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Abstract—Environmental constraints in hydropower systems programming (LP) and requires a convex model formulation.
serve to ensure sustainable use of water resources. ThroughA recent reformulation of the SDDP algorithm, known as
accurate treatment in hydropower scheduling, one seeks to stochastic dual dynamic integer programming (SDDiP), has

respect such constraints in the planning phase while optimizing roven converaence also in the nonconvex case. SDDIP wa
the utilization of hydropower. However, many environmental prov Verg SO | Vex case. IF was

constraints introduce state-dependencies and even nonconvexitiesir'st presented in [6], and has later been applied to hydropower
to the scheduling problem, making them challenging to capture. scheduling in [7]. This work compares the strategies obtained
This paper describes how the recently developed stochastic dualfrom the SDDIP algorithm and its linear approximation (akin

dynamic integer programming (SDDIP) method can incorporate SDDP) when applied to a scheduling problem with non-
nonconvex environmental constraints in the medium- and long- . .
convex environmental constraints.

term scheduling of a hydropower system in a liberalized market . .
context. A mathematical model is presented and tested in a multi- [N symphony with the ongoing power market changes,

reservoir case study, emphasizing on the improvements observedthe physical and environmental requirements associated with
when accurately modelling a particular type of nonconvex envi- hydropower operation are changing, e.g. through proposed
ronmental constraint. revisions of hydropower concessions conditions and the im-

Index Terms—Hydroelectric power generation, Power gener- . . . . .
ation economics, Linear programming, Integer linear program- plementation of EU Water Framework Directive. The directive

ming, Stochastic processes. strives to ensure sustainable use of water resources, balancing
the multiple uses such as hydropower, agriculture and recre-
|. INTRODUCTION ation [8]. Consequently, hydropower producers need to both

. . . . adjust their operational schedules according to the new price
Hydropower is a dominant generation technology in the . :
Nordic power svstem. e.q.. accounting for 143 TWhivear gratterns seen in the market and at the same time relate to
b y » €.9., accounting . y new operational constraints. In this context, the producers need

96% of the total power production in Norway in 2017 [1]. In . . .
: ) : scheduling models that represent physical and environmental

the future, the Nordic power system will have tighter connec- L2 . .
C{Jnstramts in a precise and consistent manner.

tions with Europe and an increasing proportion of intermitten . L
. . Environmental constraints in water resources systems come
renewable generation from, for example, wind and solar power. . . o .
Rapid and unpredictable fluctuations in intermittent generatign o flavors, depending physical and legislative conditions.
ap P A g e technical literature tend to emphasize on ecologically ac-
will offer new possibilities for controllable generation, such

as regulated hydropower, to be able to respond to th ceptable flows, in terms of magnitude and rate of change [9]-

fluctuations. Flexible and fast-responding power plants ablée . The impact of minimum flows and maximum ramping
' P 9p P Ees certainly limits the flexibility of the hydro system,

. . I
to produce at demand peaks will therefore see a higher pr%%t from a modelling point of view these constraints fit

potential. well into algorithms relying on a convex model formulation
Operational planning (or scheduling) models have been .

widely used by Nordic hydropower producers for sever%IUCh as SDDP. Other environmental constraints involve state-
decades. Although these have been developed along differ gpendencies which are not easily treated in the SDDP al-

. X ) ithm, see e.g. [13]. The main complicating factor is the
methodological tracks, the stochastic dual dynamic prograffls - . Vexities associated with such constraints.

ming (SDDP) algorithm introduced in [2], is currently the In this paper we focus on constraints on maximum dis-

_stat_e-of—the—art_method for med|_um-term hydropowersch_ed%lr—]arge from hydropower reservoirs and their dependencies
ing in the Nordic market. In particular, the extended algorith h reservoir level. This constraint type is enforced in some

fo incorporate uncertainty in power price presented in [3 Norwegian reservoirs and is believed to have significantimpact

[5] has become popular. The SDDP algorithm allows fo(g the hydropower scheduling for a number of watercourses

optimization of hydropower schedules provided a detailed Al the future. We elaborate on how to accurately model this

complex syste_m description and un_certai_nties in e.g. i_nflotw e of state-dependent and nonconvex constraint within the
and power price. The SDDP algorithm is based on line DDiP algorithm, and compare the exact solution with a linear

This work was funded by The Research Council of Norway through proje@tpprox'_mat'on' The different formmat'or_]s are tested in multl-.
no. 257588 reservoir case study, and compared in terms of economic
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indicators and reservoir operation. The novel contribigioh The constraints are indicated in (1b)-(1d), where the initial
this paper lie in the modelling of the nonconvex environmentsaiate vectorz, is given andiW, H, G, and B, are matrices
constraints within the SDDIP algorithm and in the assessmaftsuitable dimensions, and whepg is a non-empty mixed-

of the performance of the proposed model when applied tdrdaeger polyhedral set. The right-hand-side parameter vector

realistic case study. h(&:) is dependent on the random data vecter whose
distribution is known, and wher§& are the realizations.
Il. PROBLEM FORMULATION For efficient solution of problems like (1) the use of decom-

dposition techniques are often crucial [16]. The problem in (1)

In a liberalized electricity market a risk-neutral hydropow ) . s
n be decomposed into stage-wise nested decision problems

producer’s primary objective is to find an operating strate .
that maximizes the expected profit for the entire planniryj YP€:
period while respecting all relevant constraints. This decision

problem can be formulated as a multi-stage stochastic opti- Qy(x-1) = max fy(ay, ye) + v () (2a)
mization problem, and the expectation is to be taken over Loy
the stochastic variables, typically inflow and power price. st (2, yr) € Xe(me—1, &) (2b)

We assume that the probability distributions of the stochastic, \ gaction 11-A we elaborate on the stage-wise problem

variables can be discretized, and that the problem can iRe(Z) and define the environmental constraints. The overall

decomposed m_to week_ly decision stages. . solution strategy for solving (1) is outlined in Section IlI.
For the Nordic electricity market, we assume that there is a

sufficient number of players such that a price-taker assumptidn Basic Stage Problem

is reasonable. Moreover, we assume that the system is confineg the following we describe the basic scheduling problem
within a single price zone where potential grid bottleneckst 5 given decision periotiand inflow scenario, with a typical
can be disregarded. This assumption can be justified in fa@gth of one week. The stage and state variables comprised in
Nordic market context, where the scheduling mainly providggctorsy, andy, in (1) are now specified. As a simplification,
decision support for the day-ahead bidding process, and intfgt without loss of generality, we only consider the reservoir
zone grid bottlenecks are handled through redispatch by filume as a state variable in this work. A thorough treatment
transmission system operator after day-ahead market clearig@inflow as a state variable in SDDiP and SDDP, can e.g. be
Consequently, the hydropower producer can optimize the GBund in [7] and [17], respectively.
eration of a single watercourse individually without including The problem in (3) is an LP problem, but will be extended
other generation or demand obligations that are part of {f§h nonconvex environmental constraints and will be cast
portfolio. as a mixed integer linear programming (MIP) problem in
We define a scheduling problem in (1), comprising staection I11-B. We omit the scenario index for brevity.
variablesz, and stage variableg for each decision stage
The state variables are typically the reservoir volumes. There

may also be other states i, such as inflows, but these Q:(v—1) = max (ptet +0<t) (3a)
will not be emphasized here. The stage variables represent

the operational decisions to be made in a given stage, typically vne + P + 42 + ¢ — (3b)
concerning water releases, overflows and transactions with the

electricity market. For the scheduling problem in (1), we want Z <qﬁ + qut + qﬁ> = vpt1 + Ins Yh

to find an operating strategy that maximizes the expected profit /=g,

in (1a) and accounts for the end-of-horizon valuation of stored

water in ®(xr). The expectation in (1a) is taken over the D _ s vh 3
= c

stochastic parametér, representing the inflow. For simplicity G = D ik (3¢)

we will treat price as a deterministic exogenous variable in this hen s
work, see e.g. [3], [14] or [15] for treatment of stochastic price €t — Z Z ke = 0 (3d)
within the SDDP algorithm. heH kekn
oy — Z ThtcVht < Pte Ve (3e)
T her
max E Z fe(ze, ye) + @(ar) (1a) Vit < Vht < Vit vh (3
(z1,91)5--,(zT,yT) =1 D < D < ~ND vh 3
Qnt < any < Qi (39)
Qi < ahy < Qi vh  (3h)
st Wax,+Hxyi 1 + Gyt = h(ft) (1b) o) + .
et, ¢ € R (3i)
By, =0 (1c)
The objective (3a) is to maximize the profit from selling
(z1,yt) € Xi (1d) - - I
energye; to the market in week at a pricep;. This 'here-and-
vte{1,2,...,T} now’ profit is balanced against the future expected profit (FEP)
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function. The FEP function is represented by the variahle To incorporate the modelling of state-dependent release
which is constrained by a sete C Benders cuts in (3e) with constraints, we add (5) to (3), and remove (3g). Due to the
cut coefficientsr,. and interceptsl;.. binary variabley;, the problem is now cast as an MIP problem.
The state vector;_; in (3a) comprises the initial reservoir Note that in some hydropower systems, thig/sical de-
volumes for all reservoird € H. The water balance equationpendency of maximum discharge on the reservoir level is
for a specific reservoih is formulated in (3b). The reservoir significant, but does not have the binary nature of the en-
volumeuwy, at the end of the week is a function of the reservoifironmental constraints presented here. In such cases, linear
at the beginning of the week, ;_1, the inflow /,,;, the water approximations can often provide satisfactory results.
spillageq,?t and release (bypagg, and the discharge through
the stationg)) to downstream modules, and the spillages and
releases from upstream modules(ip. Ill. SOLUTION METHOD
The generation in (3d) can be seen as a simplified rep-
resentation of the generally nonconvex hydropower produc-Although the MIP problem formulated in the previous
tion function, which is well suited for many NorwegianseCtion could be solved directly using classical stochastic
hydropower stations with rather small variations in relativdynamic programming such as in [18], this type of algorithm
head. Water discharge through the station is modeled us'?@s limits in dealing with the state space in multi-reservoir
one variableg?,, per discharge segment in (3d). These se§ystems. The recently developed SDDIiP algorithm [6] is

ments will be up|0aded in ascending order provided that t lieved to have a hlgher pOtential for handling realistic multi-
efficiencyn,, decreases wittk. reservoir hydropower systems than SDDP, and is outlined in

the following.
B. Environmental Constraints

As mentioned in the introduction, environmental constraints The SDDIiP algorithm
comes in many flavors. Time-dependent boundaries on reser- ) _ _ ) _
voir (3f), discharge (3g) and bypass (3h) variables is one examASs 'Fhe sphedullng probl_em described in the previous section
ple. Constraints on ramping on water releases is another. Thé3Btains binary stage variables, the FEP function (represented
constraints have been addressed previously in the literatd¥,@) iS nonconvex with respect to the state variables. To
and fits well within the LP formulation in (3) and do notSCIve the nonconvex scheduling problem comprising (3) and
challenge the convexity requirement of the SDDP algorithn{S) s specified in Sections II-A and I1-B, we apply the SDDiP
In the following we will emphasize on state-dependent maf2€thod [6]. The key concept of the method is to represent
imum discharge constraints. This type of constraint is Oﬁégatc_a varlabk_as as binary variables, knowing that any function
enforced to limit release and thereby ensure a secure refillpgPinary variables can be represented as a convex polyhedral
of the reservoirs prior to and during the summer season ft.H]C.tIOI']. In our case, .the reservoir volumes,_ which are the
protect the landscape and satisfy recreational interests. If ffi1tinuous variables,, in (3), are the state variables and can
reservoir is below a certain threshold surface level, the operaldsy 'ePresented by a binary approximation in (6).
is not allowed to release water for generation, only to secure
that more critical constraints downstream are met. Since the

threshold surface level corresponds to a given reservoir volume vnt =Y 2" eAnn = ChnAnn (6a)
Vilim the constraint can be formulated as: neN,
Ann € {0,1} (6b)
= . Vht + Up t— im Vi
Qb <ah<eh  if RSV (4a) [Nhl = Llog, (=) +1] (60)
D _ AD . Uht + Uht—1 lim
Gt = Qe H 2 < Vi (4D) wheree € (0,1) is the approximation precision (which we

The average reservoir volume for the week is used 0iII set equal for all reservoirs), anf,| is the number of
indicate if thegconstraint (4b) should be activated. The binary oY variables needed to approximag to the precision

. L o ' PINATY As an example, the approximation of a reservoir volume
nature of the constraint (4) causes a significant discontinuity in

; . . ; ; \@riable with 1,, = 200 Mn? to a precision of 0.01 Mrh
the scheduling problem that is not easily approximated in I‘re uires 15 binary variables. With this binary approximation
formulations. Constraint (4) can be modelled by introduci q Y ) y ap '

n . . .
a binary variables;,, so thatvh € #: We can substitute,, as expressed in (6a) in (3b), (3e), (3f)

and (5b).
D D AD D D The second important reformulation used in the SDDiP
Qhe < i < <th th) + Qne (5a) method is to gene?ate local copies of the state variables. This
Unt  Uh,t—1 >~ Vi (5b) reformulation ensures that one is able to generate cuts that
2 B accurately approximate the FEP function. The DP formulation
T € {0, 1} (5¢)  of the problem with binary state variables becomes:
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The Benders cuts are constructed by solving the LP relax-
ation of (7), giving an optimal valu@X*. The coefficients
Qi(Ar—1) = max (ptet + O‘t) (7a) Thnte are computed as the dual values of (7c), and the right-
st (3)and (5) (7b) handsidesi. = QF” — 37, 50 3 e n, ThntAin,i—1. Note that
it = At Vh.n (7¢) this approach will lead to the same solution as one would get
’ ’ solving the MIP in (3) and (5) in the SDDP forward iteration
Zhnt € [0,1] Vh,n (7d)  and its LP relaxation in the backward iteration.
Ahnt € {0,1} Vh,n (7e) The Lagrangian cuts are constructed by solving the La-

i | of (7 laxi h int (7c). Th
Where (7c) are the local copies of the state variables, Conm%réangmn dual of (7), relaxing the copy constraint (7c). The

. : i . grangian multiplier is obtained b
ing the previous state solutiony,, ;—1, and the copy variables grang P y
znnt for all reservoirsh € H and binary variables € N,. » ) i B

The SDDIP algorithm is outlined in below. In the forward ™ — 281 Lim)+ D D Fumdn ©)
iteration, the MIP problem defined in (7) is solved. In the REH nENy
backward iteration different relaxations of (7) are solvedyhere.: is defined as:

depending on the type of cuts to be computed. ,
L;(7:) = max (ptet +oap — Z Z ﬁhntzhnt) (10a)

. . o heH neN,
1: Apply binary expansion on reservoir variables e nein

2: Set)g, i< 1, UB = 400 andLB = —0, st. (3) (5. (vd) and (7e) (10)
3: while i <™ or some other stopping criterizo Equation (9) is solved repeatedly, with the aim to gradually
4. SampleS scenarios improving the vector of Lagrangian multipliefs to provide
5. [* Forward Iteration */ tight Lagrangian cuts. The multipliers are updated taking steps
6: for s=1,...,Sdo with the subgradient method [19]. The coefficients,;. are
7 for t=1,...,Tdo found as the Lagrangian multipliers, and the right-hand side
8: Solve Q; (Aj_1.5) Bic as Li. Interesting related work on Lagrangian relaxation
9: Collect solution within the SDDP algorithm has been published in [20], [21].
10: end for _ The Strengthened Benders cuts are constructed by first solv-
11 Ibs <> 1 7 Qs ing the LP relaxation of problem (7). Subsequently, problem
12:  end for (10) is solved with the Lagrangian multiplier vecterequal to
13:  /* Compute lower bound */ the optimal LP dual solutions with respect to constraints (7c).
14 pe 30 b ando? « A S0 (16— p)? From the optimal objective of the latter problem we obtain
150 LB« p+2a7% the right-hand sideCi(7}), which together withr; is used to
16: /* Backward Iteration */ construct the Strengthened Benders cut of type (8).
17: for t=T,..., 2do
18: for s=1,..., Sdo IV. CasE STUDY
19: for b=1,..., Bdo A. Case Description
20: Solve a suitable relaxation @;,(\;_; ;) A computer model was established implementing the al-
21: Collect cut coefficients and parameters  gorithm described in Section 1lI-A using the different cut
22: end for types described in Section 1Il-B. The model was used to
23: Create desired cuts as described in Sec. lll-Bptain schedules for a Norwegian watercourse comprising
24: end for 3 hydropower reservoirs with corresponding power plants,
25:  end for and with a total capacity of 202 MW. An illustration of the
26: I* CompL_Jte upper bound */ topology and specification of some technical characteristics is
27 UB + Qi(Xo,&0) provided in Fig. 1. For each reservoir shown in the figure
28: i i+1 the average annual inflow and storage capacity are stated,
29: end while both in Mm?. Each power plant is identified with a number
B. Cut Types and its installed capacity in MW. An environmental constraint
: is attached to reservoir 2, stating that no water should be
Cuts to be constructed in the backward iteration will takgischarged from the reservoir in between weeks 18 to 35 if
the form: the reservoir volume is lower than 140 Mm
A scheduling horizon of 1 year was applied with weekly
Xt~ };{ %\; ThnteChn At < Pre ®)  gecision stages. A set of cuts of type (8) was used to ensure
n h

that state variables at the end of the scheduling horizon were

A brief description of the 3 cut types used in the SDDiRaluated. These cuts were obtained by model calibration, but
algorithm in the case study in Section IV is provided belovgould also be provided as a boundary condition from a long-
please see [6], [7] for a more thorough description. term scheduling model.
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2

160 Mm- TABLE |

) 177 Mm3 SIMULATED CASES AND EXPECTED PROFIT§M<€].

Price Scenario
Cut Type High Price | Average Price | Low Price
370 X Benders 65.73 56.74 34.59
81 Mm? / Strengthened Benders  65.91 56.81 34.62
""""""" 140 Mm? Lagrangian 65.96 56.83 34.63
/27" T time. With the use of Benders cuts, the majority of compu-
B 3 M tation time is spent solving the MIP problems in the forward
simulation, resulting in a run time in the range 2-3 hours.
The run-time approximately increased with a factor of 5 when
using Strengthened Benders cuts compared to using Benders
Fig. 1. Watercourse topology and technical data. cuts, due to the need for solving one MIP problem per problem

instance in the backward iteration. The use of Lagrangian cuts
further increases computation time, strongly depending on the

A relatively coarse representation of uncertainty and tiféimber of iterations when searching for improved multipliers
discretization was applied in order to focus on the modellidg (9)- Note that parallel processing was not applied in this
of environmental constraints within acceptable computatiG@se study for simplicity.
timgs. An inﬂqw mode! was fitted using a single inflowg Regiits
series comprising 80 historical years, and the model error.

was sampled from a normal distribution. A total of 50 inflow TFhe 020 nzggegﬁi ck:ﬁ;acten:':lcbgf r:ge 2132;[2? |s_§ho¥;]/r;
scenarios were re-sampled in each forward iteration, an '9. £, paring upp unads : using

discrete inflow error terms were used at each stage in tﬁedlfferent cut types in the high-price scenario. We used

backward iterations of the algorithm. We ran the model witihrg?g&l:rgozir;2%;;;;0\,\',?(;?5;?] Ir}chzllerersaintiZi EStsseiSs-
3 different price scenarios, following the weekly averag 9 grang

NordPool system prices for 2006 and 2015 as well as tﬁéso included to indicate that the cost gap gradually closes
the iteration number increases. From Fig. 2 it can be

average system price for the years 2005-2018. The pr%% rved that th ¢ ing Laaranaian cuts is slowl
scenarios are referred to high (2006),average (average for observe at the cost gap using Lagrangian cuts 1S slowly

2005-2018) andow (2015). Qecreaslng, but has not closed after 30 iterations. F_urther
Th del ol ted ihul | ing thed UMP improving the cost gap turned out to be difficult and time-
€ model was impiemented Wl i a, using theJu consuming, which we believe is due to the inefficient search

package [22] and CPLEX 12.9 solver [23] for solution of bOttf1or improved Lagrangian multipliers (using the subgradient

the MIP anq the LP problems. Al te.StS were carried out on %’ethod). The significant difference in upper bound when using
Intel Core i7-4940MX processor with 3.30 GHz and 32 Gly,o gyrengthened Benders cuts compared to the Benders cuts
RAM. o o . . indicate that the former is a substantial improvement compared
The system in Fig. 1 was optimized using the 3 differeqt, o approximation made when linearizing the nonconvex
cut-types described in Section 1IIl-B and with the 3 differentyngiraints in (5). This finding is in-line with the conclusions

price scenarios. The resulting 9 cases are listed in_Tabk_—:-Ir.}.m, although this case study is clearly different from the
The system operation for each case was simulated in a figak in 171.

simulation using a fixed and separately sampled set of 100(bperation of reservoirs 1 and 2 when using the high-
inflow scenarios. The resulting expected profits are giveflice scenario is presented in Fig. 3, comparing the use of
in Table I. The improved economic performance with exadrengthened Benders and Benders cuts. The threshold volume
modelling is most pronounced in the high-price case. Thg 140 Mn? for reservoir 2 is indicated with the stapled
high summer prices in this case provides a clear incentiMgizontal line in Fig. 3. The figures show that the use
to keep water available for summer production, rewarding g syrengthened Benders cuts leads to more released water
accurate modelling of the environmental constraint in reserveifm, reservoir 1 and less from reservoir 2 prior to the price
2. Recall that the environmental constraints associated Wgﬁike in week 34. The difference in operation obtained when
reservoir 2 are always met in the forward simulation, blﬂ}sing Strengthened Benders and Lagrangian cuts were less

may be approximated in the backward iteration, dependifgonounced than between Strengthened Benders and Benders
on the type of cuts being used. For the average-price case, {i§ is therefore not emphasized here.
0.09 ME (or 0.16 %) increase in expected profit when using

Lagrangian compared to Benders cuts may seem modest, but V. CONCLUSIONS
one should keep in mind that the producer will often hunt for We presented a hydropower scheduling model based on
such marginal improvements in a competitive market. SDDIP for exact treatment of reservoir-level dependent max-

The choice of cut type significantly impacts the computatiomum discharge, which can be classified as a nonconvex
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