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Abstract. Introduction. The ongoing urbanization trend makes local governments densify their 
built environment, hence stimulating construction and renovation works in urban areas. 
Construction intrinsically strongly relies on logistics activities, which in turn are the source of 
environmental nuisances. The latter are referred to as external costs when they are not borne by 
the polluter himself, such as greenhouse gas emissions, air pollution, congestion, etc. Accurate 
external cost calculations require accurate data to consider significant calculation-variables. 
However, current calculations are often based on the number of vehicles used and on transported 
volume rather than vehicle- or tonne-kilometres, hence not adequate to conduct external cost 
calculations. Methods. The MIMIC-project1 aims to reduce the impact of construction logistics. 
Therefore, an integrated impact assessment framework will be developed, assessing the 
economic and environmental influence of different off-site construction logistics solutions. The 
necessary data to conduct such an impact assessment are however not always available, 
complicating calculations. This paper highlights the current gap in accurate data on urban 
construction logistics flows, the considerable uncertainty about existing figures on construction 
transport and their methodology, and presents the data availability issue in the development of 
such a framework, using empirical research. Results. Logistics flows data are typically scattered 
amongst different actors and various in format. Harmonizing different data categories and 
sources to feed the framework with relevant logistics variables, this paper presents what is 
possible to calculate using available data in 4 pilot cases in Belgium, Sweden, Norway and 
Austria. The various data sources highlight the complexity to develop a framework flexible 
enough to cope with specific local constraints, whilst generic enough to allow comparability 
across the European cases, and ultimately across construction logistics globally. Furthermore, a 
shift is needed towards other data collection methods (GPS, digital waybills etc.). Conclusions. 
This paper presents the data availability issue in the development of an impact assessment 
framework for construction logistics, harmonizing different data sources in order to conduct 
external cost calculations for construction transport. 
Keywords. Construction logistics, data availability, impact assessment framework, 
harmonization. 

 
1. Introduction 
Since 2007, the urban population surpassed the rural population globally. Figures from 2014 show that 
75% of the European population was living in urban areas, a share which is expected to rise even further 
[1,2]. Given this ongoing urbanization trend, local governments focus on densifying their built 
environment, hence stimulating construction and renovation works in urban areas [1], leading to the 
construction of new infrastructure or complexes, and the renovation or refurbishment of older ones. 
Being a natural way for a city to evolve [3], construction often leads to more attractive and economically 
viable cities in the long run. 

Urban construction intrinsically strongly relies on logistics activities [4], and as much as 60–80% of 
the gross work involves materials and services purchased from suppliers and subcontractors [5]. Given 
the products (i.e. buildings) are physically big and immobile and are produced at the site of use [6], a

 
1 The MIMIC project receives funding from the European Union’s Horizon 2020 research and innovation program and is part of the research 
programme JPI Urban Europe. 
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great number of transports are needed to ensure on-site deliveries of the right resources at the right time 
[7,8]. However, the logistics activities related to construction are, if not handled appropriately, the 
source of significant environmental nuisances [8,9]. The latter are referred to as external costs when 
they are not borne by the polluter himself [10,11]. Some of the main external cost categories of transport 
include air pollution, greenhouse gas emissions, noise pollution, congestion, accidents and infrastructure 
costs [9,12,13,14,15]. 

To understand the impact of construction logistics we need data. However, there is a gap in accurate 
data on urban construction logistics flows. Though, estimates from European countries assume about 
20-35% of all urban freight traffic would be linked to the sector [16,17,18]. In order to conduct accurate 
external cost calculations, accurate data is needed to consider significant calculation-variables which 
are typically scarce and scattered amongst different actors across the construction chain. 

This paper highlights (1) the current gap in accurate data on urban construction logistics flows, (2) 
the considerable uncertainty about existing figures on construction transport and their methodology and 
(3) presents the data availability issue in the development of an integrated impact assessment framework 
for construction logistics, harmonizing different data categories and sources to feed the framework with 
relevant logistics data. The development of this framework is part of the MIMIC project, focusing on 
the social, economic and environmental sustainability problems that arise from logistics activities to, 
from, around and on urban construction sites. Hence, it strongly relates to goals 9, 11, 12 and 132 of the 
global sustainability goals [19]. More specifically, the development of the integrated impact assessment 
framework aims to move closer towards a sustainable built environment, first within the project with 
multiple demonstration cases across Europe, and ultimately across the sector globally. 
 
2. Literature review 
As estimated by the European Commission, the size of external costs of transport in the EU totals 
approximately 1,000 billion euro per year, or roughly 7% of the EU28’s GDP [20]. Construction has a 
large share of total freight traffic in urban areas. In terms of weight, construction would generate up to 
30% of the tonnage transported within cities [17]. However, to perform accurate external cost 
calculations, there is a need for accurate data to enable the consideration of significant calculation-
variables, like vehicle-type, road type, traffic situation, number of receptors, etc. 
 
2.1 The reported share of construction logistics in urban freight traffic and external cost estimates for 
off-site construction logistics 
To perform accurate external cost calculations, there is a need for accurate data on construction logistics. 
Four transport performance indicators can be distinguished, namely (1) number of vehicles used, (2) 
transported volume, (3) vehicle-kilometres and (4) tonne-kilometres, for which the last 2 are the most 
relevant for external cost calculations. Next, we discuss the methodologies used to estimate the share of 
construction logistics, including their advantages and disadvantages. Several examples will illustrate 
their use. 
 

Traffic counts are most often used to estimate transport logistics and construction logistics 
specifically [16,18]. In Brussels, they enabled the calculation of the number of freight vehicles in the 
total share of traffic. Estimations based on visual identification indicate construction transport represents 
17,5% (in 2008) and 20% (in 2016) of total traffic in the Brussels Capital Region (BCR) [16]. In their 
methodological context, the analyses were mainly carried out with the help of pneumatic meters placed 
on the main road axes. The vehicle types were then differentiated based on standard axle spacing. This 
leads to inaccuracies such as buses and coaches to be counted as trucks, or small vans to be considered 
as cars. Where automatic counts were not possible (e.g. motorways were the width of the lanes are too 
wide to install pneumatic readers), video techniques have been used to identify the observations. For the 
latter, no cars were included in the calculations. In turn, the differentiation between freight transport 
sectors, such as construction, has been approximated using visual recognition of vehicles on the main 

 
2 SDG 9: Industry, innovation and infrastructure; SDG 11: Sustainable cities and communities; SDG 12: Responsible production and 
consumption; SDG 13: Climate action.
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road axes. It is important to note that there is thus still great uncertainty about the actual vehicle use 
(going beyond the vehicle identification, such as cargo type, products transported, loading rate, 3rd party 
logistics etc.) [21]. The advantage of traffic counts is the limited number of man-hours needed to get 
data for a relatively long time period. Also, they give an indication on the traffic circumstances on the 
considered spots. The disadvantages are, besides the already mentioned inaccuracy, the limited 
geographical scope, as only specific locations can be considered. Traffic counts do not give information 
on origin and destination – and related vehicle-kilometres. Moreover, they don’t give information on 
loading rate. Finally, they don’t consider the sector. To estimate the share of construction logistics, 
additional surveys are needed, and most often used. These can consist of visual counting via cameras or 
on the streets or construction sites. Their results suggest that the share of construction logistics is about 
20% of all urban freight traffic. 

Surveys were already mentioned. Many studies [i.a.18,22,23] use questionnaires as survey method 
to estimate the transport flows of the construction sector. The advantage of this method is that it enables 
the researcher to ask the data he/she needs, in this case to get origin-destination data and related 
transported volumes. Vehicle-kilometres and tonne-kilometres can consequently be derived. The 
disadvantage of this method is that it is very time-consuming and that the results are highly depending 
on the willingness to participate and to gather the data. Logistics is not the principal activity of the 
construction companies; therefore, data gathering is a time-consuming and sometimes impossible task 
for them. 

Governments – cities in particular – start to address logistics as a relevant topic. This leads to policies 
regarding logistics activities and related methods to enforce those policies. Camera technologies (e.g. 
ANPR) and GPS technologies (e.g. on-board units) are currently used in Belgium to enforce regional 
and local policies regarding freight transport. These technologies offer opportunities to estimate 
transport performance, impact of policies and shares of different economic sectors. Where cameras are 
confronted with the same geographical limitations as traffic counts, they can give a rough estimation of 
the sector for which transport vehicles are used. GPS trackers on their side, give more relevant 
information, as they include vehicle type, traffic conditions and routing (vehicle-kilometres). The 
disadvantage is that they don’t consider the sector, neither the loading rate of the vehicle.  

It is also possible to collect digital data about transports to and from the project. This data is e.g. 
available as part of construction logistics setups (CLSs) such as checkpoints [6,24] or construction 
consolidation centres (CCCs) [4,25,26]. These setups gather data with the help of either or both booking 
calendars and sensors at the gates. Usually the demand to gather this data comes from municipalities 
and developers in the need for maintaining a accessibility and mobility [27]. 

Further data sources can also serve as validation for the above-mentioned traffic flow and freight 
transport data. The Construction Scope Statement and the Bill of Quantities in which, i.a., the total 
material needs associated with their volume, weight and price are itemized, can further serve to 
crossmatch the transport trips to the construction planning. These construction planning data can further 
feed and validate freight flows, and can serve as an indication of the efficiency of transported volume 
(loading rate). This information could also be derived from invoices or consignment notes. While the 
latter documents are still heavily used in analogue formats today, technologic advances will stimulate 
the use of digital waybills (e-CMR), hence facilitating data gathering and analyses in the future. 

 
In Brussels, approximately 120,000 construction sites in the regional public space are identified 

annually [28]. The share of construction logistics flows in the BCR is, as highlighted above, currently 
based on traffic counts. These figures need to be solidified in future studies. 

In London, the construction industry is said to represent 35% of daytime Heavy Goods Vehicle 
(HGV) traffic and 38% of am peak traffic, equaling some 836,859 transport-kilometers a day in the City. 
This significant amount of freight movements is reported to cost the City of London £779,908,000 
annually [18,23]. To map the transport flows needed to compute these figures (and the inefficiencies in 
the construction logistics planning), data was mainly sourced from Delivery Management Systems 
(DMS), manual field data collection and survey work, thus heavily relying on manual data collection 
and stakeholder interviews. While these figures give a broad overview of the total damage costs 
generated by the sector in London, educated assumptions have been used to calculate external costs of 
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transport thereby lacking to consider crucial local variables (like receptor densities and traffic situations) 
intertwining with the internal economic costs of bore by the contractors. It is thus worth pointing out 
these figures also and mainly encompass internal operating costs. For CO2-equivalent calculations, a 
fix basis of 2.64 kg of CO2e per litre of diesel burnt and damage cost of £31 per tonne of CO2-e was 
taken into account (based on simple calculations provided by the Department of Transport in 2010). 
While there is indeed a one-to-one relationship between number of liters burnt and CO2 emissions, the 
monetary value of £31 is very low compared to recent literature suggesting a central value for carbon 
price of €80-100/tonne CO2-equivalent (€2016) [9,29,30,31]. Idling time was assumed to represent 50% 
of the total amount of delay time, for which 2l (diesel)/hour/truck and 0.63l/hour/van was taken into 
consideration. Local emissions (air pollution) were computed per KWh based on emissions standards, 
for which 11.92 KWh/l (diesel) was used in conversion for lorries. Light Duty Vehicles (LDV) and vans 
calculations were based on distance driven (6l/100km in conversion). Analogically to climate change 
costs, air pollution was measured against a fixed economic value of £80,658 per tonne of NOx and 
£178,447 per tonne of PM. Infrastructure damage was calculated using the gross weight of the vehicle 
and the number of axles (legal limit). The total annual cost of infrastructure damage was then calculated 
evaluated on the number of wasted kilometres, based on a damage cost of £0.001/km and 4 
deliveries/day travelling an extra 16.27km. Congestion costs were also taken into account, but only the 
economic (internal) costs of delay for the contractor are presented. In terms of accident costs, 
construction vehicles would account for 79% of the cyclist fatalities involving a heavy goods vehicle in 
London [18,32,33] (calculated based on 16 cyclist fatalities in 2011 and sample analysis of collision and 
exposure files). Note that noise nuisance is not considered. 

In the Netherlands, a report from TNO states that 30 to 40% of the freight traffic (in number of 
vehicles) in Amsterdam would be related to construction projects [34]. Furthermore, 3 to 5 out of 10 
lorries would have a construction site as end destination [35]. The department for transport and logistics 
in The Netherlands also presents a 30% share of transported tonnages in a city, in line with the 
percentage presented by Dablanc in 2009 [17]. Other figures estimate construction to be responsible for 
15 to 20% of the number of trucks, and 30 to 40% of vans in cities [8,36,37,38]. In the Netherlands, 
27% of all greenhouse gas emissions in 2015 are attributable to construction logistics3 [39]. Converted, 
the sector in the same year was responsible for almost 1Mtonne of emitted greenhouse gas (GHG) 
emissions in the Netherlands. Methodologically, CO2 emissions (emission factors) generated by urban 
logistics in this study have been derived by combining a top-down analysis using statistical data from 
Eurostat and CBS, along with a bottom-up analysis using data from supply profile studies in the 
construction sector [39,40]. Important to note is the significant uncertainty in the share of vehicles in 
the sector. While one could assume construction mainly relies on heavy duty vehicles (HDVs) to 
transport significant volumes, the impact of the sector in terms of CO2 emissions strongly originates 
from vans [39]. In terms of number of vehicle-kilometers (vkm), it is estimated 53% of vans are used 
for construction and services activities in the Netherlands [37]. In terms of accident costs, in the city 
centre of Amsterdam in 2017, 80% of traffic accidents were related to construction traffic [36].  

In the city of Oslo, 61% of greenhouse gas emissions would have their origins from transport, 
including both people and freight [41]. Within this segment, 55% come from construction machinery, 
heavy duty vehicles, and vans [41]. Regarding mobile combustion emissions4, construction machinery 
is estimated to be the largest source. However, there is still uncertainty on the rough data (sources) used 
and the cause of the emissions [42]. 

In Sweden, in terms of transported weight, construction traffic would represent 20% in total freight 
traffic [43]. However, figures are presumably based on assumptions, as no transparent methodology is 
shown on how the approximation was made. 

 
2.2 Robustness of current construction logistics data and impact assessments 
Limited available and robust effectiveness studies were found regarding data on urban construction 
logistics flows, in part due to lack of data and different evaluation methods and scopes. The scarcity of 

 
3 Encompassing infrastructure, buildings for large construction companies, SME/Selfemployed and building materials supply. 
4 Encompassing on site machinery and diesel driven mobile heating sources (during winter)
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construction logistics data and different datasets and output values in different regions might lead to 
ambiguous results. The difficulty in estimating the size of the construction logistics sector, in turn, also 
leads to large inaccuracies and variations when calculating external costs of construction transport and 
their relative proportion across the urban freight transport (UFT) sector. Overall, little is known about 
the actual vehicle-kilometers (vkm) linked to the significant number of vehicles in the sector, and the 
available info so far seems to be consolidated using educated guesses. In order to assess the share of 
construction logistics in urban traffic and its societal and environmental impact, the most relevant 
performance indicators are tonne-kilometres and vehicle-kilometers. However, the current calculations 
of the sector’s share are most often based on the number of vehicles used and on transported volume, 
hence not adequate to conduct external cost calculations. 
 
3. Development of an integrated economic, social and economic impact assessment for 

construction logistics and methodology 
3.1 Scope and methodology 
The overall MIMIC project goal is to reduce the negative impact of construction sites by improving the 
governance of construction logistics. Based on current knowledge of sustainability impacts of logistics 
operations, construction management and existing calculation tools, a framework will be set up to 
monitor and quantify the off-site economic, social and environmental impact of construction logistics 
scenarios including major externalities compared to 'business-as-usual'. The External Cost Calculation 
[44] module, based on the most up-to-date methods and metrics, will be used for the assessment of 
impacts of construction logistics flows, including climate change, air pollution, congestion, accident 
costs and traffic safety, noise pollution, transport infrastructure damage, and others, thereby taking into 
account the relevant variables such as receptor density, time of day, traffic flow, network type and 
specific vehicles and equipment used in off-site construction logistics. 
 
3.2 Input data for the construction logistics impact assessment framework 
The table below presents the major data categories needed to calculate the externalities for off-site 
construction logistics. 

Data category Data variables Examples 

Origin-Destination 
Matrix 

Total transport flows (vkm/tkm) given origin and 
destination points (minimal on municipality level)R 

OD points; geolocations; distance 
travvelled (vkm) etc. 

Road typeA Motorway, local road, etc. 
EnvironmentA Urban, suburban, rural, etc. 

Time of day Hour of the day (differentiation day/night)A Time stamps 

Traffic Loss of time and traffic situation (thin/dense)A Free-flow, heavy traffic, saturated, 
stop & go 

Vehicle type 

Transport modeR Barge CETM class 1; van type, HDV 
type; cargobike; etc. 

Vehicle capacity (size)R 14t-20t; 350t (CEMT II); 420m freight 
train ; etc. 

Vehicle propulsion typeR  Diesel, electric, LNG ; etc. 
Vehicle consumptionR EURO-norm 
Vehicle speedA Trip average speed 
Cargo typeA Pallets, bulk, etc. 
Loading rateA Volume (tonne), % 

   
R Minimum data requirement. 
A If no data is available, these could be based on solid assumptions or derived through geocoding or other calculations. 
 

Table 1. Data requirements to conduct an economic and environmental impact assessment for off-site construction logistics  
(based on VUB-MOBI’s previous transport external cost calculations) 

 
As highlighted in Table 1, there are a few minimum data requirements such as Origin-Destinations 
(either all off-site transport flows or extrapolated from a relevant sample) encompassing vehicle-
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kilometres (vkm), next to vehicle/truck type and propulsion type (marked with R). Other types of data 
(such as road type, loading rate etc.) can serve to further enrich and refine the analyses (marked with A).  
 
3.3 The data availability issue 
The developed impact assessment framework for construction logistics will integrate both the economic 
and environmental influence of different logistics solutions. Therefore, different national demonstration 
cases in Belgium, Norway, Sweden and Austria will be analyzed. The necessary data to conduct an 
impact assessment for off-site construction logistics are however not always available, hence 
complicating calculations. Multiple factors contribute to the complexity of this framework: (1) the large 
gap in accurate and available data on urban construction logistics flows; (2) the source of the available 
logistics data that is typically scattered amongst different actors within the construction chain (e.g. 
contractor, logistics provider, etc.); (3) The nature of the (unstandardized) data formats, typically 
distilled from various (and often analogue) sources such as from On-Board Unit data [14], invoice data 
[45], traffic counts, Construction Consolidation Centres [46,47,48,49], etc. These factors highlight the 
complexity to develop a framework flexible enough to cope with specific local constraints, whilst 
generic enough to allow comparability across the national demonstrations, and ultimately across the 
construction logistics sector. A first step in the development of the framework is therefore to harmonize 
the different datasets following the data categories listed in Table 1 after collecting relevant off-site 
transport variables in the different demonstration cases across Europe, as to create a robust framework 
using available data. 
 
4. Empirical research 
This section will focus on (1) identifying which data sources are available in the pilot cases and (2) 
harmonizing these collected data with what is needed to develop an impact assessment framework. 
 
4.1 Available datasets and data categories for off-site construction logistics flows 

Belgium 
A first demonstration case is under development in Belgium, where the application of the sustainability 
impact assessment framework will be tested on the 17.600m² CityCampus project, in collaboration with 
Brussels Mobility, CityDev (Brussels Regional Development Agency) and main building contractor 
Van Roey Vastgoed. The data collection on construction logistics-related transport movements will be 
gathered from On-Board Unit (‘OBU’) data. The On-Board Units, GPS-based trackers, were introduced 
in 2016, as to implement a kilometre charge for the use of motorways and certain regional roads in 
Belgium [50,51], and is mandatory for each road vehicle driving in or through Belgium with a gross 
vehicle weight of over 3.5t or for vehicles of class N1/BC5,6. Because the road price is differentiated 
based on the distance covered and how environmentally friendly the vehicle is, data collection includes 
specific vehicle characteristics. The OBU data are a strong dataset for trucks above 3,5t, in order to 
retrieve the vehicle’s position (geometry) through a unique identifier, the vehicle type (transport mode 
and capacity), the EURO norm (consumption), the time of day (data time stamps per 30 seconds interval) 
and the velocity of the vehicle. From this dataset, further information can be derived. An algorithm has 
been developed as to map the vehicle’s trajectory (OD-matrix), hence very accurately deriving the 
number of travelled vehicle-kilometres (vkm) and the duration and speed of the trip. Further enriching 
the analyses, the network, environment and road types can be derived through batch geocoding, hence 
converting available parameters (such as manufacturers addresses) into geographic coordinates 
(latitude/longitude). The response can then be linked to the hierarchical classification of roads on the 
network by means of geographical information systems (GIS). 

Additional data related to construction logistics will be collected for road vehicles below 3,5t, inland 
waterway (and rail) transport modes (which are not covered by OBU data), as well as their vehicle type 
and class. This can be achieved by means of digital solutions, such as the implementation of a 

 
5 The kilometre charging includes all roads in the Brussels Metropolitan Region.  
6 Excluded from this kilometre charge are machine-vehicles (such as cranes, bulldozers, and lifts) and other types of vehicles 
such as test drive license plated vehicles, old timers, etc.
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construction camera, monitoring the site and its incoming and outcoming logistics activities. The 
number of vans can then be cross-matched with the Bill of Quantities and the construction planning, 
while the origin of the vans, barges or trains could be derived from invoice data or cloud logistics 
solutions. Further validation of information on trip origins and destinations could also be obtained from 
hauliers in the project. Some information can also be further cross-matched and validated with the 
construction planning and delivery of building materials on-site. Data on truck loading rates, volumes 
and receptor densities are not available at this moment, but will be incorporated if accessible. Otherwise, 
assumptions will be used. For example, traffic situation and loss of time estimations could be based on 
hourly average traffic information on a fine-grained geographical level.  

 
Sweden 

In order to map relevant transportation flows, use cases in Sweden will render datasets on: (1) project 
data (BTA, project size (SEK), time plans, type of project and location); (2) the number of transports 
arriving at and leaving from the construction site (with time stamps) including the type of vehicle and 
its propulsion type, the transported product type and potential damages, fill rates ((un)loadings per truck 
in kg, ton, pallets, containers etc.), turn-around time, the vehicle’s routing, deliveries in accordance to 
the planning etc.; (3) distribution between vehicles in relation to the total number of transports; (4) 
potential incidents with third parties; and others. Direct relevant logistics data will thus be obtained on 
the vehicle type arriving at the site, the vehicle’s propulsion type, its loading rate, the transported product 
type, and the time of day. Trip origins and destinations as well as the transported volume, value and 
number of packages could also be obtained from certain hauliers, hence linking these data further to the 
construction planning. In turn, the preferential trajectory to site, the environment and road types can be 
derived through geocoding and by means of GIS. The vehicle capacity (size) could be derived and 
approximated using directly available parameters such as fill rates and (un)loadings per truck. Data on 
traffic situation, vehicle speed, receptor densities and consumption will not be available. However, the 
vehicle’s consumption (given the vehicle’s propulsion type) could be based on sound assumptions, for 
example using national, regional or local statistics and averages. 

 
Norway 

The demonstration case in Oslo will provide direct off-site transport datasets on the number of trips 
(defined as a transport flows to or from a construction site or reverse flows to e.g. a landfill), the origin 
and destination points per trip, the date of the trip, the number of traveled kilometres, the vehicle type 
and capacity, the vehicle’s propulsion type and consumption (EURO), the type of goods being 
transported (manufacturer and item) and the goods’ weight (gross kg). From these data points, one can 
derive additional variables such as the road type and the environment (through geocoding and GIS). The 
vehicle’s theoretical loading rate could also be derived from source data, bar the vehicle is not on a milk-
run trajectory. The available off-site logistics data only has a temporal resolution of one day, hence 
being too low to accurately derive the vehicle’s average speed from origin to destination or the loss of 
time in traffic. However, the average velocity of the vehicle, along with the preferential transport 
trajectory could be derived using geocoding and GIS. No time stamps or traffic situation are available. 

 
Austria 

In Vienna, the focus will be on the impact of construction logistics on the city’s mobility. To this end, 
mobile phone-based movement data will be investigated to monitor the impact of urban construction 
works on city traffic. Direct results from simulations using Mobile Service Provider (MSP) data will 
render the density of the traffic, while the most probable mobility mode (walking, public transport, car, 
etc.) and most probable trajectory can be derived through the development of algorithms. Direct data 
will thus render information on the traffic situation, which can then be overlaid on off-site logistics data. 
These MSP data thus form an indirect link with the framework and not a direct data source for 
construction logistics specifically. 
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Overview 
Table 2 builds further on Table 1, and presents a summary of the above-mentioned findings, 
harmonizing the available off-site logistics data categories in the four demonstration countries (Belgium, 
Sweden, Norway and Austria), with the data needs in order to develop the economic, social and 
environmental impact assessment framework for construction logistics.  

Data category Data variables Belgium Sweden Norway Austria 

Origin-
Destination 
Matrix 

Total transport flows 
(vkm/tkm) given origin and 
destination pointsR 

Y2 Y2 Y1 N/A 

Road typeA Y2 Y2 Y2 N/A 
EnvironmentA Y2 Y2 Y2 N/A 

Time of day Hour of the day 
(differentiation day/night)A Y1 Y1 N N/A 

Traffic Loss of time and traffic 
situation (thin/dense)A N3 N N Y1 

Vehicle type 

Transport modeR Y1 Y1 Y1 N/A 
Vehicle capacity (size)R Y1,2 Y2 Y1 N/A 
Vehicle propulsion typeR N3 Y1 Y1 N/A 
Vehicle consumptionR Y1 N3 Y1 N/A 
Vehicle speedA Y1,2 N N3 N/A 
Cargo typeA N Y1 Y1 N/A 
Loading rateA N Y1,2 Y2 N/A 

      
R Minimum data requirement 
A If no data is available, these could be based on solid assumptions or derived through geocoding or other calculations 
Y: available 
N: unavailable 
N/A: use case not applicable for off-site construction logistics data gathering 
1 Information directly available from dataset 
2 Information indirectly available from dataset or through other calculations (e.g. OD matrix through algorithm combining GPS points, 
velocity through time stamps, geocoding, most probable route algorithm, invoice analysis etc.) 
3 Sound assumptions possible.  
    

Table 2 The available data categories in the respective project countries, in relation to the data needs in order to develop the 
economic, social and environmental impact assessment framework for construction logistics. 

 
4.2 Synergies between Transport, Production and Construction sectors 
It is also worth pointing out this framework will be built with the knowledge and expertise of a 
multidisciplinary consortium, focusing on 3 main pillars in construction logistics: Transport (off-site 
logistics and thus the focus of this paper), alongside Production (focusing on the construction planning 
linking together on-site and off-site logistics) and Construction (on-site building and logistics). The 
synergies between these different points of view thus offer the possibility to assess the impact of 
construction transport on the economy, society and environment.  
 
5. Conclusions 
Despite construction allows to foster more attractive, sustainable and economically viable cities in the 
long run, the construction logistics activities are, if not handled appropriately, the source of significant 
environmental nuisances during the site duration. As part of the MIMIC project, a systematic framework 
will be set up to monitor and quantify the off-site economic, social and environmental impact of 
construction logistics scenarios including major externalities such as climate change, air pollution, 
congestion, accident costs and traffic safety, noise pollution and transport infrastructure damage, 
compared to 'business-as-usual'. The framework will first be tested on 4 pilot demonstration cases in 
Belgium, Sweden, Norway and Austria. The necessary data to conduct an impact assessment for off-
site construction logistics are however not always available, hence complicating calculations. Multiple 
factors contribute to the complexity of feeding this framework: (1) the large gap in accurate and 
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available data on urban construction logistics flows; (2) the source of the available logistics data that is 
typically scattered amongst different actors within the construction chain and (3) The nature of the 
(unstandardized) data formats, typically distilled from various sources within the sector.  

In order to conduct accurate external cost calculations, accurate data is needed to consider significant 
calculation-variables, such as vehicle-type, road type, traffic situation, number of receptors, etc. In turn, 
four transport performance indicators can be distinguished, namely (1) number of vehicles used, (2) 
transported volume, (3) vehicle-kilometres and (4) tonne-kilometres. In order to assess the share of 
construction logistics in urban traffic and its societal and environmental impact, the most relevant 
performance indicators are tonne-kilometres and vehicle-kilometers. Currently, very little is known 
about the actual vehicle-kilometers (vkm) linked to the significant number vehicles in the sector, and 
the available info so far seems to be consolidated using educated guesses. Hence, current calculations 
are most often based on the number of vehicles used and on transported volume, hence not adequate to 
conduct external cost calculations. 

Collecting the available data categories, this paper presents the data availability issue in the 
development of an integrated impact assessment framework. Harmonizing different data categories and 
sources to feed the framework with relevant logistics data, it presents what is possible to calculate given 
the available data in 4 pilot demonstration cases across Europe. As depicted, some minimum 
requirements need to be met. These directly available data can be the source of computations to derive 
other calculation-variables accurately to enrich the external cost assessment. However, the various data 
sources also highlight the complexity to develop a framework flexible enough to cope with specific local 
constraints, whilst generic enough to allow comparability across the demonstration cases, and ultimately 
across the construction logistics sector. Furthermore, a shift is needed towards other data collection 
methods (such as GPS, digital waybills etc.). 

The development of the integrated impact assessment framework aims to move closer towards a 
sustainable built environment, ultimately across the sector globally. Hence, it strongly relates to goals 
9,11, 12 and 13 of the global sustainability goals [19], as to reduce the volume and impact of construction 
road freight, stimulate more sustainable means of transportation and overall mitigate the external costs 
of transport. 
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