenmodes.
Further, the coherent structures pertaining to interfacial phase interactions are temporally
illustrated by the associated set of coefficients, subcategorizing the overall low dynamics
as a function of eigenmode. In addition, the time dependent coefficients can be used in
dynamical system formation (Perret et al., 2006).

3. Experimental Set-up

Experiments were conducted in the Well Flow Loop of the Institute for Energy Technol-
ogy (IFE). The test section is constructed of transparent PVC, with a total length of 50 m
and an inner diameter of 100 mm. The ratio of length to diameter of the pipe provides
sufficient development length for achieving stable slugs (Cook & Behnia, 2000). Beyond this
length statistical properties of the flow structures are no longer dependent on axial posi-
tion. A schematic of the test section is shown in figure 2. Enhanced mixing of the phases
is produced by a static mixer operating directly after the injection site of the two fluids
into the test section with flow control valves (FCV) placed intermittently along the pipe.
The test section is horizontal with an accuracy of 4+0.1°. Differential pressure transducers
(dPy, — dP;) allowed for measurement of pressure over sections of the pipe. Broad beam
gamma densitometers (G;-G4) produced cross-sectional averaged phase holdup while X-ray
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Figure 2: Experimental test section where the flow control valves are represented by FCV, the pressure
transducers are denoted by dP and G;-G, represent the gamma densitometers (not to scale).

Figure 3: Still picture of dispersed flow in the Well Flow Loop during experimentation.

tomography provided local phase fraction measurements of the cross-section of the pipe.
The pressure and gamma densitometer measurements are averaged over a sampling time of
15 s. High-speed optical video as well as direct visual inspection of the PVC pipe
allow the flow regime to be qualitatively visualized. Figure 3 is a still picture of
the dispersed flow case and figure 4 depicts time profiles for the cross-sectional
holdup of the slug flow obtained from camera 1 and camera 6.

The X-ray computed tomography (CT) system is comprised of six point sources and six
detectors, with a sampling frequency of 50 Hz. The recording time is 25 seconds, and the
observed duration (time of passage in front of the camera) for the slug bodies is 1.85+0.69
seconds. A total of eleven slugs are observed during the 1250 time instances. The X-ray CT

1.2 I

holdup — camera 1
holdup — camera 6
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Figure 4: Time profiles for the cross-sectional oil holdup obtained via camera 1 and camera 6 for the slug
flow.
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Figure 5: Orientation of source and detection devices for one of the two triangular camera systems along
the pipe.

system consists of two triangular setups, each containing three cameras and three sources at
adjustable position along the pipe. For reference, one triangular setup is shown in figure 5.
Each X-ray is attenuated as it passes through the air, the pipe wall and the fluids inside the
pipe, with stronger attenuation indicated by lower intensity of camera pixel. Calibration
images are obtained by filling the pipe entirely with gas, oil or water, which allow the
pixel value to be converted to a holdup value for each of the phases. The resolution of
a single pixel is better than 1 mm. For noise reduction, groups of neighboring pixels are
averaged and the final resolution is set to a value of a few millimeters. For the X-ray
system and the materials used, the index of refraction is unity to +0.00001,
presenting insignificant contributions to the experimental results. The local
uncertainty, regarding two-phase flow, for the concentration profiles obtained
with each detector is a few percent. The holdup values measured by the X-ray
are within +4% uncertainty level. During tomographic construction, a certain
level of statistical noise is introduced, but large and coherent features present in
a given tomogram are less effected and the POD successfully locates this type of
noise toward the end of the spectrum. The CT construction details are beyond
the scope of this paper.

By cross-correlating time profiles for the (cross-sectionally averaged liquid)
holdup obtained at two different axial locations, the characteristic pattern ve-
locity can be determined. In the presented experiments, X-ray images were
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Regime U, m/s] Ui, m/s] U, m/s] po kg/m®] py, [kg/m?] o [mPas] by [mPas] Total snapshots

Dispersed (O-W flow) - 0.5 0.5 803.1 996.6 1.403 (£0.02) 1.040 (£0.02) 1250
Slug (O-G flow) 0.9 - 0.6 812 - 1.42 (£0.02) - 1250

Table 1: Experimental test conditions.

obtained at 40.27 and 40.69 meters from the inlet, respectively. The transit
time between the two locations for the slugs seen in the experiment ranged
from 160 ms to 280 ms, with a mean value of 242 ms. This corresponds to a
characteristic pattern velocity in the range 1.50 m/s to 2.62 m/s, with a mean
of (U7") = 2.06 m/s.

In slug models in the literature, the Taylor bubble velocity is often expressed
as U;hmy = Cy-Upiz +Uyy. The coefficient Cy depends on the velocity distribution,
and is approximately 1.05 for the presented case (Bendiksen, 1984). U, = U+
Uso + Uy, is the mixture velocity, and U; is the so-called drift velocity. For
horizontal pipes, the inviscid drift velocity is given by U; = 0.54-\/gD = 0.54
m/s, where g is the gravitational acceleration, and D is the inner pipe diameter
(Benjamin, 1968). For the given data, UZ“V = 1.5 + 0.54 = 2.04 m/s. This
predicted value matches reasonably well with the mean measured value U;™,
especially when one takes into account that the model assumes a single, fixed
length and time scale for all slugs.

Table 1 shows details of the test parameters. The dispersed flow was comprised of Exxsol
D60 oil and tap water at 20°C and a pressure of 4.1 bar. The slug flow was oil-gas flow,
comprised of Exxsol D60 oil and Sulfur Hexafluoride gas (SFg), at 20°C and a pressure of 8
bar. Each case contains 1250 time instances (snapshots). The superficial velocities for gas,
water and oil are denoted as Uy, Us, and Us,, respectively.

4. Results

4.1. Time-averaged statistics

Tomograms of the mean phase fraction of oil for dispersed and slug flows are shown in
figure 6. The spatial coordinates are normalized by the pipe radius, R. The mean phase
fraction of oil for the dispersed flow shows a stratified layer, with a thickness of 0.25D, located
near the horizontal centerline of the pipe. There exist two symmetric pockets of (¢,) ~ 1
in the top half of the pipe which might in part be due to imperfections in the tomographic
reconstruction arising from non-exact geometry specification. An area of stratification is
seen along the top edge where the phase transforms to majority water from y/R = 0.75 to 1.
Figure 6(b) represents the mean phase fraction of oil of the slug flow for all 1250
time instances, during which a total of eleven liquid slugs develop. To investigate
the stationarity of the data, a subset of time instances for a single slug passing
through the cameras was also investigated. The mean phase fraction distribution
of a single slug passing compared to the entire data set of eleven liquid slugs
passing showed negligible differences in its characteristics, with a maximum and
mean difference of 12% and 1.7%, respectively. Figure 6(b) shows irregular and
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Figure 6: Mean phase fraction tomograms of the cross-sectional distribution (a) for dispersed flow and (b)
for slug flow. Contour lines indicate the local oil fraction in steps of 0.1.

asymmetric stratification occurring around the horizontal centerline of the pipe. In the
bottom half of the pipe, the phase fraction is almost uniformly 100% oil while the top half is
a mixed flow comprised of (¢,) ~ 0-0.3. Mean slug length of the flow is computed by
the experimental oil holdup detected by the vertically oriented camera (viewing
the pipe from the side) and the theoretical translational velocity, Ur = 2.04 m/s,
with a resulting magnitude of Lg/D = 1.53 and L/D = 37.5 The mean slug
frequency, (f;) = 0.56 (1/s).

4.2. Proper orthogonal decomposition

Figure 7 depicts the distribution of the instantaneous phase fraction variance for the two
cases as a function of the eigenvalue. The percent of variance associated with each of the
first ten eigenvalues is shown, where K, = A,/ vazl Ai. The percent contribution for the
remaining modes is negligible. Both cases show similar trends with the first mode containing
the most phase fraction variance with K, = 99.5% and 94.0% for dispersed and slug flow,
respectively. The first mode for each case shows the most dominant features of the flow field,
the mean phase fraction. The first eigenmode of dispersed flow has a greater percentage of
the total variance when compared with slug flow due to the regularity of the instantaneous
phase fraction as a function of time. It is of note that the convergence rate is independent
of the number of snapshots used for analysis.

Eigenmodes 1, 2, 3, 5, 10 and 100 obtained via POD are shown for the dispersed flow
field in figure 8. The first mode, figure 8(a), represents the mean phase fraction of the flow
thus, containing significant relative coherence. Mode-2 shows a long horizontal feature
that corresponds to the location of high stratification of the flow seen in figure 6.
As the mode increases, figures 8(c)-(e), features correlate to areas of fluctuation of the phase
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Figure 7: The distribution of variance described by normalized eigenvalues, K,,, as a function of the mode,
n. Only the first ten modes are shown for clarity. The percent contribution for the remaining modes is
negligible, totaling to 0.085% and 0.14% for the dispersed and slug flow respectively.

fraction and are less coherent than those seen in the first two modes. Figure 8(c) shows
three upright and nearly symmetric features while successive modes present a
greater number of structures and less defined symmetry among them. Mode 100
displays complete incoherence of the phase fraction field. The structure present in the
top of the pipe in figure 8(b) and the two small symmetric features along the
pipe wall at y/R ~ 0.5 in mode-3 could be attributed to the small pockets of oil
seen in figure 6(a). These formations may be partly due to imperfections in the
tomographic construction.

POD eigenmodes 1-3, 5, 10 and 100 for slug flow are shown in figure 9. Similar to
dispersed flow, the mean phase fraction is characterized by mode-1. Eigenmodes 2, 3 and 5
show structures that correspond to the cyclical development and deployment of the liquid
slug. The first and second mode reflect the basic mechanism of slug flow. The liquid
slug is the region where the liquid bridges the pipe cross-section from the bottom to top
and the film is the region where the flow across the pipe is separated with a pronounced
interface. The gas bubble develops slowly, indicated by the bias of the structures toward
the horizontal centerline of the pipe in figures 9(c) and 9(d). More specifically, the oil fills
the entire pipe quickly, with oil levels moving from near centerline to the top of the pipe
over one or two snapshots. The oil then gradually lowers in the pipe as the top half of the
pipe fills with gas, this process takes anywhere from 0.8 to 2.6 seconds. Mode-2 shows
one main feature in the top half of the pipe while the successive modes contain
flat, horizontally-oriented structures. As the eigenmode increases, the number
of these structures also increases and the layered structures alternative between
positive and negative magnitudes. Mode-10 follows the trend seen by modes 2, 3
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Figure 8: Eigenmodes 1, 2, 3, 5, 10 and 100 for dispersed flow are depicted in (a) through (f), respectively.
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and 5 with the less pronounced features in terms of magnitude. Figure 9(f) shows
complete incoherence of the flow field. Again, there exists small features along the top
of the pipe that could be attributed to measurement technique imperfections.

The considered cases contain different features of the eigenmodes which are related to
the different characteristics of the two flows. The dispersed flow is more uniform, therefore
after the initial mode describing the mean phase fraction, the second mode identifies the
interface between the fluids. The successive modes, figures 8(c)-(e), show structures that
contain negligible significance based on their associated eigenvalue, attributed to the min-
imal variance that occurs during the experiment. The slug flow eigenmodes present more
information about the flow field. The first two modes represent nearly 98% of the total
variance present in the time series, figure 7. These modes correspond to the summation of
the stratified flow and the full cross-sectional flow. The coherent features of mode-1 shows
no zero-crossing across the cross-section, hence relates to the liquid slug bridging the pipe,
and the coherent structure present in mode-2 represents the stratified flow within the film
(or elongated bubble) region where an interface exists between the two phases. The features
of the second through tenth eigenmodes correspond to the slug formation, indicating where
the variation is occurring most with respect to vertical location.

Using the temporal coefficients and the eigenfunctions obtained via POD, the instan-
taneous phase fraction tomograms are reconstructed, as seen in equation 8. The reduced
order descriptions are formed from a fixed number of POD modes, N,, determined by the
percentage of variance contribution of the ordered set of eigenvalues. The full order and
reduced order descriptions of the instantaneous phase fraction tomograms of dispersed flow
for a discrete set of snapshots in time are shown in figures 10(a) and (b), respectively. The
full order description of the flow utilizes all 1250 degrees of freedom, therefore it includes all
details of the flow field. The low order description is constructed from only the first eigen-
mode. Minimal differences are observed between the two figures indicating that dominant
characteristics of the flow field can be described using significantly less degrees of freedom.

In figure 11, the full and reduced order descriptions of slug flow for a discrete set of
snapshots containing the evolution of a slug are shown in (a) and (b), respectively. Here, the
reconstructed flow field has been created using the first three modes, representing 99% of the
total phase fraction variance. The magnitude of the phase fraction tomograms are slightly
reduced in the low order reconstructed snapshots, but the location and overall characteristics
of the slug are consistent amongst the two figures. The low order description effectively
captures the interface between the phases as well as the formation and break-up of the liquid
slug for the phase fraction field. This reduced order description can decrease computational
time and cost during further analysis and is therefore more easily implemented into modeling
programs for slug formation identification.

Phase correlation diagrams for POD modes 1, 2 and 3 for dispersed and slug flow are
shown in figure 12. The dispersed flow shows minimal correlation between mode-1 and
mode-2 in figure 12(a) and a negligible correlation beyond the first two modes. The trend
seen between a; and as is linear and inversely proportional signifying that as a; increases as
decreases and vice-versa. The linear trend shown between the first two modes demonstrates
that the two coefficients are sufficient for recovery of the flow characteristics. The cyclical
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Figure 10: (a) Full order instantaneous phase fraction tomograms and (b) reduced order instantaneous phase
fraction tomograms of dispersed flow, reconstructed with the first eigenmode.

(a) (b)

Figure 11: (a) Full order instantaneous phase fraction tomograms and (b) reduced order instantaneous phase
fraction tomograms of slug flow, reconstructed with the first three eigenmodes.
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Coefficients Polynomial R2-value

aj Vs as 0.46(a1)*12.7a,+84.8 0.99
a vs as 0.24(a1)%-10.9(a1)?+165.1a;-827.1  0.92
ay VS ag 0.17(a3)*0.45a,-1.9 0.93

Table 2: Phase correlation polynomial descriptions and R2-values.

characteristics of the slug flow create correlations between the first three modes as seen in
figures 12(b), 12(d) and 12(f). The development of the liquid slug spans the curves denoted
in the figures by the asterisk, indicating the start of the slug and the square, signifying the
end of the slug. The trends of the coefficients indicate that more than two modes are required
to recover the slug. The relationship between a; and as as well as a; and a3 can be described
by a second order polynomial function or curve-fit, while the curve depicted by a; and as is
best described by a third order polynomial function. Equations and corresponding R?-values
are shown in table 2. The dependence of the coefficients on liquid slug development can be
correlated to other flow parameters for ease of conditional monitoring of slug passage. It is
of note that describing the flow through polynomials requires high precision and errors can
accumulate more quickly as the moment increases.

Two holdup profiles and the temporal coefficients, a,,, as a function of time where m =
1, 2, 3 and 4 are depicted in figure 13. The included profiles, experimental and centerline
holdup, refer to the holdup profile across the pipe detected by the vertically aligned camera
and the holdup profile taken as a function of the vertical array located at the center of
the pipe, respectively. A value of 95% oil fraction is used as the threshold for
interface identification in the pipe. For clarity ¢ = 15-25 is omitted, the characteristics
of the time steps shown are indicative of the omitted data. In figure 13(a), the experimental
holdup time series displays similar trends to the centerline holdup, with fluctuations slightly
emphasized. This discrepancy between the holdup profiles occurs due to the experimental
holdup measurement taking the entire domain into consideration. The experimental holdup
is commonly used in X-ray CT data analysis (Hu et al., 2014; Schiimann et al., 2016)
to describe the liquid holdup as a function of vertical position. This quantity directly
relates to slug length based on the interface location as a function of time, equation 1. The
first coefficient, although larger in magnitude, shows the same trends displayed by the two
holdup profiles. The second coefficient, as, shows an inverse relation to the experimental and
centerline holdup profiles and therefore, to the coefficient a;. As the temporal coefficient
increases, as, trends are muted compared to the first two coefficients, with a, showing
negligible fluctuations. For as, the dispersed flow shows fluctuations limited in a small
bandwidth. The magnitude of the second temporal coefficient is minimal when compared
with a; and is directly related to the coherent structure shown in figure 8(b). The second
eigenmode describes the phase fraction fluctuations in the pipe over the time series as this is
second most dominant feature of the flow, insignificant in magnitude when compared with
the time-averaged phase fraction, depicted by mode-1.

The oil holdup profiles in figure 13(b) exhibit cyclical fluctuations as the liquid slug
develops and breaks down. Similar to the dispersed case, the experimental holdup curve
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Figure 12: Phase correlation diagrams of temporal coefficients for m = 1, 2 and 3 for dispersed flow (left
column) and slug flow (right column). The asterisk and the square, included in the figures of slug flow,
represent the passage of a slug unit from ¢ = tg to t = t;, respectively.
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Figure 13: Experimental holdup (—), centerline holdup (—) and a,, (—) as a function of time for dispersed and slug flow in (a) and (b),
respectively, where m = 1, 2, 3 & 4.
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shows an emphasized version of the centerline holdup curve. The first coefficient displays
the same tendencies revealed by the holdup profiles but with dulled features. For as, the
centerline holdup is described well by the coefficient with the root mean squared error of

0.086,
N

1/2
RMSE = <% > (L) - ag(t"))2> ,
where C'L(t") is the centerline holdup value at a given time, ¢t". As the coefficient increases,
m = 3, the coefficient shows similar characteristics to phase holdup during the first few time
instances surrounding the slug formation. After the liquid slug break-up, as exhibits similar
fluctuations to the two holdup profiles but the temporal coefficient profile is inverted, mir-
roring the behavior of the two holdup curves. The fourth coefficient, a4, shows fluctuations
that are slightly muted with tendencies similar to the third coefficient. More specifically,
similar to the holdup profiles during time instances surrounding the formation of the slug
then quickly displaying a mirrored trend of the holdup curves after the liquid slug breaks
down.

The relationship between the first coefficients and the holdup profiles is directly related to
the phase correlation diagrams shown in figure 12. The inverse correlation seen in figure 12(a)
is also seen in figure 13(a) by the correlation of the curves a; and ay with the holdup
profiles. There is a direct correlation between a; and the holdup curves, and an inverse
correlation between ao and the holdup profiles. Also, the lack of correlation between the
remaining coefficients in figures 12(c) and 12(e) verify that the third coefficient does not
contain prominent characteristics of the flow field.

For slug flow, the correlation between a; and as shown in figure 12(b) is verified. The
first two coefficients show similar trends with a, showing more emphasized representations
of the holdup when compared to a;. The third coefficient shows a direct correlation to
the phase holdup profiles during liquid slug development and an inverse correlation during
break-up and that can be seen by its dependence on a; and as in figures 12(d) and (f). The
third coefficient shows a direct correlation for the beginning of the slug, from the asterisks
to the minimum of the curve, then as is inversely related for the breaking up of the liquid
slug.

The descriptions of the slug formation by the second coefficient correlate to slug length
analysis in the following way: The mean slug length computed by the second temporal
coefficient obtained via POD analysis, L/D = 37.5, is the same magnitude as the mean slug
length found from the experimental holdup. Similarly, the mean slug frequency for both
methods of analysis (f;) = 0.56 (1/s). The largest variation between the slug length found
via experimental holdup and via POD temporal coefficients is 2.6% for this data set.

5. Conclusion

Two-phase flow loop experiments using a state-of-the-art X-ray system were investigated
to further understand phase fraction characteristics for dispersed and slug flow. Proper
orthogonal decomposition was performed on both cases as well as statistical analysis on
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the slug flow case. The mathematical framework provided by POD describes the dominant
features with reduced degrees of freedom of the systems. Descriptions of the flow dynamics
via the temporal coefficients can be correlated to other flow parameters and used to develop
flow control tools, improve multiphase simulations and advance predictive methodologies in
numerous industrial applications.

Over the sampling time of 25 s, the dispersed flow is uniform with small fluctuations
present at the liquid-liquid interface. The liquid holdup of slug flow follows a periodic
profile as a function of time as liquid slugs form and break-up, with variation in frequency
between the liquid slugs. The dispersed case converges to 99% of the total variance of the
flow in the first mode, while slug flow reaches 99% convergence by the third mode. The
eigenmodes show coherent features of the flow in only the first few modes with POD mode-1
showing the mean phase fraction of the flow for both cases. The interface of the fluids is
depicted in mode-2 for dispersed flow with little coherence seen in successive modes. The
interface of the slug flow exists at 0 < y/D < 1 and is constantly in motion, which is seen
by the layering of structures in modes 2, 3, 5 and 10. Reconstructions, showing dominant
features of the two flow fields, are obtained with mode-1 and mode-3 for dispersed flow and
slug flow, respectively. For dispersed flow, a correlation is observed between mode-1 and
mode-2. Slug flow shows a high dependence between temporal coefficients for m = 1, 2 and
3 and a strong correlation between these coefficients and the liquid holdup. Recalling that
mode-2 structures correspond to the flow of the liquid phase fully occupying the pipe, the
second coefficient expresses the amplitude of the second eigenmode and therefore highlights
the fluctuations at the interface. The second coefficient, as, describes the centerline holdup
of the slug flow with high accuracy. It was observed that the mean slug length found via
statistical analysis of experimental holdup values and via the second temporal coefficient,
as, were in perfect agreement.
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