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1. Abstract 

Full 3D flow simulations of lab and industrial scale dense fluidized beds were carried out using a 

filtered Eulerian-Eulerian approach. Filtered closures for interphase momentum exchange, solids 

stresses and additional wall corrections were implemented in the standard equations of motion. 

These closures had a very large effect on overall model performance when solved on the large 

cell sizes required for computationally affordable 3D fluidized bed simulations. Numerical 

experiments conducted under different fluidization conditions showed that the current model 

formulation performs well over a wide range of operating conditions. It was found that additional 

modelling accounting for flow non-uniformity is essential under certain fluidization conditions. 

The current method for dealing with flow non-uniformity by means of wall corrections yielded 

good results under vigorous fluidization, but caused a slight inaccuracy at low fluidization 

velocities. In general, comparisons to a wide range of experimental data showed good 

quantitative agreement, suggesting that the formulation of the filtered model is highly generic. 

The filtered approach was also successfully verified in a large scale bubbling fluidized bed 

reactor by comparisons with a highly computationally expensive, well resolved, non-filtered 

flow simulation.   
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2. Introduction 

Fluidized bed reactors form an integral part of many process industries in operation today. The 

intimate inter-phase contact and excellent mixing achieved by these reactors offer a highly 

favourable environment for any gas-solid or solid catalysed reaction. Fluidized bed reactor 

performance is very difficult to predict, however, primarily due to the complex and highly 

interconnected physical phenomena involved. Intricate gas-solid hydrodynamics is tightly 

coupled to heat transfer and heterogeneous reaction kinetics, presenting a distinctly non-linear 

modelling problem. 

The fundamental flow modelling framework of computational fluid dynamics (CFD) is therefore 

an ideal candidate for accurately modelling these complex reactors. Simultaneous conservation 

of mass, momentum, energy and species throughout space and time ensure that the non-linear 

interactions between all relevant physical phenomena are simulated directly. For this reason, 

CFD modelling of fluidized beds have enjoyed significant research attention over the past two 

decades. An Eulerian-Eulerian multiphase flow modelling framework closed by the kinetic 

theory of granular flows (KTGF) [1-3] is regularly used for this purpose. 

Another complicating characteristic of fluidized bed reactors is the formation of mesoscale 

structures (bubbles in bubbling beds and clusters in risers). The size, shape and nature of these 

mesoscale structures largely determine the behaviour of a fluidized bed and have to be accounted 

for in order to correctly predict reactor performance [4]. Generally, however, these controlling 

structures occur on very small time and length scales, requiring fine grids and small timesteps to 

resolve accurately. A standard Eulerian-Eulerian KTGF approach can therefore only simulate 

relatively small-scale 2D fluidized beds and a fully resolved, 3D simulation of an industrial 

fluidized bed is far beyond the capabilities of today's computational facilities. 

In order to attain accurate solutions on computational grids coarse enough to allow for large-

scale 3D simulations, a filtered approach may be used where the effects of mesoscale structures, 

now being smaller than the grid size, are modelled based on averaged values of local flow 

variables. Such an approach allows for computational speedups of several orders of magnitude, 

but additional closure relations are required to close the filtered conservation equations.  
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This work is based on filtered two-fluid models of gas-particle flows as formulated by 

Sundaresan and co-workers [5, 6]. The models were developed in two stages. Firstly, highly 

resolved simulations of two-fluid models were carried out in periodic domains. The resulting 

flow-fields were subsequently filtered to obtain filtered constitutive models for fluid-particle 

drag coefficient, the particle phase pressure and particle phase viscosity. The resulting models 

depended only on particle and fluid physical properties, particle volume fraction and the filter 

size.  Secondly, highly resolved simulations in a wall-bounded domain were carried out in order 

to derive the required corrections in near-wall regions. 

This approach was demonstrated to achieve good results in riser flows of Geldart A particles [7], 

but has not been thoroughly evaluated for application in dense bubbling and turbulent fluidized 

beds. These flow regimes will be the focus of the current study and will present a thorough test 

for the generality of the current modelling approach. If good results can be attained for a wide 

range of bubbling and turbulent fluidization cases in addition to the aforementioned favourable 

riser flow results, it can be interpreted as a very positive result for the filtered modelling 

approach as it stands now and serve to encourage both academia and industry to further develop 

this approach.  A good generic agreement should encourage academia to extend this approach to 

also include species, energy and reaction kinetic filtering and encourage industry to start 

employing and testing this approach in real-world problems involving reactor hydrodynamics. 

Such an increased focus would significantly accelerate the development of a model capable of 

making real contributions to industrial fluidized bed reactor design and operation.  

Two bed configurations will be considered in the present work: a lab-scale fluidized bed filled 

with Geldart A particles and operated in the bubbling and turbulent regimes as well as an 

industrial scale bubbling fluidized bed filled with large Geldart D particles. 3D simulation of the 

hydrodynamics in these beds lies beyond the capacities of present computational resources, 

implying that a filtered approach is mandatory for achieving sufficiently accurate numerical 

solutions.   

3. List of Symbols 

α  Volume fraction 



4 

 

f∆  Filter length (m) 

λ  Bulk viscosity (kg/(m.s)) 

µ  Shear viscosity (kg/(m.s)) 

ρ  Density (kg/m3) 

τ  Stress tensor (kg/(m.s2)) 

υ  Velocity vector (m/s) 

∇  Gradient or Del operator (1/m) 

DC  Drag coefficient 

c  Drag filter coefficient 

d  Diameter (m) 

Frf  Filter size Froude number 

g  Gravity vector (m/s2) 

( )sh α  Scaling function 

I  Identity tensor 

K  Momentum exchange coefficient (kg/(m3.s)) 

p  Pressure (Pa) 

Re  Reynolds number 

t  Time (s) 

V  Volume (m3) 

tv  Terminal particle velocity (m/s) 
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x  Distance from the wall (m) 

Subscripts: 

d  Dimentionless 

g  Gas 

p  Not filtered (i.e. on a particle level, not on a cluster level) 

sg  Inter-phase 

s  Solids 

4. Simulations 

Numerical simulations will be based on a multiscale modelling approach proposed by Igci et al. 

[5]. In this approach, filtered closures are derived from small scale, well resolved simulations. 

4.1 Model equations 

The equation system is based on the Eulerian-Eulerian multiphase flow modelling approach, 

where the two participating phases (gas and solids) are treated as inter-penetrating continua or 

fluids. This approach is often referred to as the two fluid model (TFM). 

4.1.1 Conservation equations 

Mass and momentum are conserved for each phase individually.  

( ) ( ) 0g g g g gt
α ρ α ρ υ∂

+∇⋅ =
∂

  (1) 

( ) ( ) 0s s s s st
α ρ α ρ υ∂

+∇⋅ =
∂

  (2) 

( ) ( ) ( )g g g g g g g g g g g sg s gp g K
t
α ρ υ α ρ υ υ α τ α ρ υ υ∂

+∇⋅ = − ∇ +∇⋅ + + −
∂

      (3) 

( ) ( ) ( )s s s s s s s s s s s s gs g sp p g K
t
α ρ υ α ρ υ υ α τ α ρ υ υ∂

+∇⋅ = − ∇ −∇ +∇⋅ + + −
∂

      (4) 

In the above equations, all variables represent filtered values.  
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Since this is only a hydrodynamic study, no conservation of energy or species are included. 

4.1.2 Closures 

Standard hydrodynamic simulations of fluidized beds are generally closed by the KTGF, 

modelling subgrid motions of particles on grids much larger than the particle size. In addition to 

modelling particle scale phenomena, the filtered approach also models mesoscale phenomena by 

accounting for the presence of subgrid particle structures. Simulations can therefore be carried 

out on grid sizes larger than the subgrid structures. Filtered closures are added on top of the 

KTGF closures so that, when no filtering is required, the KTGF closure is used. The KTGF will 

not be presented in detail here, however, since it is not the primary focus of the study and is well 

documented in numerous other works (e.g. [4, 8]). 

The equation setup used in this paper was receive through personal communication directly from 

Sundaresan and co-workers and represents the latest and most accurate formulations according to 

the filtering methodology outlined in two recent publications [5, 6]. While a previous study [7] 

validated these formulations in riser flows, this study aims to carry out validation studies in the 

bubbling and turbulent fluidization regimes, thereby fully assessing the generality of the 

modelling approach. 

The first filtered closure is that of interphase momentum transfer ( )sg gsK K=  in equations (3) 

and (4). This is done by modifying the subgrid drag law for the particle [9] by a factor between 

zero and one. The momentum interaction coefficient is therefore reduced to account for the 

larger amount of slip experienced by a conglomerate of particles. 

 ( ), 1sg sg pK K c= +  (5) 

 2.65
,

3
4

s g g s g
sg p D g

s

K C
d

α α ρ υ υ
α −

−
=

 

 (6) 

      ( )0.68724 1 0.15 Re
ReD g s

g s

C α
α

 = +  
 (7) 

 ( )
1.6

1.6 0.4
f

s
f

Fr
c h

Fr
α

−

−= −
+

 (8) 

The coefficient c  is a function of the filter size, expressed as an inverse Froude number 
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 1 2vf f tFr g− = ∆  (9) 

where the filter length is twice the grid size 

 1 32f cellV∆ =  (10) 

and a scaling function, ( )sh α . 
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(11) 

The interphase momentum transfer is therefore modified as a function of the grid size, the 

particle terminal velocity and the local filtered volume fraction. A physical understanding of the 

model can be gained by plotting the degree of filtering of the interphase momentum exchange 

(the bracketed term (1+c) in equation (5)) as a function of the solids volume fraction and the 

inverse Froude number (equation (9)). This plot is shown in Figure 1. 

It is clear that the degree of filtering increases with the inverse Froude number (scaled filter 

length). This is understandable since a larger filter length (i.e. a coarser grid) implies that less 

flow detail can be resolved and more modelling is required. The response to volume fraction can 

also be understood from physical arguments. At the extreme filtered volume fractions of 0 and 

0.6, no filtering is required since no clusters can form. It is only in between these two extremes 

where significant local volume fraction segregation can occur and interphase momentum 

exchange can be reduced. Figure 1 shows that the effect of clustering on interphase momentum 

exchange is strongest at relatively low filtered volume fractions and then gradually reduces as the 

filtered volume fraction increases.  
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Figure 1: The filtering of the interphase momentum exchange coefficient as a function of 

particle volume fraction and inverse Froude number.  

Secondly, the solids stresses are also modified. Particle structure formation has a diffusive 

influence on momentum transfer and will therefore be modelled as a stress increase. The solids 

stress tensor in equation (4) is written as follows: 

 ( ) 2
3

T
s s s s s s s s s sp Iτ α µ υ υ α λ µ υ = −∇ + ∇ +∇ + − ∇⋅ 

 

  
 (12) 

Three modelled quantities are needed to close this equation: the solids pressure, the shear 

viscosity and the bulk viscosity. Bulk viscosity is generally small and will be neglected in this 

study. The solids pressure is modelled as follows: 

 
( )( ), 2 3

2
t

2
,t

2
t

0.59 1.69 4.61 11 ,  0.59
v

v
,  0.59

v

s p
ps s s s s s

ss

s ps
s

s

p
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p
p

α α α α α
ρ

ρ
α

ρ


+ − − − + ≤

= 
 >

 (13) 
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1
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1.4

f
ps f
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−
−

  
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 (14) 
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The solids pressure resulting from subgrid motions on the scale of the particles is modelled from 

the KTGF [1]. Within the filtered approach, this value is not very important, however, since the 

filtered pressure can easily become three orders of magnitude greater than the KTGF pressure.  

The shear viscosity is modelled as follows: 

 
( )( ), 2 3

3
t

3
,t

3
t

0.59 1.22 0.7 2 ,  0.59
v

v
,  0.59

v

s p
s s s s s s

ss

s ps
s

s

g
Factor

g
g

µ

µ
α α α α α

ρµ
µρ

α
ρ


+ − − − − ≤

= 
 >

 (15) 

 ( )1.22 0.430.37 / 0.28 1s f fFactor Fr Frµ
− −= +  (16) 

Solids shear viscosity on the particle scale is again modelled from the KTGF [3]. 

Finally, some experimental near wall treatment is employed which reduces the values of all three 

filtered quantities as the wall is approached.  

 ( )( ), / 1 6.0exp 0.4sg eff sg dK K x= + −  (17) 

 ( )( ), / 1 9.1exp 0.45s eff s dp p x= + −  (18) 

 ( )( ), / 1 5.6exp 0.15s eff s dxµ µ= + −  (19) 

The dimensionless normal distance to the wall used in the wall correction equations is calculated 

as follows: 

 2/ vd tx xg=  (20) 

4.2 Geometry, boundary conditions and materials 

Two separate geometries were simulated in this study: a lab scale 0.267 m ID fluidized bed and 

an industrial 5 m ID reactor. The small scale reactor was simulated for comparison with detailed 

experimental data reported by Zhu et al. [10, 11]. This reactor was 2.5 m in height and with an 

added freeboard region expanding to a height of 4.2 m and an inner diameter of 0.667 m to stop 

excessive particle entrainment out of the bed. The freeboard region was included in the 

simulation domain to accurately account for the large degree of bed expansion observed in some 

of the simulations conducted. The large scale reactor was  simulated for comparison to industrial 

pressure drop data reported in Gobin et al. [12]. This reactor was 30 m in height, but 15 m was 
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found to be sufficient for accurate modelling due to limited bed expansion. The geometries are 

displayed in Figure 2.  

The geometries were meshed with structured hexahedral cells. Cells were maintained close to 

perfect cubes and the size did not vary discernibly throughout the domain, except in the 

freeboard region of the lab scale reactor. In some fine grid simulations, only the region where the 

bed resides was refined by means of hanging node refinement as illustrated for the industrial 

geometry in Figure 2.  

Gas was injected though a velocity inlet on the bottom face of each reactor. Different velocities 

were used for the lab scale reactor, while the industrial scale reactor injected gas at a velocity of 

0.5 m/s. Gas exited at the top of the reactor though a pressure outlet at 0 Pa gauge pressure. A 

no-slip boundary condition was specified at the walls for the gas phase, while a partial slip 

boundary condition was specified for the solids. The model of Johnson and Jackson [13] was 

used for the solids boundary condition with a specularity coefficient of 0.001 describing the wall 

roughness. This value depends on the reactor material and particle properties and is therefore not 

known. The low value given above indicates an almost free slip boundary condition and was 

found to give acceptable results in the current case. This remains an area of significantly 

uncertainty, however, and could conceivably be responsible for some degree of error in the 

simulations.  

A fine Geldart A [14] powder was used in the lab scale reactor with a density of 1780 kg/m3 and 

a mean diameter of 65 µm [10]. Standard air at room temperature was used as the fluidizing gas. 

The industrial scale reactor contained very coarse Geldart D type particles; density 850 kg/m3 

and mean diameter 1.3 mm. The fluidization gas was pressurized hydrocarbons with a density of 

20 kg/m3 and a viscosity of 1.5e-5 Pa.s [12]. The maximum packing limit was set to 0.63.  
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Figure 2: The lab scale (left) and the industrial (right) geometries and meshes used in the 

current study.  

4.3 Solver settings 

The commercial CFD package, FLUENT 13.0 was used as the flow solver to carry out the 

simulations. The phase-coupled SIMPLE algorithm [15] was selected for pressure-velocity 

coupling, while the QUICK scheme [16] was employed for discretization of all remaining 

equations. 1st order implicit temporal discretization was used.  

4.4 Operation and data extraction 

The lab scale fluidized bed was initialized as being filled to a height of 0.9 m at maximum 

packing (volume fraction of 0.63), while the large scale reactor was initialized with a volume 

fraction of 0.35 up to a height of 8 m. Each simulation was run until a quasi-steady state was 

reached. This state was identified by monitoring the mass weighted average solids velocity and 
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observing when this value started fluctuating around a fixed mean. Sampling of time-statistics 

was subsequently commenced for a minimum of 15 s in the lab scale reactor and 30 s in the 

industrial scale reactor.  

5. Results and discussion 

Four sets of numerical experiments were performed. The first, and most comprehensive, was a 

thorough grid independence and validation study in the lab scale reactor run with Geldart A 

particles over three different fluidization velocities. Secondly, the generality of the model was 

evaluated over a wide range of fluidization velocities spanning the bubbling and turbulent 

fluidization regimes.  Thirdly, the relative importance of the various constituents of the filtered 

model approach was determined. And finally, the filtered approach was applied to a large scale 

reactor filled with Geldart D particles.  

5.1 Numerical experiment 1: Grid independence and detailed validation 

Three distinctly different fluidization velocities were considered to investigate model behaviour 

under different operating conditions: 0.06 m/s (gentle bubbling) 0.4 m/s (vigorous bubbling) and 

0.9 m/s (turbulent). Results from each of these flow scenarios will be presented and discussed 

separately below.  

5.1.1 Gentle bubbling – 0.06 m/s 

The first case investigated was conducted at a fluidization velocity just high enough to create 

isolated bubbles rising through the domain. These bubbles do not possess enough buoyancy to 

create a steady recirculatory flow pattern within the bed. There is thus not any significant radial 

segregation of volume fraction or velocity within this bed, offering a fairly simple validation 

case for simulation comparisons. 

Firstly, however, grid independence has to be established. This was done for cases run both with 

and without the wall correction treatment as illustrated in Figure 3. 
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Figure 3: Time averaged axial pressure profiles collected for different grid sizes and model 

setups at a fluidization velocity of 0.06 m/s. WC indicates the activation of wall corrections 

and KTGF indicates a non filtered approach closed only by the kinetic theory of granular 

flows.  

It is shown that both the cases with and without the wall corrections achieved fully grid 

independent results for all three grid sizes investigated. The importance of filtering, even in this 

case where only a limited number of mesoscale structures were formed is also clearly illustrated 

by a significant over-expansion of the bed when no filtering is applied. 

Figure 3 also suggests that the cases with and without the wall corrections lie very close to each 

other. This is to be expected since the flow is relatively uniform, meaning that the flow 

behaviour at the wall is not significantly different from that towards the centre of the reactor and 

any additional wall treatment should not have a large effect. Comparisons to experimental results 

are given in Figure 4 and Figure 5. 
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Figure 4: Time averaged axial pressure drop profiles in the lower reactor regions collected 

for different model setups at a fluidization velocity of 0.06 m/s. WC indicates the activation 

of wall corrections and KTGF indicates a non filtered approach closed only by the kinetic 

theory of granular flows. Experimental data was taken from Zhu et al. [11]. 

 

Figure 5: Time averaged radial volume fraction profiles at a height of 0.6 m for the grid 

independent solutions achieved both with and without activation of the wall corrections for 

a fluidization velocity of 0.06 m/s. Experimental data was taken from Zhu et al. [11]. 
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Both filtered simulations compare well to experiments, whereas the non filtered approach shows 

substantial discrepancies. The simulation run with the wall corrections shows a small degree of 

radial volume fraction segregation which is not reflected in the experimental results, but still 

provides a very reasonable representation of the physics.   

It stands to reason that the wall corrections will only be required if the local flow conditions at 

the wall are significantly different from the local flow conditions in the bulk of the vessel. In this 

case, however, the flow was virtually uniform throughout the entire vessel and the inclusion of 

the wall corrections had a marginally negative impact on results. Wall corrections should 

therefore be formulated to approach zero in the limit of such a slowly fluidized bed.  

5.1.2 Vigorous bubbling – 0.4 m/s 

The next flow scenario investigated represents freely bubbling fluidization. Here, the typical 

recirculatory flow pattern expected in bubbling fluidized beds is formed. Bubbles migrate 

towards the centre of the vessel, causing a strong up-draft in the centre and complimentary 

down-flow at the walls. Results from the grid independence study for this flow scenario are 

presented in Figure 6. 

 

Figure 6: Time averaged axial pressure profiles collected for different grid sizes and model 

setups at a fluidization velocity of 0.4 m/s. WC indicates the activation of wall corrections 
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and KTGF indicates a non filtered approach closed only by the kinetic theory of granular 

flows.  

Some rather surprising model behaviour is seen in Figure 6. The simulation with the wall 

corrections achieved what is essentially a grid independent solution on all grids investigated, but 

when no wall corrections were included, there was a large and decidedly non-linear dependency 

on the grid size. Figure 6 shows that, for a grid size of 1.4 cm and above, the bed height is 

grossly over-predicted, while for a grid size of 1 cm and below, grid independence is suddenly 

achieved at a much more compact bed. This scenario requires some closer investigation with the 

aid of Figure 7. 

The unexpected grid dependence behaviour is described in the first four columns on the left of 

Figure 7. A very large change in flow behaviour between a grid size of 1.4 cm and a grid size of 

1 cm is clearly visible, corresponding to the pressure profiles reported in Figure 6.  For the 

simulation run on a grid of 1 cm, it is clear that some unsteady flow structures are resolved, 

while these structures are completely lost on the 1.4 cm grid. This sudden change between these 

two distinctly different flow scenarios can be explained by considering that such transient flow 

structures are self-sustaining. The moment that the grid size becomes small enough to resolve the 

structures, some strong down-flows are resolved next to the walls, the average volume fraction in 

the bed increases, and structure formation becomes more likely. 

The structures which are resolved in the simulations are not the real mesoscale structures 

(bubbles) which are modelled by the filtered approach, but rather a kind of super-structure 

consisting of many bubbles. This kind of flow response can be envisioned from the third and 

fourth columns of Figure 7. 
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Figure 7: Instantaneous volume fraction (top row) and axial velocity (bottom row, m/s) 

contours for various model setups. From left to right, the cases represent four runs without 
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wall corrections on grids of 2 cm, 1.4 cm, 1 cm and 0.7 cm, one case with wall corrections 

run on a grid of 2 cm and one case without any filtering run on a grid of 1 cm.  

The filtered approach used in this study was developed on the assumption that all filtered 

variables are uniform within each computational cell. Cells containing large gradients in filtered 

volume fraction or velocity can therefore not be adequately treated using this approach and some 

additional modelling will be required. An example of such an approach uses a modelled drift 

velocity based on filtered volume fraction and velocity gradients to account for spatial non-

uniformities within the volume of filtering [17]. In the current study, however, these non-

uniformities are accounted for by means of the wall corrections. The wall regions in fast moving 

flows are typically where large gradients in all flow variables occur and localising this additional 

treatment to the wall regions appears to be reasonable.  

The second to last column in Figure 7 shows that the dense down-flows are correctly captured 

even on a coarse grid when the wall corrections are activated. This can be caused by the drag 

reduction allowing solids to fall much more easily in the near wall regions or by the reduction in 

solids stresses allowing greater strain rates and establishing the recirculatory flow pattern typical 

of bubbling fluidized beds. 

Another interesting feature that can be deduced from Figure 7 is that the correct prediction of bed 

expansion depends just as much on the accurate resolution of solids recirculation as on the 

accurate modelling of subgrid drag. This can be seen by comparing the first two columns (where 

subgrid drag is modelled, but no recirculatory flow is achieved) to the last column (where no 

subgrid drag is modelled, but some degree of recirculation is achieved). Despite the filtered drag 

model reducing the interphase exchange coefficient by a factor of five, the bed expansions 

predicted by these two different scenarios are quite similar, implying that, in this particular case, 

the effect of recirculation is comparable in magnitude to the effect of subgrid drag. 

Figure 8 and Figure 9 show the comparison of simulation data to experimental results. The 

pressure drop profiles (Figure 8) clearly indicate the importance of the wall corrections in this 

case. The model results with the wall corrections included succeeded in capturing the axial 

reduction in pressure gradient measured in experiments, while the simulations without wall 

corrections predicted a more uniform pressure gradient along the bed. This implies that the 
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increased solids recirculation facilitated by the wall corrections is indeed necessary to correctly 

capture the denser lower regions of the bed.  

For the radial volume fraction profile shown in Figure 9, however, it is shown that the model 

over-predicts the degree of radial solids volume fraction segregation in the vessel, especially 

when the wall corrections are activated. The particular experimental case with which the 

simulations are compared exhibited a large degree of non-symmetry in the flow, even after 30 s 

of averaging, due to a spiralling bubble motion in the bed [10]. The experimental trend reported 

in Figure 9 was averaged from three different time averaged radial measurements, one of which 

differed significantly from the others. This asymmetry is the primary reason for the relatively 

uniform experimental volume fraction trend shown in Figure 9 and could not be accurately 

captured by the model. Spiralling bubble motion is a fairly isolated phenomenon, however, and 

will not be of great interest to industry. A precise simulation match is therefore not of high 

priority in this case.  

 

Figure 8: Time averaged axial pressure drop profiles in the lower reactor regions collected 

for different model setups at a fluidization velocity of 0.4 m/s. WC indicates the activation 

of wall corrections and KTGF indicates a non filtered approach closed only by the kinetic 

theory of granular flows. Experimental data was taken from Zhu et al. [11]. 
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Figure 9: Time averaged radial volume fraction profiles at a height of 0.6 m for the grid 

independent solutions achieved both with and without activation of the wall corrections for 

a fluidization velocity of 0.4 m/s. Experimental data was taken from Zhu et al. [11]. 

5.1.3Turbulent bed – 0.9 m/s 

The final flow scenario investigated falls in the turbulent fluidization regime. Grid independence 

results for this case are shown in Figure 10. 

Complete grid independence could not be achieved for any of the cases investigated.  When the 

wall functions were activated, however, grid independence behaviour was improved. Differences 

in pressure predictions solved on the various grids with the wall corrections activated are 

relatively small and the overall bed expansion solved on all grids is virtually identical. It is also 

interesting to note that the difference between simulations with and without wall corrections is 

significantly larger than it was for the previous two cases utilizing a slower fluidization velocity. 

This is an indication that the high fluidization velocity investigated here causes large strain rates 

in the regions of the walls that require special treatment to capture correctly.  
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Figure 10: Time averaged axial pressure profiles collected for different grid sizes and 

model setups at a fluidization velocity of 0.9 m/s. WC indicates the activation of wall 

corrections and KTGF indicates a non filtered approach closed only by the kinetic theory 

of granular flows. 

The importance of filtering in general is also well demonstrated in Figure 10 and Figure 11 

where it can be seen that the bed height will be greatly over-predicted and the pressure gradient 

under-predicted by a factor of three when no filtering is employed. The significant under-

prediction of the total pressure drop over the bed in the case without any filtering is due to a 

large percentage of solids being fluidized into the freeboard region where solids can rest on the 

diagonally expanding walls of the geometry (see Figure 2). These solids are therefore not 

entirely fluidized and do not contribute to the total pressure drop.  

Model performance is checked against experimental data in Figure 11 and Figure 12 where a 

very good qualitative and quantitative fit is reported for the full model. The model without any 

wall corrections shows an under-prediction of the overall volume fraction due to the significant 

non-uniformity in the flow.  
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Figure 11: Time averaged axial pressure drop profiles in the lower reactor regions 

collected for different model setups at a fluidization velocity of 0.9 m/s. WC indicates the 

activation of wall corrections and KTGF indicates a non filtered approach closed only by 

the kinetic theory of granular flows. Experimental data was taken from Zhu et al. [11]. 

 

Figure 12: Time averaged radial volume fraction profiles at a height of 0.6 m for the grid 

independent solutions achieved both with and without activation of the wall corrections for 

a fluidization velocity of 0.9 m/s. Experimental data was taken from Zhu et al. [11]. 
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In order to attain some more detailed information on the inability of the full model to achieve 

complete grid independence (Figure 10), the axial volume fraction profiles for each of the 

different mesh sizes investigated were plotted in Figure 13. Here it can be confirmed that the 

model shows good grid independence behaviour on all the mesh sizes investigated. The primary 

difference lies in the volume fraction predictions close to the wall, where finer grids seem to 

cause a slight over-prediction. The strength of the wall corrections increases exponentially 

towards the wall and finer grid cells close to the wall can better capture this strong effect. In a 3D 

cylindrical geometry, the wall regions represent a large percentage of the cross sectional area and 

this over-prediction caused the increase in the axial pressure gradient in the lower region of the 

vessel when finer grids were used (Figure 10).  

 

Figure 13: Time averaged radial volume fraction profiles at a height of 0.6 m for different 

grid sizes with wall corrections included and a fluidization velocity of 0.9 m/s. 

Experimental data was taken from Zhu et al. [11]. 

5.2 Numerical experiment 2: Generality  

Generality is the most important quality measure of any predictive model. Within the 

fundamental framework of CFD, model generality will depend completely on the formulation of 

the models used to close the conservation equations. In this case, these models are the filtered 

closures for interphase momentum exchange, solids stresses and wall corrections.  
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In order to test the generality, the full model was run over a wide range of fluidization velocities 

on a grid size of 2 cm, assuming that this grid size grants acceptable grid independence. Results 

are given in Figure 14. 

 

Figure 14: Time averaged solids volume fraction measurements at four normalized radial 

locations (0, 0.5, 0.81 and 0.98) at a height of 0.6 m over a wide range of fluidization 

velocities. Experimental measurements were taken from Zhu et al. [11].   

A reasonable quantitative agreement is seen throughout the wide range of data depicted in Figure 

14. In general, the model is shown to under-predict the solids volume fraction in the centre and 

over-predict it at the walls. The most important feature in Figure 14, however, is that the model 

shows the expected intuitive trend of volume fraction steadily declining with an increase in 

fluidization velocity, whereas the experiments show several counter-intuitive volume fraction 

increases with an increase in fluidization velocity. Under the assumption that the experimental 

results are correct, this implies that the model fails to capture certain non-linear system effects 

that are responsible for this counter-intuitive trend. The spiralling bubble motion alluded to in the 

discussion of Figure 9 is one such non-linear effect.  

Still, even though the model does not capture the counter-intuitive trends, the predictions are 

generally good considering the degree of modelling difficulty of this particular setup. Firstly, the 

experimental system used very small particles, forming very small and virtually impregnable 
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structures. This implies that the model performance will be very sensitive to the formulation of 

subgrid closures and even a small error in the filtered model formulation will influence results. 

The experimental bed also had a relatively small diameter, implying that the walls greatly 

influenced overall system behaviour. Walls not only introduce a significant degree of uncertainty 

in the description of the direct boundary conditions, but also create the recirculating flow pattern 

which has a very large influence on overall system behaviour. The interaction between the 

downflows at the walls and the upflows at the centre of the vessel is highly complex and very 

sensitive to model formulation, especially in a narrow bed. In addition, the bubbling and 

turbulent fluidization regimes considered typically involve a large degree of flow segregation, 

both in terms of volume fraction and velocity, just adding to the sensitivity of the modelled 

system. A number of effects that could have a significant effect were also neglected, primarily 

the particle size distribution and molecular inter-particle forces. When considering these 

challenges, the predictions in Figure 14 are certainly quite reasonable.  

Industrial bubbling and turbulent fluidized beds will generally involve larger particles and have 

much larger diameters than the lab-scale system considered here. These two factors will greatly 

simplify the modelling problem and it is safe to say that model performance will improve in such 

systems. The greater simplicity of these systems should also prevent counter-intuitive system 

performance trends (such as those shown in Figure 14) and the inability of the model to correctly 

capture these trends will not be a major limitation.  

5.3 Numerical experiment 3: Parametric study 

The full filtered model, including the wall corrections, performed well in the case of turbulent 

fluidization (0.9 m/s fluidization velocity) on a rather coarse 2 cm grid. In order to test the 

importance of the various constituent models in the filtered approach, this simulation was 

repeated with specific constituent models deactivated. The results are plotted in Figure 15 and 

Figure 16. 
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Figure 15: Time averaged axial pressure profiles collected for different model setups at a 

fluidization velocity of 0.9 m/s.  

 

Figure 16: Time averaged radial volume fraction profiles at a height of 0.6 m collected for 

different model setups at a fluidization velocity of 0.4 m/s.  

The filtered approach consists of three major constituent models: interphase momentum transfer, 

solids stresses and wall corrections. Figure 15 and Figure 16 show that the deactivation of 

interphase momentum transfer and wall corrections has a highly significant effect on model 

performance. In both cases the bed expansion is greatly over-predicted. When the filtered drag is 
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deactivated, this is simply due to an over-prediction of interphase momentum exchange. When 

the wall corrections are deactivated, however, the excessive bed expansion is due to the 

recirculating flow pattern not being successfully established.  

When looking at the ‘No filtered stress’ case in Figure 15 and Figure 16, it would appear that the 

deactivation of solids stresses only has a small impact on the results. However, when the wall 

corrections are deactivated, a significant effect of the filtering of the solids stresses becomes 

visible. This can be seen by comparing the ‘No wall corrections’ case with the ‘Only filtered 

drag’ case. Filtering results in a several orders of magnitude increase in the solids stresses, and 

thereby prevents the rapid strain rates necessary to facilitate the recirculatory flow pattern. It 

seems that the deactivation of filtered solids stresses, albeit unphysical, actually results in fairly 

good model predictions simply because it allows for correct flow recirculation, similar to the 

effect of the wall corrections. 

A closer investigation into the behaviour of the wall corrections was also undertaken by 

alternatively deactivating the drag and stress constituents.  These results are displayed in Figure 

17 and Figure 18. 

 

Figure 17: Time averaged axial pressure profiles collected for different wall correction 

setups at a fluidization velocity of 0.9 m/s.  
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Figure 18: Time averaged radial volume fraction profiles at a height of 0.6 m collected for 

different wall correction setups at a fluidization velocity of 0.4 m/s.  

Results clearly identify the solids stresses as the dominant component in the wall function 

formulation. Deactivation of the drag term had a comparatively small influence on results.  The 

wall functions therefore facilitate the establishment of a recirculating flow in the reactor by 

reducing the solids stresses at the wall and allowing the rapid strain rates required by the 

recirculating flow. 

5.4 Numerical experiment 4: Large scale reactor 

Naturally, the ultimate aim of any filtered approach is to enable the simulation of large scale 

systems. Therefore, the present approach was tested in an industrial scale reactor in order to 

evaluate its applicability to this ultimate purpose. 

Industrial scale reactor data is rarely published and can be unreliable. The experimental values of 

pressure drop used for experimental comparison in this study were estimated from the data 

reported in Gobin et al. [12]. Only two pressure measurements were available in the large scale 

reactor, one at a height of 3.5 m and the other at a height of 6.5 m. The pressure drop between 

them was experimentally measured to be between 9 and 11 kPa. An average of 10 kPa will be 

taken. Some more detailed pressure drop measurements were made in a pilot scale unit scaled to 

one third of the industrial one. These points confirmed a virtually linear pressure drop profile 
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along the height of the reactor. From these data, a linear pressure drop of 3333 Pa/m can be 

deduced. The total pressure drop over the reactor can be estimated from the weight of the solids 

that has to be fluidized as 23348 Pa. An estimated linear pressure profile can therefore be 

specified with a gradient of 3333 Pa/m and a y-intercept of 23348 Pa. Numerical simulations will 

be compared against this experimental estimation. 

Firstly, simulations were carried out with the filtered and non-filtered approaches on grid sizes 

that would typically be used to run computationally efficient simulations of large-scale fluidized 

bed reactors. Results are reported in Figure 19. 

 

Figure 19: Axial time averaged pressure profiles for simulations with different coarse grid 

sizes performed with the filtered model closures both with and without the wall corrections 

(WC) and the non-filtered approach (KTGF).   

It is clear that significant grid dependence effects exist for the non-filtered approach, while the 

filtered approach displays suitable grid independence. The difference between the filtered and 

the non-filtered results is significantly smaller than that reported for the lab scale bed (Figure 6 

and Figure 10). This is due to the large difference in the particle sizes used in the two reactors. 

When a Geldart A powder is used, mesoscale particle structures quickly become virtually 

impregnable to the fluidizing gas due to the very large surface area presented by the tiny particles 

within the structure. This implies that the drag interaction changes completely when such 
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impregnable structures are formed. As observed in Ellis et al. [18], the solution becomes 

virtually independent of the particle drag formulation in this type of flow as the interphase 

momentum transfer is completely dominated by cluster formation. For very large particle sizes 

such as the Geldart D particles considered here, significant slip exists between individual 

particles and the fluidizing gas. The formation of particle clusters in these flows does add to the 

degree of interphase slip, but not to such a large extent as observed for the Geldart A class. Thus, 

fluidization of Geldart A powders can be considered to be exclusively structure dominated, while 

fluidization of Geldart D powders is controlled by drag interactions both on a particle and 

structure level. Since only a particle drag law is included in non-filtered simulations, coarse grid 

simulations of Geldart A powders will fail completely, while similar simulations of Geldart D 

powders might still be reasonable. 

In such a large reactor (5 m ID), conventional wisdom says that wall effects should be negligible, 

but results show that the wall corrections still had a small, but significant effect on the overall 

bed expansion. The wall correction approach was only tested for particle sizes up to 100 µm and 

the very large particle size considered here could lie well outside the range of model validity. For 

very large particle sizes, the high terminal velocity significantly reduces the normalized distance 

from the wall (equation (20)) and greatly increases the distance from the wall over which the 

wall corrections still have an influence. Figure 20 shows that, 1 m in from the wall, the wall 

corrections still cause close to a factor of 2 decrease in the interphase momentum exchange 

coefficient.  
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Figure 20: Instantaneous radial profile of the filtered interphase momentum exchange 

coefficient at a height of 5 m as modeled with and without the wall corrections.  

Another observation that can be made from Figure 19 is that the filtered approach predicts a 

denser bed than that estimated from the experimental results. The predicted bed height is 

approximately 14% lower than the experimental estimate when no wall functions are included 

and 24% lower when wall functions are included. This difference could very well be explained 

by uncertainties in the estimation of the experimental trend or the model setup. Also note that the 

predicted pressure gradient in the upper regions of the bed, where the experimental 

measurements were taken, is virtually identical to the experimental measures. It is only in the 

lower regions of the bed where the simulated pressure drop increases, indicating that the 

assumption of a linear pressure drop profile might not have been correct.  

In order to further test whether the filtered approach is valid, some additional fine grid 

simulations were completed in order to test whether well resolved and filtered simulations would 

return the same solution. These results are reported in Figure 21. 
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Figure 21: Axial time averaged pressure profiles for filtered and resolved (KTGF) 

simulations performed on different grid sizes. 

It is shown that the resolved simulations displayed a small amount of grid dependence up to a 4 

cm grid beyond which further simulations were not possible due to computational constraints. 

The resolved simulations appear to agree better with the simulations completed without the 

activation of the wall corrections, but it is possible that the use of even smaller cells could move 

the resolved simulation results closer to filtered results with wall corrections included.  

To get further insight, the mean flow statistics were analysed to determine whether the inclusion 

of the wall corrections improved the results. As shown in Figure 22, this appears to be the case 

since the mean flow patterns in the bed become highly asymmetric when the wall corrections are 

excluded. When the wall corrections are included, on the other hand, the flow patterns match 

very closely to those in the resolved simulation.  

Therefore, despite the very large effect of the wall corrections discussed in Figure 20, it appears 

that the inclusion of these corrections is essential to correctly capture the flow patterns inside the 

vessel. If the wall corrections are not included, the narrow region of down-flow at the wall is not 

captured and the bed material circulates in a highly asymmetric way. Therefore, even though the 

inclusion of the wall corrections may cause a slight over-compaction of the bed, these 

corrections are mandatory to correctly capture the physics occurring within the reactor.  
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In addition, it should also be acknowledged that this case (bubbling fluidization with Geldart D 

particles) falls far outside the range for which the filtered models were originally developed 

(riser flows with Geldart A particles). It can therefore be concluded that scaling via the Froude 

number (equation (9)) and the dimensionless wall distance (equation (20)) is sufficiently generic. 

  

Figure 22: Time-averaged solids vertical velocity (top row) and volume fraction (bottom 

row) for the filtered case without wall corrections and with 16 cm cells (left) the resolved 

case with 4 cm cells (centre) and the filtered case with wall corrections and 16 cm cells 

(right).  
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6. Conclusions 

A multiscale filtered approach for modelling large scale dense fluidized beds has been evaluated. 

Using this approach, the effects caused by subgrid mesoscale structure formation were modelled 

in terms of three filtered quantities: the interphase momentum exchange, the solids stresses and 

additional wall corrections.  

When applied to a fine, Geldart A powder, filtering had a very large impact on model 

performance. Mesoscale structures originating in this type of powder completely dominate 

interphase momentum transfer and have to be accounted for either by well resolved simulations 

or by filtering. In addition, the macroscopic recirculatory flow patterns also have to be correctly 

captured in order to accurately predict bed behaviour. In fact, simulations showed that the correct 

capturing of solids recirculation is just as important as correct modelling of local interphase 

momentum transfer.  

Flow situations characterized by strong recirculation exhibit large radial non-uniformities in 

filtered volume fraction and velocity. Wall corrections were used to account for non-uniformity 

in the flow and caused significant improvements in model performance for situations where 

significant flow recirculation was present. The activation of wall corrections also allowed grid 

independent solutions to be attained on much coarser grids. Wall corrections were therefore 

found to be an important and highly beneficial addition to filtered modelling.  

Simulations conducted over a wide range of fluidization velocities spanning bubbling and 

turbulent fluidization also showed reasonable quantitative comparisons between simulation and 

experiment. Some distinctly non-linear effects present in the experimental data were not 

adequately captured by the model, but it was reasoned that these isolated effects were not of 

major concern. In general, the model was shown to give adequate replications of the flow over a 

very wide range of operating conditions.  

The filtered approach was also applied to a large scale reactor containing coarse, Geldart D type 

particles. Filtering had a significant effect on these simulations as well, but the effect was 

substantially smaller than that observed for the Geldart A powder. The interphase momentum 

interaction occurring in such coarse powders is influenced both on the particle scale and on the 
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structure scale, implying that the simulations neglecting mesoscale structure modelling would 

still capture some of the physics through the particle drag law employed.  

Due to the large particle size employed, it was possible to conduct a sufficiently grid 

independent, non-filtered simulation of this industrial scale reactor where all mesoscale 

structures were adequately resolved. The full filtered model showed a slight over compaction in 

relation to the resolved simulation, but reproduced the macroscopic flow pattern with great 

accuracy. When the wall corrections were excluded, down-flows next to the walls were not 

resolved and a highly asymmetric flow pattern developed which did not match with the resolved 

simulation.   

The encouraging model generality reported in this paper suggests that the filtering approach of 

Sundaresan and co-workers is a very good candidate for further development by filtering the 

species and energy transport as well as the gas-solid reaction kinetics in the same manner.  
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