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Abstract—Environmental constraints in hydropower systems
serve to ensure sustainable use of water resources. Through
accurate treatment in hydropower scheduling, one seeks to
respect such constraints in the planning phase while optimizing
the utilization of hydropower. However, many environmental
constraints introduce state-dependencies and even nonconvexities
to the scheduling problem, making them challenging to capture.
This paper describes how the recently developed stochastic dual
dynamic integer programming (SDDiP) method can incorporate
nonconvex environmental constraints in the medium- and long-
term scheduling of a hydropower system in a liberalized market
context. A mathematical model is presented and tested in a multi-
reservoir case study, emphasizing on the improvements observed
when accurately modelling a particular type of nonconvex envi-
ronmental constraint.

Index Terms—Hydroelectric power generation, Power gener-
ation economics, Linear programming, Integer linear program-
ming, Stochastic processes.

I. I NTRODUCTION

Hydropower is a dominant generation technology in the
Nordic power system, e.g., accounting for 143 TWh/year or
96% of the total power production in Norway in 2017 [1]. In
the future, the Nordic power system will have tighter connec-
tions with Europe and an increasing proportion of intermittent
renewable generation from, for example, wind and solar power.
Rapid and unpredictable fluctuations in intermittent generation
will offer new possibilities for controllable generation, such
as regulated hydropower, to be able to respond to these
fluctuations. Flexible and fast-responding power plants able
to produce at demand peaks will therefore see a higher profit
potential.

Operational planning (or scheduling) models have been
widely used by Nordic hydropower producers for several
decades. Although these have been developed along different
methodological tracks, the stochastic dual dynamic program-
ming (SDDP) algorithm introduced in [2], is currently the
state-of-the-art method for medium-term hydropower schedul-
ing in the Nordic market. In particular, the extended algorithm
to incorporate uncertainty in power price presented in [3]–
[5] has become popular. The SDDP algorithm allows for
optimization of hydropower schedules provided a detailed and
complex system description and uncertainties in e.g. inflow
and power price. The SDDP algorithm is based on linear
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programming (LP) and requires a convex model formulation.
A recent reformulation of the SDDP algorithm, known as
stochastic dual dynamic integer programming (SDDiP), has
proven convergence also in the nonconvex case. SDDiP was
first presented in [6], and has later been applied to hydropower
scheduling in [7]. This work compares the strategies obtained
from the SDDiP algorithm and its linear approximation (akin
to SDDP) when applied to a scheduling problem with non-
convex environmental constraints.

In symphony with the ongoing power market changes,
the physical and environmental requirements associated with
hydropower operation are changing, e.g. through proposed
revisions of hydropower concessions conditions and the im-
plementation of EU Water Framework Directive. The directive
strives to ensure sustainable use of water resources, balancing
the multiple uses such as hydropower, agriculture and recre-
ation [8]. Consequently, hydropower producers need to both
adjust their operational schedules according to the new price
patterns seen in the market and at the same time relate to
new operational constraints. In this context, the producers need
scheduling models that represent physical and environmental
constraints in a precise and consistent manner.

Environmental constraints in water resources systems come
in many flavors, depending physical and legislative conditions.
The technical literature tend to emphasize on ecologically ac-
ceptable flows, in terms of magnitude and rate of change [9]–
[12]. The impact of minimum flows and maximum ramping
rates certainly limits the flexibility of the hydro system,
but from a modelling point of view these constraints fit
well into algorithms relying on a convex model formulation,
such as SDDP. Other environmental constraints involve state-
dependencies which are not easily treated in the SDDP al-
gorithm, see e.g. [13]. The main complicating factor is the
nonconvexities associated with such constraints.

In this paper we focus on constraints on maximum dis-
charge from hydropower reservoirs and their dependencies
on reservoir level. This constraint type is enforced in some
Norwegian reservoirs and is believed to have significant impact
on the hydropower scheduling for a number of watercourses
in the future. We elaborate on how to accurately model this
type of state-dependent and nonconvex constraint within the
SDDiP algorithm, and compare the exact solution with a linear
approximation. The different formulations are tested in multi-
reservoir case study, and compared in terms of economic
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indicators and reservoir operation. The novel contributions of
this paper lie in the modelling of the nonconvex environmental
constraints within the SDDiP algorithm and in the assessment
of the performance of the proposed model when applied to a
realistic case study.

II. PROBLEM FORMULATION

In a liberalized electricity market a risk-neutral hydropower
producer’s primary objective is to find an operating strategy
that maximizes the expected profit for the entire planning
period while respecting all relevant constraints. This decision
problem can be formulated as a multi-stage stochastic opti-
mization problem, and the expectation is to be taken over
the stochastic variables, typically inflow and power price.
We assume that the probability distributions of the stochastic
variables can be discretized, and that the problem can be
decomposed into weekly decision stages.

For the Nordic electricity market, we assume that there is a
sufficient number of players such that a price-taker assumption
is reasonable. Moreover, we assume that the system is confined
within a single price zone where potential grid bottlenecks
can be disregarded. This assumption can be justified in the
Nordic market context, where the scheduling mainly provides
decision support for the day-ahead bidding process, and intra-
zone grid bottlenecks are handled through redispatch by the
transmission system operator after day-ahead market clearing.
Consequently, the hydropower producer can optimize the op-
eration of a single watercourse individually without including
other generation or demand obligations that are part of its
portfolio.

We define a scheduling problem in (1), comprising state
variablesxt and stage variablesyt for each decision staget.
The state variables are typically the reservoir volumes. There
may also be other states inxt, such as inflows, but these
will not be emphasized here. The stage variables represent
the operational decisions to be made in a given stage, typically
concerning water releases, overflows and transactions with the
electricity market. For the scheduling problem in (1), we want
to find an operating strategy that maximizes the expected profit
in (1a) and accounts for the end-of-horizon valuation of stored
water in Φ(xT ). The expectation in (1a) is taken over the
stochastic parameterξt, representing the inflow. For simplicity
we will treat price as a deterministic exogenous variable in this
work, see e.g. [3], [14] or [15] for treatment of stochastic price
within the SDDP algorithm.

max
(x1,y1),...,(xT ,yT )

E

{

T
∑

t=1

ft(xt, yt) + Φ(xT )

}

(1a)

s.t. Wxt +Hxt−1 +Gyt = h(ξt) (1b)

Byt = 0 (1c)

(xt, yt) ∈ Xt (1d)

∀t ∈ {1, 2, . . . , T }

The constraints are indicated in (1b)-(1d), where the initial
state vectorx0 is given andW , H , G, andB, are matrices
of suitable dimensions, and whereXt is a non-empty mixed-
integer polyhedral set. The right-hand-side parameter vector
h(ξt) is dependent on the random data vectorξt whose
distribution is known, and whereξt are the realizations.

For efficient solution of problems like (1) the use of decom-
position techniques are often crucial [16]. The problem in (1)
can be decomposed into stage-wise nested decision problems
of type:

Qt(xt−1) = max
xt,yt

ft(xt, yt) + αt(xt) (2a)

s.t. (xt, yt) ∈ Xt(xt−1, ξt) (2b)

In Section II-A we elaborate on the stage-wise problem
in (2) and define the environmental constraints. The overall
solution strategy for solving (1) is outlined in Section III.

A. Basic Stage Problem

In the following we describe the basic scheduling problem
of a given decision periodt and inflow scenario, with a typical
length of one week. The stage and state variables comprised in
vectorsxt andyt in (1) are now specified. As a simplification,
but without loss of generality, we only consider the reservoir
volume as a state variable in this work. A thorough treatment
of inflow as a state variable in SDDiP and SDDP, can e.g. be
found in [7] and [17], respectively.

The problem in (3) is an LP problem, but will be extended
with nonconvex environmental constraints and will be cast
as a mixed integer linear programming (MIP) problem in
Section II-B. We omit the scenario index for brevity.

Qt(vt−1) = max
(

ptet + αt

)

(3a)

vht + qDht + qOht + qBht− (3b)

∑

j∈Ωh

(

qDjt + qOjt + qBjt

)

= vh,t−1 + Iht ∀h

qDht =
∑

k∈Kh

qShkt ∀h (3c)

et −
∑

h∈H

∑

k∈Kh

ηhkq
S
hkt = 0 (3d)

αt −
∑

h∈H
πhtcvht ≤ βtc ∀c (3e)

Vht ≤ vht ≤ V̄ht ∀h (3f)

QD
ht ≤ qDht ≤ Q̄D

ht ∀h (3g)

QB
ht ≤ qBht ≤ Q̄B

ht ∀h (3h)

et, q
O
ht ∈ R

+ (3i)

The objective (3a) is to maximize the profit from selling
energyet to the market in weekt at a pricept. This ’here-and-
now’ profit is balanced against the future expected profit (FEP)
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function. The FEP function is represented by the variableαt

which is constrained by a setc ∈ C Benders cuts in (3e) with
cut coefficientsπhtc and interceptsβtc.

The state vectorvt−1 in (3a) comprises the initial reservoir
volumes for all reservoirsh ∈ H. The water balance equation
for a specific reservoirh is formulated in (3b). The reservoir
volumevht at the end of the week is a function of the reservoir
at the beginning of the weekvh,t−1, the inflowIht, the water
spillageqOht and release (bypassqBht and the discharge through
the stationqDht) to downstream modules, and the spillages and
releases from upstream modules inΩh.

The generation in (3d) can be seen as a simplified rep-
resentation of the generally nonconvex hydropower produc-
tion function, which is well suited for many Norwegian
hydropower stations with rather small variations in relative
head. Water discharge through the station is modeled using
one variableqShkt per discharge segment in (3d). These seg-
ments will be uploaded in ascending order provided that the
efficiencyηhk decreases withk.

B. Environmental Constraints

As mentioned in the introduction, environmental constraints
comes in many flavors. Time-dependent boundaries on reser-
voir (3f), discharge (3g) and bypass (3h) variables is one exam-
ple. Constraints on ramping on water releases is another. These
constraints have been addressed previously in the literature,
and fits well within the LP formulation in (3) and do not
challenge the convexity requirement of the SDDP algorithm.

In the following we will emphasize on state-dependent max-
imum discharge constraints. This type of constraint is often
enforced to limit release and thereby ensure a secure refilling
of the reservoirs prior to and during the summer season to
protect the landscape and satisfy recreational interests. If the
reservoir is below a certain threshold surface level, the operator
is not allowed to release water for generation, only to secure
that more critical constraints downstream are met. Since the
threshold surface level corresponds to a given reservoir volume
V lim
ht , the constraint can be formulated as:

QD
ht ≤ qDht ≤ Q̄D

ht if
vht + vh,t−1

2
≥ V lim

ht (4a)

qDht = QD
ht if

vht + vh,t−1

2
≤ V lim

ht (4b)

The average reservoir volume for the week is used to
indicate if the constraint (4b) should be activated. The binary
nature of the constraint (4) causes a significant discontinuity in
the scheduling problem that is not easily approximated in LP
formulations. Constraint (4) can be modelled by introducing
a binary variablesγh, so that∀h ∈ H:

QD
ht ≤ qDht ≤ γh

(

Q̄D
ht −QD

ht

)

+ QD
ht (5a)

vht + vh,t−1

2
≥ γhV

lim
ht (5b)

γh ∈ {0, 1} (5c)

To incorporate the modelling of state-dependent release
constraints, we add (5) to (3), and remove (3g). Due to the
binary variableγh the problem is now cast as an MIP problem.

Note that in some hydropower systems, thephysical de-
pendency of maximum discharge on the reservoir level is
significant, but does not have the binary nature of the en-
vironmental constraints presented here. In such cases, linear
approximations can often provide satisfactory results.

III. SOLUTION METHOD

Although the MIP problem formulated in the previous
section could be solved directly using classical stochastic
dynamic programming such as in [18], this type of algorithm
has limits in dealing with the state space in multi-reservoir
systems. The recently developed SDDiP algorithm [6] is
believed to have a higher potential for handling realistic multi-
reservoir hydropower systems than SDDP, and is outlined in
the following.

A. The SDDiP algorithm

As the scheduling problem described in the previous section
contains binary stage variables, the FEP function (represented
by α) is nonconvex with respect to the state variables. To
solve the nonconvex scheduling problem comprising (3) and
(5) as specified in Sections II-A and II-B, we apply the SDDiP
method [6]. The key concept of the method is to represent
state variables as binary variables, knowing that any function
of binary variables can be represented as a convex polyhedral
function. In our case, the reservoir volumes, which are the
continuous variablesvht in (3), are the state variables and can
be represented by a binary approximation in (6).

vht =
∑

n∈Nh

2n−1ǫλhn = Chnλhn (6a)

λhn ∈ {0, 1} (6b)

|Nh| = ⌊log2

( V̄ht

ǫ

)

+ 1⌋ (6c)

where ǫ ∈ (0, 1) is the approximation precision (which we
will set equal for all reservoirs), and|Nh| is the number of
binary variables needed to approximatevht to the precision
ǫ. As an example, the approximation of a reservoir volume
variable with V̄ht = 200 Mm3 to a precision of 0.01 Mm3

requires 15 binary variables. With this binary approximation,
we can substitutevht as expressed in (6a) in (3b), (3e), (3f)
and (5b).

The second important reformulation used in the SDDiP
method is to generate local copies of the state variables. This
reformulation ensures that one is able to generate cuts that
accurately approximate the FEP function. The DP formulation
of the problem with binary state variables becomes:
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Qt(λt−1) = max
(

ptet + αt

)

(7a)

s.t. (3) and (5) (7b)

zhnt = λhn,t−1 ∀h, n (7c)

zhnt ∈ [0, 1] ∀h, n (7d)

λhnt ∈ {0, 1} ∀h, n (7e)

Where (7c) are the local copies of the state variables, connect-
ing the previous state solution,λhn,t−1, and the copy variables
zhnt for all reservoirsh ∈ H and binary variablesn ∈ Nh.

The SDDiP algorithm is outlined in below. In the forward
iteration, the MIP problem defined in (7) is solved. In the
backward iteration different relaxations of (7) are solved,
depending on the type of cuts to be computed.

1: Apply binary expansion on reservoir variables
2: Setλ0, i← 1, UB = +∞ andLB = −∞,
3: while i < imax or some other stopping criteriado
4: SampleS scenarios
5: /* Forward Iteration */
6: for s=1,. . . ,Sdo
7: for t=1,. . . ,Tdo
8: SolveQi

ts(λ
i
t−1,s)

9: Collect solution
10: end for
11: lbs ←

∑

t=1,...,T Q
i
ts

12: end for
13: /* Compute lower bound */
14: µ← 1

S

∑S

s=1 lbs andσ2 ← 1
S−1

∑S

s=1(lb
s − µ)2

15: LB← µ+ zα
σ√
S

16: /* Backward Iteration */
17: for t=T,. . . , 2 do
18: for s=1,. . . , Sdo
19: for b=1,. . . , Bdo
20: Solve a suitable relaxation ofQi

tsb(λ
i
t−1,s)

21: Collect cut coefficients and parameters
22: end for
23: Create desired cuts as described in Sec. III-B
24: end for
25: end for
26: /* Compute upper bound */
27: UB← Qi

1(λ0, ξ0)
28: i← i + 1
29: end while

B. Cut Types

Cuts to be constructed in the backward iteration will take
the form:

αt −
∑

h∈H

∑

n∈Nh

πhntcChnλhnt ≤ βtc (8)

A brief description of the 3 cut types used in the SDDiP
algorithm in the case study in Section IV is provided below,
please see [6], [7] for a more thorough description.

The Benders cuts are constructed by solving the LP relax-
ation of (7), giving an optimal valueQLP

t . The coefficients
πhntc are computed as the dual values of (7c), and the right-
hand sideβtc = QLP

t −
∑

h∈H
∑

n∈Nh
πhntλhn,t−1. Note that

this approach will lead to the same solution as one would get
solving the MIP in (3) and (5) in the SDDP forward iteration
and its LP relaxation in the backward iteration.

The Lagrangian cuts are constructed by solving the La-
grangian dual of (7), relaxing the copy constraint (7c). The
Lagrangian multiplier is obtained by

π̄i
t = argmin

π̄t

{

Lit(π̄t) +
∑

h∈H

∑

n∈Nh

π̄hntλhn,t−1

}

, (9)

whereLit is defined as:

Lit(π̄t) = max
(

ptet + αt −
∑

h∈H

∑

n∈Nh

π̄hntzhnt

)

(10a)

s.t. (3), (5), (7d) and (7e) (10b)

Equation (9) is solved repeatedly, with the aim to gradually
improving the vector of Lagrangian multipliers̄πt to provide
tight Lagrangian cuts. The multipliers are updated taking steps
with the subgradient method [19]. The coefficientsπhntc are
found as the Lagrangian multipliers, and the right-hand side
βtc asLit. Interesting related work on Lagrangian relaxation
within the SDDP algorithm has been published in [20], [21].

TheStrengthened Benders cuts are constructed by first solv-
ing the LP relaxation of problem (7). Subsequently, problem
(10) is solved with the Lagrangian multiplier vectorπ̄t equal to
the optimal LP dual solutions with respect to constraints (7c).
From the optimal objective of the latter problem we obtain
the right-hand sideLit(π̄

i
t), which together with̄πt is used to

construct the Strengthened Benders cut of type (8).

IV. CASE STUDY

A. Case Description

A computer model was established implementing the al-
gorithm described in Section III-A using the different cut
types described in Section III-B. The model was used to
obtain schedules for a Norwegian watercourse comprising
3 hydropower reservoirs with corresponding power plants,
and with a total capacity of 202 MW. An illustration of the
topology and specification of some technical characteristics is
provided in Fig. 1. For each reservoir shown in the figure
the average annual inflow and storage capacity are stated,
both in Mm3. Each power plant is identified with a number
and its installed capacity in MW. An environmental constraint
is attached to reservoir 2, stating that no water should be
discharged from the reservoir in between weeks 18 to 35 if
the reservoir volume is lower than 140 Mm3.

A scheduling horizon of 1 year was applied with weekly
decision stages. A set of cuts of type (8) was used to ensure
that state variables at the end of the scheduling horizon were
valuated. These cuts were obtained by model calibration, but
could also be provided as a boundary condition from a long-
term scheduling model.
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Fig. 1. Watercourse topology and technical data.

A relatively coarse representation of uncertainty and time
discretization was applied in order to focus on the modelling
of environmental constraints within acceptable computation
times. An inflow model was fitted using a single inflow
series comprising 80 historical years, and the model error
was sampled from a normal distribution. A total of 50 inflow
scenarios were re-sampled in each forward iteration, and 6
discrete inflow error terms were used at each stage in the
backward iterations of the algorithm. We ran the model with
3 different price scenarios, following the weekly average
NordPool system prices for 2006 and 2015 as well as the
average system price for the years 2005-2018. The price
scenarios are referred to ashigh (2006),average (average for
2005-2018) andlow (2015).

The model was implemented inJulia, using theJuMP
package [22] and CPLEX 12.9 solver [23] for solution of both
the MIP and the LP problems. All tests were carried out on an
Intel Core i7-4940MX processor with 3.30 GHz and 32 GB
RAM.

The system in Fig. 1 was optimized using the 3 different
cut-types described in Section III-B and with the 3 different
price scenarios. The resulting 9 cases are listed in Table I.
The system operation for each case was simulated in a final
simulation using a fixed and separately sampled set of 1000
inflow scenarios. The resulting expected profits are given
in Table I. The improved economic performance with exact
modelling is most pronounced in the high-price case. The
high summer prices in this case provides a clear incentive
to keep water available for summer production, rewarding the
accurate modelling of the environmental constraint in reservoir
2. Recall that the environmental constraints associated with
reservoir 2 are always met in the forward simulation, but
may be approximated in the backward iteration, depending
on the type of cuts being used. For the average-price case, the
0.09 Me (or 0.16 %) increase in expected profit when using
Lagrangian compared to Benders cuts may seem modest, but
one should keep in mind that the producer will often hunt for
such marginal improvements in a competitive market.

The choice of cut type significantly impacts the computation

TABLE I
SIMULATED CASES AND EXPECTED PROFITS[Me].

Price Scenario
Cut Type High Price Average Price Low Price

Benders 65.73 56.74 34.59
Strengthened Benders 65.91 56.81 34.62

Lagrangian 65.96 56.83 34.63

time. With the use of Benders cuts, the majority of compu-
tation time is spent solving the MIP problems in the forward
simulation, resulting in a run time in the range 2-3 hours.
The run-time approximately increased with a factor of 5 when
using Strengthened Benders cuts compared to using Benders
cuts, due to the need for solving one MIP problem per problem
instance in the backward iteration. The use of Lagrangian cuts
further increases computation time, strongly depending on the
number of iterations when searching for improved multipliers
in (9). Note that parallel processing was not applied in this
case study for simplicity.

B. Results

The convergence characteristic of the algorithm is shown
in Fig. 2, comparing the upper bounds obtained using the
3 different cut types in the high-price scenario. We used
a maximum number of 30 iterations in all presented cases.
The lower bound obtained when using the Lagrangian cuts is
also included to indicate that the cost gap gradually closes
as the iteration number increases. From Fig. 2 it can be
observed that the cost gap using Lagrangian cuts is slowly
decreasing, but has not closed after 30 iterations. Further
improving the cost gap turned out to be difficult and time-
consuming, which we believe is due to the inefficient search
for improved Lagrangian multipliers (using the subgradient
method). The significant difference in upper bound when using
the Strengthened Benders cuts compared to the Benders cuts
indicate that the former is a substantial improvement compared
to the approximation made when linearizing the nonconvex
constraints in (5). This finding is in-line with the conclusions
in [7], although this case study is clearly different from the
one in [7].

Operation of reservoirs 1 and 2 when using the high-
price scenario is presented in Fig. 3, comparing the use of
Strengthened Benders and Benders cuts. The threshold volume
of 140 Mm3 for reservoir 2 is indicated with the stapled
horizontal line in Fig. 3. The figures show that the use
of Strengthened Benders cuts leads to more released water
from reservoir 1 and less from reservoir 2 prior to the price
spike in week 34. The difference in operation obtained when
using Strengthened Benders and Lagrangian cuts were less
pronounced than between Strengthened Benders and Benders
and is therefore not emphasized here.

V. CONCLUSIONS

We presented a hydropower scheduling model based on
SDDiP for exact treatment of reservoir-level dependent max-
imum discharge, which can be classified as a nonconvex

© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, 
 including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,  

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

This is the accepted version of an article published in PMAPS 2020 
http://dx.doi.org/10.1109/PMAPS47429.2020.9183590



0 5 10 15 20 25 30

65
.6

65
.8

66
.0

66
.2

66
.4

Iteration no.

E
xp

ec
te

d 
pr

of
it 

[M
E

U
R

]

Benders

Strengthened Benders

Lagrange
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Fig. 3. Simulated operation of reservoirs 1 (left) and 2 (right), shown as
mean (emphasized) and 0 and 100 percentiles. The solid-drawn and stapled
lines are obtained using Strengthened Benders and Benders cuts, respectively.
The reservoir threshold impacting maximum discharge from reservoir 2 is
indicated with the stapled, horizontal line.

environmental constraint. The model was tested in a multi-
reservoir case study, and its performance in terms of economic
indicators and reservoir operation was presented. The model
relies on several simplifying assumptions, a few of which
should be challenged to arrive at more robust results. In
particular we believe that adding uncertainty to the exogenous
power price, using finer time resolution, and extending the
scheduling horizon would impact the results.

The case study results show that there is a potential for
improving the scheduling by accurately treating this type
of environmental constraints compared to a traditional lin-
ear approximation. In particular we found that the use of
Strengthened Benders cuts seems to capture a majority of
the improvement potential. Further work on the algorithm
could focus on improving the search for multipliers for the
Lagrangian cuts and combining cut types to improve both the
computational performance and the convergence.
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