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Abstract. Introduction: The international research project IEA EBC Annex 72 investigates 

the life cycle related environmental impacts caused by buildings. The project aims inter alia to 

harmonise LCA approaches on buildings. Methods: To identify major commonalities and 

discrepancies among national LCA approaches, reference buildings were defined to present 

and compare the national approaches. A residential high-rise building located in Tianjin, 

China, was selected as one of the reference buildings. The main construction elements are 

reinforced concrete shear walls, beams and floor slabs. The building has an energy reference 

area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team 

provided information on the quantities of building materials and elements required for the 

construction, established a BIM model and quantified the operational energy demand. Results: 

The greenhouse gas emissions and environmental impacts of the building were quantified 

using 17 country-specific national assessment methods and LCA databases. Comparisons of 

the results are shown on the level of building elements as well as the complete life cycle of the 

building. Conclusions: The results of these assessments show that the main differences lie in 

the LCA background data used, the scope of the assessment and the reference study period 

applied. Despite the variability in the greenhouse gas emissions determined with the 17 

national methods, the individual results are relevant in the respective national context of the 

method, data, tool and benchmark used. It is important that environmental benchmarks 

correspond to the particular LCA approach and database of a country in which the benchmark 

is applied. Furthermore, the results imply to include building technologies as their contribution 

to the overall environmental impacts is not negligible. Grant support: The authors thank the 

IEA for its organizational support and the funding organizations in the participating countries 

for their financial support. 

1.  Introduction 

The construction and operation of buildings are a major cause for climate change and other 

environmental impacts [1-3]. Environmental life cycle assessment (LCA) is widely used to quantify 

greenhouse gas (GHG) emissions and other environmental impacts of buildings and to highlight 

optimization and improvement potentials over their whole life cycle (production, construction, use - 

including repair and replacement - and end of life). LCA results support decision making in favour of 

a more climate and environmental friendly production and consumption and therefore help to achieve 

the UN Sustainable Development Goals (SDG) number 11 (sustainable cities and communities) 

number 12 (responsible consumption and production) and 13 (climate action).  

The international research project IEA EBC Annex 72 investigates the life cycle related 

environmental impacts caused by buildings and aims inter alia to discuss and harmonise LCA 

approaches on buildings [4]. To present existing national approaches and identify commonalities and 

discrepancies three reference buildings were defined within the IEA EBC Annex 72 project. For each 

reference building an expert team provided the bill of materials and operational energy demands in 

local context. National experts assessed the environmental impacts using the provided information on 

quantities of building materials and operational energy demands, but applying their national or 

regional LCA approach and LCA database, whenever available.  

The first analysed reference building was the “be2226” office building located in Austria. The 

building is a massive construction with thick exterior walls with a high thermal capacity. Therefore, no 

active heating and air-conditioning is required. 22 different institutions assessed the “be2226” office 

building according to their national or regional LCA approach and LCA database. Depending on the 

assessment the GHG emissions of the be2226 building were between 10 and 71 kg CO2-eq per m2 per 

year. Most of the GHG emissions were either caused in the product stage or during the operational 

energy use. The differences in GHG emissions were due to variances in GHG emissions per kg 

building material, differences in the applied reference study periods and the different GHG intensities 

of the national electricity mixes [5].  

National or regional LCA databases reflect the production conditions and the energy mix in a 

specific country and are therefore important for assessing the environmental impacts in a true and fair 
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view. Hence, it is no cause for a major concern if the environmental impacts of the same building 

differ between the different national approaches. However, it is recommended to use LCA databases 

representative for the countries’ relevant economic sectors.  

A residential high-rise building (TJ-CSY-11) located in Tianjin, China, was selected as one of three 

reference buildings within the IEA EBC Annex 72 project. Compared to the “be2226” office reference 

building [5], this residential building is more complex regarding materialisation and building 

technology. An expert team from the Tianjin University in China provided information on the 

quantities of building materials and elements required for the construction, established a BIM model 

and quantified the operational energy demand. The building has 12 floors and the main construction 

elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy 

reference area of 4566 m2. The operational energy demand is 250 MJ per m2 per year. The operational 

energy demand includes space heating provided by a waste-heat-source heat pump operated with 

natural gas. The electricity demands for generating hot water, ventilation and cooling, elevators, 

lighting and other operational facilities were quantified separately.  

2.  Methods and databases 

2.1.  Used national methods including reference study period and databases 

The environmental impacts of the high-rise building were assessed by 17 institutions. The authors of 

the study used the same material amounts and energy demand but applied their regional LCA methods 

for evaluating the primary energy demand (non-renewable and renewable) and the GHG emissions.  

The LCA methods applied use different reference study periods, apply a different scope (i.e. life 

cycle stages included) and apply different background databases. 10 methods use a reference study 

period of 50 years and 4 methods use 60 years. New Zealand uses 90 years, France 100 years and 

Denmark 120 years as reference study period for the residential building. The ecoinvent database 

(different versions) was mostly used as background data source, but some country-specific databases 

(e.g. Ökobau.dat [6]) and EPDs were also applied (see Table 1).  

A comparison of the environmental impacts of different materials and electricity mixes from 

different databases is presented in [5].  

Table 1: Overview of the reference study periods and databases used within the LCA methods applied 

to assess the environmental impacts of the TJ-CSY-11 reference building. 
 Reference study 

period [years] 

Database Field of application 

AT 50 ecoinvent 3.5 [7] Research 

BR 50 ecoinvent 3.4 [8] /ecoinvent 3.5 [7] adapted to Brazilian 

context and EPD 

Research 

CA 60 ecoinvent 3.5 [7] adapted to Canadian context and EPDs Building certification schemes, 

EPDs 

CN 50 ecoinvent 3.5[7]; CLCD-China-ECER 0.8.1, Oekobau.dat 

[6, 9] 

Building certification scheme 

CZ 50 ecoinvent 3.3 [10], boundary condition from SBToolCZ 

methodology [11] 

Decision-making tool, voluntary 

certification 

DE 50 Ökobau.dat 2018 [6] BNB and DGNB 

DK 120 Ökobau.dat 2016 [9] DGNB Denmark 

ES 50 ecoinvent 2.0 [12] research 

FR 100 ecoinvent 2.2 [13]  EQUER 

HU 50 ecoinvent 3.5 [7] adapted to Hungarian context  Education and research 

IT 50 Ecoinvent 3.4 [8], EPDs Research 

NO 60 Ecoinvent 3.0 [14], EPDs Research, decision-making tool  

NZ 90 NZ whole building whole of life framework  - materials 

data developed from EPDs for materials and modelling in 

ecoinvent 3.1 [15] (specific process data with NZ Grid 

electricity) 

 

Certification, research 
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 Reference study 

period [years] 

Database Field of application 

PT 50 LCIA Database for Portuguese Building Technologies 

[16], based on generic data from Ecoinvent 2.1 [17], 

Ecoinvent version 3.3 [10] 

Research 

SE 50 Swedish Building Sector Environmental Calculation Tool 

(BM) [18] 

Building certification schemes 

UK 50 Database embedded in OneClickLCAa Building certification schemes 

US 50 Database embedded in ATHENA Impact Estimatorb Building certification schemes and 

research 
a https://www.oneclicklca.com/support/faq-and-guidance/documentation/database/, last visited on: 8.01.2020  
b https://calculatelca.com/software/impact-estimator/lca-database-reports/, last visited on: 8.01.2020 

 

The life cycle stages included in the approaches are shown in Table 2. The life cycle stage B1 is not 

considered by any approach. 

Table 2: Overview of the life cycle stages included in the applied approaches. 
Life 

cycle 

stage 

A1-

A3 

A4-

A5 

B2 B3 B4 B5 B6-

SH 

B6-

HW 

B6-

VC 

B6-

LO 

B6-

E 

B7 C1 C2 C3 C4 D 

AT X X   X  X X X X X   X X X  

BR X X   X  X X X X X  X X    

CA X X   X  X X X X X  X X X X  

CN X    X  X X X X      X X 

CZ X    X  X X X X X       

DE X    X  X X X X X    X X (X) 

DK X    X  X X X X X    X X  

ES X X X X X X X X X X X X X X X X  

FR X X   X  X X X X X X  X X  X 

HU X X  X X  X X X X X   X X X  

IT X      X X X X X       

NO X    X  X X X X X    X X  

NZ X X X  X  X X X X X X X X X X X 

PT X      X X X         

SE X X                

UK X X   X  X X X X X  X X X X X 

US X X X  X  X X X X X  X X X X  

B6-SH: space heating 

B6-HW: hot water 

B6-VC: ventilation and cooling 

B6-LO: lighting, operational facilities (electric doors, 

shadowing equipment), auxiliaries 

B6-E: elevators 

 

3.  Results: GHG emissions of TJ-CSY-11 building 

3.1.  Results – life cycle stages 

The national experts reported the results according to the life cycle stages defined in EN-15804:2012 

[19] and EN-15978:2011 [20]. Figure 1 presents the GHG emissions of the TJ-CSY-11 reference 

building over the different life cycle stages. Depending on the national approach used, the GHG 

emissions range between 15 and 67 kg CO2-eq per m2 per year.  

The GHG emissions of the product stage were reported by all countries and differ between 4 and 

16 kg CO2-eq per m2 per year. The construction process stages (A4 and A5) were assessed by 10 

approaches and vary between 0.4 and 6.7 kg CO2-eq per m2 per year.  

 

 

https://www.oneclicklca.com/support/faq-and-guidance/documentation/database/
https://calculatelca.com/software/impact-estimator/lca-database-reports/
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Figure 1. GHG emissions in kg CO2-eq per m2 per year of the reference building 

“TJ-CSY-11” assessed according to the national/regional approaches of the 

countries listed. Results variations reflect the different national methods and 

databases used. NO*: Norwegian electricity grid1; NO**: open electricity grid 

(EU 28+NO)2 

 

The GHG emissions of replacements (B4) are between 0.33 and 11.9 kg CO2-eq per m2 per year, 

and were considered by all countries except Italy, Portugal and Sweden. The operational energy use 

(B6) was split into space heating, hot water, ventilation and cooling, lighting and operational facilities 

and elevators. 14 approaches considered all operational energy uses. China and Portugal did not 

consider the operational energy use from elevators. Furthermore Portugal did neither consider 

operational energy use from lighting and operational facilities. The approach applied by Sweden is not 

considering the operational energy use at all. Overall, the GHG emissions caused by the operational 

energy use vary between 7.9 and 45 kg CO2-eq per m2 per year. The difference is mainly due to the 

variations in the GHG emissions of the electricity mixes used in the different countries. The GHG 

emissions of the operational water use were assessed in 3 approaches and are of minor importance.  

Different modules of the end-of-life stage were taken into account. The deconstruction stage (C1) 

was assessed by 6 countries, the transport to the disposal (C2) by 9 countries and waste processing 

(C3) and disposal (C4) each by 11 countries. The GHG emissions of the end-of-life stage are between 

0.14 and 2.6 kg CO2-eq per m2 per year.  

5 countries reported potential loads and benefits beyond the system boundaries (module D), which 

range between -3.9 and -0.6 kg CO2-eq per m2 per year.  

 
1 Consideration of isolated energy system in Norway based on the dominant share of hydropower (based on the 

data from the Statistic Norway, www.ssb.no) 
2 Average value that is representative of a 60-year building lifetime, taking into consideration future evolutions 

in the European electricity generation towards 2050. 
3 New Zealand reported B4 together with B2. 
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3.2.  Results – elements level  

Figure 2 presents the GHG emission of the different building elements in the TJ-CSY-11 reference 

building (reported by 14 out of 17 countries) in kg CO2-eq over the whole life cycle and reference 

study period. In 12 assessments most of the emissions caused by the building materials (i.e. without 

GHG emissions caused by operational energy use) are either caused by the interior walls or the 

exterior walls. In the Italian assessment the floor structure plus finishes and in the French assessment 

the building service systems cause most of the GHG emissions.  

 

 

Figure 2: GHG emissions of building elements of TJ-CSY-11 in kg CO2-eq over the whole life cycle 

and reference study period. Life cycle stages included, reference study period and applied databases 

differ between the national approaches.  

 

The distribution of the shares of the GHG emissions of the foundation, floor structure, interior and 

exterior walls of the GHG emissions caused by the building elements is similar across the assessments 

from the different countries.  

Within the approaches applying a 50 year reference period, the GHG emissions of the building 

elements vary between factor 2.5 and 3.4. Exceptions are the building element roofing and the 

openings, for which the GHG emissions vary by a factor of 6.1 and 11.8, respectively. An overview of 

the variance for each building element is shown in Table 3.  

Table 3. Overview of the variance of the absolute GHG emissions of the building elements for the 

approaches applying a 50 years reference study period.  

Building element  

Min GHG emissions 

[kg CO2-eq] 

Max GHG emissions 

[kg CO2-eq] 

Variation factor 

Max/Min 

Foundation 1.4E+05 4.3E+05 3.2 

Floor structure + finishes 4.3E+05 1.1E+06 2.5 

Interior wall + finishes 5.6E+05 1.7E+06 3.1 

Exterior wall + finishes 5.3E+05 1.5E+06 2.8 

Roofing 5.2E+04 3.2E+05 6.1 

Openings 6.3E+04 7.4E+05 11.8 

others building elements 1.5E+05 3.7E+05 2.5 

Building service systems 1.3E+05 4.3E+05 3.4 

Module D -8.9E+05 -2.3E+05 0.3 

others (A5/C1) 0.0E+00 3.6E+04  

0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06
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The building service systems include the systems for water, sewage, electricity, heating, cooling, 

ventilation, elevator and hot water. The share of the GHG emissions of building service systems of the 

GHG emissions caused by the building elements is between 5 % and 21 % depending on the national 

approach applied. 3 countries out of 14 countries did not assess the GHG emissions caused by building 

service systems.  

4.  Discussion  

In all assessments, except in the Swedish assessment, most of the GHG emissions are caused by the 

operational energy demand. In the Swedish approach the operational energy demand is not assessed. 

The differences in the GHG emissions of the operational energy demand are mainly caused by existing 

differences in the national electricity mixes.  

As for the “be2226” reference building [5] the difference in the GHG emissions in the product stage 

are due to diversities in the reference study period applied and the differences in GHG emissions, 

caused by the production of the construction materials.  

The GHG emissions caused by the production of materials used for the building service system 

tend to cause a more significant share of the total absolute GHG emissions with longer reference study 

periods. This is mainly due to the often shorter service life of the building service system compared to 

the building life time and thus leading to several replacements causing additional GHG emissions. For 

example in the Danish assessment the service life of the heating system is 30 years. A reference study 

period of 120 years leads to 3 replacements of the heating system. This effect is also observed for 

other building elements with a shorter service life (i.e. windows and doors), but they are of minor 

importance with respect to the total absolute GHG emissions of the building elements. However, the 

GHG emissions caused by the building service system of the assessments with a reference study 

period of 50 years show a similar variance like other building elements.  

As in the “be2226” reference building case [5], the GHG emissions of the TJ-CSY-11 reference 

building differ substantially depending on the applied approach and are mainly due to the different 

GHG emissions of the energy carriers and construction materials used, differences in scope (inclusion 

or not of building service systems) and reference study period. In most cases, methodological 

differences are of minor importance. As concluded in [5], it is important that environmental 

benchmarks correspond to the particular LCA approach and database of a country in which the 

benchmark is applied.  

Despite the variability in the GHG emissions determined with the 17 national methods, the 

individual results are relevant in their respective national contexts. Many nations run their labelling or 

certification systems applying a national method, national or nationally adapted LCA data and national 

building benchmarks. It is more important that a national assessment of the TJ-CSY-11 is in 

accordance with the national system of assessing environmental impacts of buildings than of reaching 

identical results in assessments done according to national approaches.  

5.  Outlook  

A Canadian pre-fabricated wood building, will be the third reference building and assessed with a 

special focus on methodological choices of the modelling of biogenic carbon and biogenic CO2 and 

CH4 emissions. The lessons learned from the assessment of reference buildings by different national 

experts help to point out commonalities and discrepancies among the approaches applied. This 

knowledge is used along with other results to develop a harmonized methodological guideline for the 

assessment of GHG emissions and other environmental impacts in the full life cycle within the 

international research project IEA EBC Annex 72.  
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