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Abstract

Most model-based control and estimation techniques put limitations on the structure and complexity of the models to which they
are applied. This has motivated the development of simplified models of gas-liquid two-phase flow in drilling for control and
estimation applications. This paper reviews the literature for such models. The models are categorized in terms of complexity
and the physical interpretation of the simplifications employed. A simulation study is used to evaluate their ability to qualitatively
represent dynamics of 3 different gas-liquid scenarios encountered in drilling, based on which conclusions are drawn.
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1. Introduction

Drilling for hydrocarbons is the process of creating a well-
bore, sometimes extending several thousand meters into the
ground, until it reaches an oil or gas reservoir (Fig. 1). There is
a multitude of risks and challenges associated with this process,
not least in regards to controlling the distributed pressure in the
well within the constraints imposed by the operation.

Dealing with these challenges has entailed an increasing
drive for automation in many aspects of drilling (Thorogood
et al., 2010; Godhavn, 2011). Simultaneously, a goal of im-
proved drilling efficiency is pursued through reducing non-
productive time, optimizing operations, and detecting and
avoiding incidents before adverse consequences occur (Cayeux
et al., 2013). The trend for drilling deeper and more complex
wells (Lukawski et al., 2014) is also a driver for automation as
an enabling technology, allowing for continued exploration of
difficult and mature reservoirs.

Following the demand of the drilling industry, high fidelity
simulators of the drilling process have been developed. Appli-
cations of these include training of drilling personnel and real
time decision support (Petersen et al., 2008; Rommetveit et al.,
2004). At the same time, automated control systems for con-
trolling various aspects of the drilling process have been devel-
oped and are gradually being accepted by the industry (Santos
et al., 2007).

Modern approaches to process monitoring, optimization and
control promise to enhance robustness and performance of such
automation through the merger of process knowledge encoded
in mathematical models with real-time measurements from the
process. By intelligently combining predictions from the math-
ematical model with information from multiple sensors one

∗Corresponding Author
Email address: ulf.jakob.aarsnes@itk.ntnu.no (Ulf Jakob F.

Aarsnes)

can estimate unmeasured quantities, optimize automatic control
procedures, predict future behavior, and plan countermeasures
for unwanted incidents. Such design techniques, often referred
to as model based estimation and control (Åström and Mur-
ray, 2010; Anderson and Moore, 1990), require a mathematical
model with the right balance between complexity and fidelity:
i.e. the complexity must be limited to facilitate the use of estab-
lished mathematical analysis and design techniques, while the
qualitative response of the process is retained.

Models that strike the right balance between complexity and
fidelity are sometimes referred to as fit-for-purpose models, and
have been employed in control (Stamnes et al., 2011a) and mon-
itoring (Willersrud, 2015) of drilling processes in one-phase
flow regimes. Obtaining such simplified models becomes sig-
nificantly more difficult for gas-liquid two-phase dynamics due
to the significant complexity and distributed nature of multi-
phase pipe-flow (Aarsnes et al., 2014b, 2016). This makes the
reduction to fit-for-purpose models for scenarios such as gas-
kick incidents, and underbalanced operations, challenging.

Consequently, several different approaches have been sug-
gested in the literature, ranging from using complicated high-
order numerical schemes with advanced multiphase-flow mod-
els to simplified low-order or black-box step response rep-
resentations. The present paper presents a review of these
models used for designing control and estimation/monitoring
algorithms of gas-liquid two-phase dynamics encountered in
drilling. The survey will focus on the models used and not the
methods in themselves.

1.1. Components of a simulation model

To structure the following discussion, it is useful to identify
the distinct components which make up a complete simulation
model. The three components are Mathematical structure, Clo-
sure Relations and the Numerical Scheme and they are summa-
rized in Table 1.
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Nomenclature

c Sound speed
m = α`ρ` Liquid mass
n = αgρg Gas mass
q Volumetric flow-rate
t Time, independent variable
v Velocity
v∞ Slip relation drift velocity
w Mass flow-rate
x Position, independent variable
C0 Slip relation profile parameter
F Frictional pressure loss
G Gravitational pressure loss
P Pressure
T Temperature
V Volume
α Volume fraction
β Bulk modulus
γ Adiabatic index
ρ Density
µ Chemical potential
J ,K ,M,H Relaxation coefficients

Subscripts
a Lumped annulus parameter
c At or exiting through the choke
d Lumped drill string parameter
i Interface
M Mixture
` Liquid phase
g Gas phase
bit Entering the annulus from the drill string
in j Injected into the drill string
res Entering the annulus from the reservoir

Abbreviations
DFM Drift Flux Model
BHP Bottom-Hole Pressure: pbh = P(0)
LOL-model Low Order Lumped-model
MPD Managed Pressure Drilling
ODE Ordinary Differential Equation
PDE Partial Differential Equation
UBD Under-Balanced Drilling
WHP Well-Head Pressure: pa = P(L)

Table 1: The three components of a complete simulation model
Mathematical Structure Closure Relations Numerical Scheme

• PDE or ODE

• Hyperbolic or Parabolic PDE

• Number of equations

• Stiffness

• Slip law

• Equation of State

• Frictional pressure loss

• Other source terms

• Numerical accuracy

• Numerical stability/robustness

• Implementation complexity

• Solution speed
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Figure 1: Schematic of the system under consideration.

The complexity of a model is mainly determined by its math-
ematical structure. This is the type and number of dynamical
equations needed to describe the model. Determining the math-
ematical structure of the model also determines, crucially in our
case, the mathematical tools and the model based estimation
and control algorithms which can be employed with it.

The closure relations that are used will necessarily depend on
the mathematical structure of the model. When a model is sim-
plified, the closure relations will often also have to be modified
to accommodate for the simplification, typically in such a way
as to retain the steady state profile. Closure relations can also
be chosen and tuned based on experiments or measurements,
and consequently, given a mathematical structure, the accuracy
of the model will mostly be determined by the value and form
of the closure relations chosen.

The final component to a simulation model is the numerical
scheme. This is the way the mathematical equations are approx-
imated in order for them to be solved numerically. The solution
procedures that can be utilized have varying degrees of accu-
racy and solution speeds. Crucially for our purposes are the
numerical stability, robustness and complexity in implementa-
tion of the scheme chosen.

1.2. A coarse classification and outline

To structure the paper we split the models found in the liter-
ature into the three broad categories according to their overar-
ching mathematical structure.

1.2.1. High fidelity models:
This category encompasses models which are designed to be

highly accurate and have a high degree of predictive power over
a wide range of application scenarios. They are often used for

training, analysis and planning of operations and are not created
for the application to a specific scenario or use with mathemat-
ical algorithms. They are thus not fit-for-purpose models.

1.2.2. Drift Flux Models (DFM):
We use this category to denote a set of distributed (i.e. PDE)

models which are very popular in the literature due to their rea-
sonable accuracy and relative simplicity compared to the high
fidelity models. They are essentially simplifications of these
models in that they require significantly fewer equations and
they can be rigorously derived from the high fidelity models
through the process of relaxation of dynamics explained in Sec-
tion 2.1. The DFMs have reduced predictive power compared to
High fidelity models, but high accuracy can be retained through
selection of closure relations adapted to the considered sce-
nario. Estimation and control results do exist for these mod-
els, although their distributed nature often makes these results
non-standard and limited to specialists.

1.2.3. Simplified ODE models:
This category refer to models which can be represented with

low order ODEs. This means that the models are unable to rep-
resent the full richness of dynamics inherent in distributed mod-
els, and consequently they are highly specialized with a limited
range of operation. Their simplicity, however, makes them very
well suited for the design of algorithms, often allowing for the
use of highly effective and well established design procedures.

1.2.4. Outline
This paper will consider each of these categories, review their

basic mathematical structure and their uses in control and esti-
mation applications. Then, in section 5 a brief review of numer-
ical schemes is presented. Finally, in Section 6, a simulation
study is performed to evaluate the ability of the models to qual-
itatively capture the dynamics of drilling scenarios involving
gas-liquid flow.

1.3. Note on the equations

The equations given in this paper to represent the models are
not exhaustive, but are meant to give a general idea of the model
properties and structure. The reader is referred to the specific
original literature for the full, rigorous, model representations.

2. High fidelity models

In one space dimension, the PDE formulation of dynamic
distributed models may be written in a highly general form

∂U
∂t

+ A(U, x, t)
∂U
∂x

= D(U, x, t)
∂2U
∂x2 + Q(U, x, t). (1)

Herein, each term affects the mathematical structure of the
model in its own unique way. In particular:

• U(x, t) represents the vector of unknowns, i.e. the inde-
pendent variables needed to represent the physical state at
each point in space and time. The dimension of the vector
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U depends on the level of detail and complexity we want
represented in the model. As the dynamical equations rep-
resent transport of conserved quantities in physical space,
the components of U would typically represent density,
momentum and energy. Through variable transformations,
the equations could also be expressed in terms of more di-
rectly observable physical quantities such as temperature
or pressure (Fjelde and Karlsen, 2002).

• A encodes information that propagates with a finite speed
across the computational domain, and represents transport
effects such as convection or momentum transfer through
pressure. The fundamental underlying physical structure
of the model is encoded here. Furthermore, this term has a
dominating effect on the the velocity of the high-frequency
waves in the system (Solem et al., 2015).

• D represents irreversible diffusive effects in the flow di-
rection, such as viscosity, or heat or mass diffusion. Loss
of information due to upscaling may be one mechanism
behind terms in this form. If the symmetric part of D is
positive definite, then D will have a stabilizing effect on
the system, acting more strongly on higher frequencies.

For the discretized equations used in practical simulations,
this term is often small compared to the artificial numerical
diffusion (Bruce Stewart and Wendroff, 1984).

• Q represents source terms, i.e. exchanges between the
state and the environment, or exchanges between separate
state variables at each point. Interactions with the environ-
ment may include friction terms, gravity terms and heat
transfer. Exchanges between state variables may include
heat, volume, mass and momentum transfer.

In the limit that Q acts infinitely fast, we obtain a reduced
model where the information represented by Q is incor-
porated into the matrix A (Flåtten and Lund, 2011; Lund,
2012). This model reduction, termed relaxation, is illus-
trated in Figure 2 where the Baer-Nunziato model (Baer
and Nunziato, 1986) is the starting point.

This term has a dominating effect on the velocity of the
longest wavelengths in the system (Solem et al., 2015).

2.1. The Baer-Nunziato model

The physical structure of a flow model is mainly determined
from the description of how the physical variables are trans-
ported, and the process to approach full thermodynamic equi-
librium.

Following the classical approach of Baer and Nunziato
(1986), we may then write the foundation for one-dimensional
two-phase flow modeling as a set of hyperbolic partial differen-
tial equations in the following form (Linga, 2015):

• Volume advection:

∂αg

∂t
+ vp

∂αg

∂x
= J(Pg − P`), (2)

Figure 2: The 4-dimensional hypercube representing the model hierarchy of
two-fluid relaxation models. Each vertex represents a unique model in the hier-
archy where the leftmost one is the seminal formulation of Baer and Nunziato
(1986). The edges correspond to relaxation processes in the variables p (pres-
sure), T (temperature), µ (chemical potential) and v (velocity). Models with a
v relaxation are typically referred to as Drift Flux Models. Taken from (Linga,
2015).

• Mass conservation:

∂

∂t

(
ρgαg

)
+
∂

∂x

(
ρgαgvg

)
= K(µ` − µg), (3)

∂

∂t
(ρ`α`) +

∂

∂x
(ρ`α`v`) = K(µg − µ`), (4)

• Momentum balance:

∂

∂t

(
ρgαgvg

)
+
∂

∂x

(
ρgαgv2

g + αgPg

)
− pi

∂αg

∂x
= viK(µ` − µg) +M(v` − vg), (5)

∂

∂t
(ρ`α`v`) +

∂

∂x

(
ρ`α`v2

` + α`P`

)
+ pi

∂αg

∂x
= viK(µg − µ`) +M(vg − v`), (6)

• Energy balance:

∂Eg

∂t
+
∂

∂x

(
Egvg + αgPgvg

)
− pivp

∂αg

∂x
= −piJ(P` −Pg)

+

(
µi +

1
2

v2
i

)
K(µ` − µg) + vpM(v` − vg) +H(T` − Tg),

(7)

∂E`

∂t
+
∂

∂x
(E`v` + α`P`v`) + pivp

∂αg

∂x
= −piJ(Pg − P`)

+

(
µi +

1
2

v2
i

)
K(µg − µ`) + vpM(vg − v`) +H(Tg − T`).

(8)
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Herein, the terms representing interactions with the environ-
ment and diffusive terms are not included. In the context of
(1), the left-hand sides of (2)–(8) contribute to the ∂tU + A∂xU
terms and the right-hand sides contribute to the Q term.

Furthermore, αk, ρk, vk, Pk, µk and Tk represent, respectively,
the volume fraction, density, velocity, pressure, chemical poten-
tial and temperature of each phase and the interface k ∈ {g, `, i},
and vp the volume advection velocity. However, the model is
equally valid regardless of whether g and ` represent gases, liq-
uids or solids.

The relaxation coefficients J ,K ,M and H are all non-
negative so as to induce

1. volume transfer towards the phase with the highest pres-
sure,

2. mass transfer towards the phase with the lowest chemical
potential,

3. momentum transfer towards the phase with the lowest ve-
locity and

4. heat transfer towards the phase with the lowest tempera-
ture.

The model has been extended to three phases, herein care must
be taken to ensure compliance with the second law of thermo-
dynamics (Hérard, 2007).

This highly general model is unnecessarily complex for the
drilling applications considered in this paper. Significant model
reduction is desirable, and one main path of achieving this
model reduction is the process of relaxation, where the dy-
namical equations representing non-equilibrium processes are
replaced by static equilibrium assumptions. For the Baer-
Nunziato model, such model reductions have been studied ex-
tensively in for instance (Flåtten and Lund, 2011; Linga, 2015;
Lund, 2012).

In this respect, a highly important and relevant concept is
the subcharacteristic condition (Chen et al., 1994; Solem et al.,
2015). Simply put, it states that every reduction of the model
through relaxation will reduce the velocity of information prop-
agation in the system, sometimes to a very large degree (Flåtten
and Lund, 2011; Lund, 2012). This effect must be considered
when evaluating the validity of simplified models for control
applications. Another main theme is the discarding of the en-
ergy equations, motivated by the assumption that temperature
transients have no significant effect on the macroscopic flow
dynamics on the time scale of interest. This fundamental sim-
plification will be described in more detail below.

2.2. Discarding the energy equation
Fundamental thermodynamics dictates that density is a state

function ρ(P,T ). In the context of the Baer-Nunziato model,
the pressure dynamics is normally dominated by the mass equa-
tions and the temperature dynamics by the energy equations. In
the limitH → ∞ of the Baer-Nunziato model, the energy equa-
tions may be replaced by one single energy equation describing
the evolution of the common temperature T = Tg = T`.

Further, there are many situation of interest where a temper-
ature distribution T (x, t) = T (x) is known (to sufficient approx-
imation) a priori. This can occur for instance when

1. The flow may be assumed to be always in thermal equilib-
rium with the environment.

2. The temperature boundary conditions do not change sig-
nificantly over time, and the heat exchange with the envi-
ronment is not sensitive to the flow transients.

3. The temperature is measured and can be treated as an ex-
ogenous variable.

If phase transitions are important for our application, the dy-
namics may easily be very sensitive to T (x, t), Otherwise, in
situations where any of 1.–3. are valid we may replace the en-
ergy PDE with the given approximate temperature distribution
T (x), and the density may now be obtained as

ρ(P,T ) = ρ(P,T (x)) = ρ(P, x). (9)

Herein, we remark that this simplification can at best be fully
valid only for slow dynamics. The sound speed (giving the
propagation velocity of pressure waves) is generally given as

c2 =

(
∂P
∂ρ

)
s

(10)

However, from (9) we see that the corresponding value c̄ in
models with no energy equations will be more akin to

c̄2 =

(
∂P
∂ρ

)
T
, (11)

and hence from fundamental thermodynamic stability

c̄ ≤ c. (12)

Hence, we may expect that reducing the model through discard-
ing the energy equation will tend to under-predict the velocity
of pressure propagation.

2.3. Examples from literature
High fidelity models used for flow assurance and produc-

tion design include the OLGA (Bendiksen et al., 1991) and
LedaFlow (Danielson et al., 2011) commercial simulators.
These are both 3-phase flow 1D models, imposing instanta-
neous pressure equilibrium in all phases. LedaFlow has the
option of solving separate energy equations for each phase, and
for both simulators the energy equations can be discarded as
described in the previous section.

LedaFlow also incorporates additional mass equations to al-
low for the possibility of the phases being dispersed in each
other.

Although not focusing on drilling applications, the commer-
cial real time multiphase flow simulator FlowManagerTM Dy-
namic (Holmås and Løvli, 2011) is worthy of mention. This
is a tool used for on-line surveillance and optimization of sub-
sea oil and gas production. The underlying model consists of
3 mass conservation equations (oil, gas and water), 1 total mo-
mentum conservation equation and 1 total energy equation.

Other high-fidelity multiphase flow simulators for drilling in-
clude WeMod, developed by the International Research Insti-
tute of Stavanger (IRIS) based on a R&D program started in the
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early 2000’s in collaboration with Petrobras (Rommetveit and
Lage, 2001), and a simulator due to Sintef Petroleum Research
(Bjørkevoll et al., 2010; Petersen et al., 2008).

Due to their complexity, the application of high-fidelity mod-
els to model based control and estimator design is limited to the
use with general, high order, numerical schemes. A promis-
ing application is the flow metering and estimation of states
and parameters in production based on indirect measurements.
This application is sometimes referred to as soft sensing, see
e.g. (Gryzlov, 2011; de Kruif et al., 2008; Lorentzen et al.,
2010). Herein, a popular approach is using so-called particle
filters, where an ensemble of simulations are performed in par-
allel with the uncertain states and parameters perturbed. This
ensemble is used to develop statistics of the uncertainties which
can then be combined with measurements to produce estimates.
This approach is still being refined with more sophisticated par-
ticle filters being applied to more complicated multiphase mod-
els (Luo et al., 2014; Lorentzen et al., 2014, 2015).

3. Drift Flux Models (DFM)

Probably the most widely used model in the literature on two-
phase flow in drilling is the 3-PDE drift-flux model

∂

∂t

(
αgρg

)
+
∂

∂x

(
αgρgvg

)
= Γ (13)

∂

∂t
(α`ρ`) +

∂

∂x
(α`ρ`v`) = −Γ (14)

∂

∂t

(
α`ρ`v` + αgρgvg

)
+
∂

∂x

(
α`ρ`v2

` + αgρgv2
g + P

)
= −F −G, (15)

where the source terms are: the mass transfer term Γ =

K
(
µ` − µg

)
often assumed zero, viscous pressure loss F and

gravitational pressure loss G = ρMg sin θ.
This model is equivalent to the four eqn. vpT node in Fig.

2 with, additionally, the energy equation discarded. The two
different fields for mass transport (13) and (14) are required
since typically the two phases are represented by two or more
different components1. This model may be obtained from the
Baer-Nunziato system by discarding the energy equations and
imposing velocity and pressure equilibrium. Herein, velocity
equilibrium does not necessarily imply vg = v`: Due to averag-
ing and external interactions, it is stated in a more general form
known as the slip relation:

vg − v` = Φ(U), (16)

i.e. the relative velocity between the phases is determined by
the local full flow configuration.

The slip relation is one of three closure relations needed to
complete the model.

1e.g. nitrogen and water are different components (Crowe et al., 2011).

3.1. Closure relations

When choosing closure relations for the DFM, two different
approaches are taken in the literature. The more complicated
approach, sometimes referred to as mechanistic models, pre-
dicts local flow regimes and then uses different correlations de-
pending on the regime predicted, see e.g. Fjelde et al. (2003);
Perez-Tellez et al. (2003). This typically entails solving implicit
relations using an iterative numerical procedure.

The alternative approach is to use flow-pattern independent
closure relations which allow a for simpler solution procedure.

3.1.1. Slip relation
For the case of two phase flow in inclined pipes, several flow-

pattern independent correlations have been suggested. Recent
comparisons of such correlations can be found in (Bhagwat and
Ghajar, 2014; Choi et al., 2012).

A highly simple correlation is the Zuber-Findlay slip law
(Zuber and Findlay, 1965), which determines the relative ve-
locity between the phases. Writing the mixture velocity as
vM = αgvg + α`v` the classical formulation is:

vg = C0vM + v∞, (17)

where C0 is called the profile parameter and v∞ the drift velocity
(Zuber and Findlay, 1965; Bhagwat and Ghajar, 2014). This is
most naturally interpreted in the context of bubbly flows.

A mechanistic approach for finding correlations, which con-
siders the annular geometry and upward flow encountered in
drilling, was developed by Lage and Time (2000); Lage et al.
(2000); Lage and Time (2002), which uses 5 different flow pat-
terns Bubble, Slug, Churn, Annular and dispersed bubble. This
approach was further studied by Perez-Tellez (2003); Perez-
Tellez et al. (2003) and employed on Iranian field data by
Ashena and Moghadasi (2010).

Closure relations for counter current flow was considered by
Taitel and Barnea (1983); Hasan et al. (1994).

3.1.2. Viscous pressure loss
A frequently used structure for the relation of viscous pres-

sure loss is

F = fρMvM |vM |, (18)

with f sometimes set as a constant friction coefficient depen-
dent on viscosity and flow geometry, and other times given by
the multiphase Reynolds number.

In mechanistic models (18) is used for bubbly flow while
other, modified, relations are used for other flow regimes (Lage
and Time, 2002).

3.1.3. Equation of state
When the energy equation have been discarded, the equation

of state is reduced to a relation between the principal variables
and the pressure. Assuming the conserved quantities n = ρgαg
and m = α`ρ` to be our principal variables, the simplest relation
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Figure 3: Flow pattern map for air/water of upward flow in an annulus, by Lage
and Time (2002).

available is obtained by using the ideal gas law and assuming
incompressible liquid

P =
nc2

g

1 − m
ρ`

, (19)

where cg, c` is the sound speed of the gas and liquid phase re-
spectively. With a compressible liquid, but still using the ideal
gas law, the relation becomes more involved. From (Evje and
Fjelde, 2002; Aarsnes et al., 2014b):

αg =
1
2
−

c2
G

c2
L
n + m +

√
∆

2ρL,0
, (20a)

∆ =
(
ρL,0 −

c2
G

c2
L

n + m
)2

+ 4
c2

G

c2
L

ρL,0, (20b)

P =


(

m
1−αg
− ρL,0

)
c2

L, if 1 − αg > ε

n
αg

c2
G, otherwise.

(20c)

3.2. Model range of operation
Some models have limited ranges of operation due to un-

boundedness introduced by simplifying assumptions: A model
assuming incompressible liquid becomes invalid when gas dis-
appears as the distributed pressure becomes undefined, see (19).

The slip relation can also limit the applicability of the model.
By inspecting (17) we see that

C0 <
1
αg

(21)

must be enforced. Representing the slip in annular flow regimes
has proven to be challenging Lage and Time (2002), and it is of-
ten recommended to use a two-fluid model (i.e. a model with-
out a relaxed momentum transfer) in such a case (Masella et al.,
1998).

3.3. Application to estimation and control

Despite its relative complexity, the DFM has seen some use
to state and parameter estimation.

The mechanistic model of (Lage et al., 2000; Lorentzen et al.,
2001) was used with an ensemble Kalman filter to tune coeffi-
cients in the slip-law and frictional pressure loss in (Lorentzen
et al., 2003, 2001), and for estimating reservoir parameters in
(Vefring et al., 2003). In Vefring et al. (2002) a similar ap-
proach was used, but with a least squares fitting procedure in
place of the ensemble Kalman filter.

A similar approach to reservoir characterization was in Ny-
gaard et al. (2007a) implemented using an Unscented Kalman
Filter (UKF). This was combined with a Nonlinear Model Pre-
dictive Control (NMPC) scheme to automatically control BHP
during UBD connections.

Results on the simpler Drift Flux Model, without flow
regime predictions, include using an Unscented Kalman Filter
in (Nikoofard et al., 2015), and an extended Kalman filter in
Bloemen et al. (2006) and Aarsnes et al. (2014a).

Finally, emerging results from the field of control and estima-
tion of hyperbolic systems are starting to reach a degree of so-
phistication that enables working with (linearized versions of)
the DFM directly (Di Meglio and Aarsnes, 2015). In Di Meglio
et al. (2014) an adaptive observer was designed that could es-
timate the states and a boundary reflection coefficient of a so-
called n + 1 hyperbolic system (n characteristics moving right
and 1 moving left), of which the DFM, (13)–(15), is an instance
(Di Meglio, 2011). The result was consequently applied to esti-
mating the reservoir pressure in UBD. In Di Meglio et al. (2013)
a controller was derived for the n + 1 system, which was gener-
alized to disturbance attenuation in (Hasan, 2014) and to n + m
systems in (Hu et al., 2015). Results to be appear present further
extensions such as estimating multiple boundary parameters si-
multaneously and only using topside measurements (Anfinsen
et al., 2016a,b).

3.4. Reduced Drift Flux model

In attempting to reduce the complexity of the two-phase flow
models, a particular approach has been proposed where the dis-
tributed pressure dynamics are relaxed, thus neglecting the fast
pressure waves (Di Meglio, 2011), while keeping the dynamics
of the slow gas propagation.

This approach was used by Taitel et al. (1989) where the re-
sulting model was described by a single transient PDE of the
liquid continuity, obtained by assuming incompressible liquid,
and a set of steady state relations. The closure relations are
flow regime dependent, making the model mechanistic. The ap-
proach was expanded upon by Taitel and Barnea (1997), where
the assumption of incompressible liquid was dropped, yielding
two transient equations. A similar model was investigated by
Masella et al. (1998), here called the No Pressure-Wave (NPW)
model. In this particular incarnation, the resulting equations are
(13)–(14) but in place of (15) the static relation

∂P
∂x

= −
∂α`ρ`v2

` + αgρgv2
g

∂x
− F −G, (22)
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is used to relate the steady-state pressure drop to the accelera-
tion term plus a frictional and gravitational source term.

Further, the DynaFloDrill (Rommetveit et al., 2005) simula-
tor is based on this approach, solving for 7 mass equations (for
oil, water, gas, mud and cuttings) coupled to a static pressure
balance where convective momentum terms are neglected.

A similar model is used by Choi et al. (2013), except that here
the steady-state pressure drop is found from a fitted correlation
given as

2
ρ`(α`v`)2

∂P
∂x

= −
2G

ρ`(α`v`)2 + A
(
α`ρ`v`
αgρgvg

√
ρg

ρ`

)B
, (23)

where A and B are tuning coefficients.
A 1-equation PDE, coupled with a ODE, based on the La-

grangian formulation of (Gavrilyuk and Fabre, 1996) is used in
(Aarsnes et al., 2015) to estimate reservoir parameters during a
kick incident. An alternate version of this model is derived in
(Ambrus et al., 2015), where the idea of (Taitel et al., 1989) is
expanded upon to derive a PDE-ODE model on the form

ṗa =
βa

Va

(
qin j − qc + qres + A

∫ L

0
EGdx

)
, (24)

EG =
αg(1 −C0αg)α`

γ

1
P

(
∂P
∂t

+ vg
∂P
∂x

)
. (25)

∂αg

∂t
+ vg

∂αg

∂x
= EG, (26)

The ODE, (24), represents the slow pressure mode of the annu-
lus with the last term of (24), given by (25), accounting for the
total gas expansion in the well. In (25) γ is the adiabatic index.
The gas propagation dynamics is given by (26). The pressure
profile must then be given by a closure relation, and approaches
such as (22) or (23) can be used.

4. Simplified ODE models

In this section we consider ODE-models which do not at-
tempt to capture the distributed nature of the system through
high order spatial discretizations, but lump the dynamics into
one, or a few, control volumes.

4.1. 1-phase model

A popular, simple, liquid only model of the drilling hy-
draulics from the literature is due to (Kaasa et al., 2012), and
is given by

ṗa =
βa

Va

(
qbit + qres − qc

)
, (27)

ṗd =
βd

Vd

(
qin j − qbit

)
, (28)

q̇bit =
1
M

(
pbd − pad

)
, (29)

pbd ≡ pd + Gd − Fd(qbit), (30)
pad ≡ pa + Ga + Fa(qbit). (31)

Figure 4: Comparison of the transfer function of a distributed PDE model (i.e.
the DFM (13)–(15) with liquid only) vs the 1st order approximation (32), with
input qc and pbh (normalized amplitude). The effect would be similar when
discarding the distributed pressure dynamics in the 2-phase case, i.e. comparing
the DFM (13)–(15) with the reduced DFM (24)–(26).

Here M is essentially a tuning constant giving the relaxation
time of the pressure between the control volumes representing
the annulus a and drill-string d. For many applications, how-
ever, the volume of the drill-string can be assumed small which
allows for the further approximation

ṗa =
βa

Va

(
qp + qres − qc

)
. (32)

This is equivalent to the pressure dynamics in the reduced DFM
(24), i.e. when the gas dynamics have been discarded.

This formulation and variations thereof have, due to their
simplicity, seen a wide range of applications as a dynamic
model for both estimation (Stamnes et al., 2011a,b; Kaasa et al.,
2011), fault detection (Willersrud et al., 2013, 2014a,b) and
control (Godhavn, 2011; Asgharzadeh Shishavan et al., 2015).
As mentioned, the model does not capture two-phase flow, but
has still been applied to kick detection applications (Willersrud
et al., 2015; Zhou et al., 2011).

The effect of ignoring the spatially distributed dynamics for
this model was studied in (Aarsnes et al., 2012), where it is
noted that models of the same type (i.e. lumped models) with
a higher order spatial discretizations can be obtained, as sug-
gested in (Landet et al., 2012, 2013). The deciding factor for
whether the distributed pressure dynamics are required is the
frequency range for which the model is required to be valid.
This can be observed in Fig. 4, which compares the transfer
functions of a PDE representation of the pressure dynamics vs
the 1st order ODE of (32). This comparison is also broadly
valid for 2-phase flow, i.e. in the comparison between the full
and the reduced DFM.

4.2. Lagrangian model
An interesting approach to representing the effect of Gas-

Liquid flow of a single bubble in the annulus, while still re-
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taining the simplicity of an ODE model, is the Lagrangian for-
mulation proposed by Hauge et al. (2013); Hauge (2013) (cf.
Gavrilyuk and Fabre (1996); Aarsnes et al. (2015)). Here the
dynamics are given through the states L1,VG representing the
bubble position and size:

L̇1 = −
2(qc − qbit)

Apαdist
+ vg (33)

V̇G =qc − qbit. (34)

where the first term in (33) accounts for the gas expansion with
αdist being a distribution parameter set to 0.21, and vG found
from a slip law. Equation (34) is obtained by assuming the
liquid incompressible.

This model was shown to be adept at tracking a bubbles po-
sition and expansion in a kick scenario, and was used to esti-
mate these values in the paper. However, due to the Lagrangian
formulation tracking a single bubble, it is unable to handle the
continuous influx encountered in underbalanced operations.

4.3. Low order lumped models
A range of low order lumped models have seen success in

modeling for control of severe slugging in two-phase produc-
tion risers, such as Di Meglio et al. (2009); Eikrem et al. (2008);
Esmaeil and Skogestad (2011); Storkaas et al. (2003).

Such models have been applied to UBD in the literature, in
particular the model suggested by Nygaard and Nævdal (2005),
which shares several features with the “slugging models”. Us-
ing as states n,m representing total gas and liquid mass in the
drill-string and annulus denoted by the subscripts a, d respec-
tively, the model is given as:

ṅd =wg,in j − wg,bit (35)
ṁd =w`,in j − w`,bit (36)
ṅa =wg,bit + wg,res − wg,c (37)
ṁa =w`,bit + w`,res − w`,c (38)

where the mass-rates wG,bit,wL,bit are found through considering
a pressure balance over the bit. The model lumps the spatial
dynamics into a drill string (35)–(36) and an annular (37)–(38)
control volume, but is unable to represent the gas distribution
profile within the control volumes.

In (Nygaard and Nævdal, 2005) this model was used to tune a
PI controller for use in a connection scenario during UBD, and
a similar model with the drill string dynamics discarded (thus
retaining only (37)–(38)) was applied to estimation in (Nikoo-
fard et al., 2014a,b) and control in (Nikoofard et al., 2013).

4.3.1. ODE-models from identification techniques
Due to the high level of complexity encountered when de-

riving two-phase models from 1st principles, using black box
or step response models are an attractive approach, The down-
side is that it might be difficult to identify and handle situations
when the two-phase system exhibit changes in qualitative re-
sponse, see Aarsnes et al. (2016).

Model identification techniques were used to obtain 1st-order
delay models for control of UBO using MPC by Pedersen and

Godhavn (2013), with extensions in Pedersen et al. (2015). This
is similar to the technique used in (Nygaard et al., 2007b) where
a NMPC controller was designed based on identified time con-
stants. Here it was concluded that this approach was signifi-
cantly simpler to implement and analyze than the NMPC con-
troller of (Nygaard et al., 2007a), designed using the full DFM,
and, furthermore, outperformed this controller in the scenario
considered.

The approach of identifying time constants of the response
was also taken by Carlsen et al. (2013) where the identification
was used to design automatic controllers evaluated in dynamic
kick handling scenario.

5. Numerical Schemes

For control and estimation purposes, an essential feature of
the simulation is the numerical procedure to resolve the under-
lying model. The choice of numerical scheme may influence
the accuracy, stability and computational speed of the ultimate
predictions.

Numerical methods in use typically build on established
methods for classical CFD, and may be divided into two main
lines:

• Pressure-based methods. These are typically variations
of the SIMPLE method (Patankar and Spalding, 1972),
where the pressure is solved for as a primary variable.
Herein, a staggered grid is typically used, where the pres-
sure is resolved at the cell centers and velocities are re-
solved at the cell interfaces.

• Density-based methods (Roe, 1981). These methods typi-
cally guarantee mass conservation directly, and commonly
formulated on the simpler collocated grids. However,
they are prone to introducing pressure oscillations for low
Mach number flows (Guillard and Viozat, 1999).

Methods may be further classified into explicit (forward Eu-
ler time discretization) and implicit (backward Euler time dis-
cretization) schemes.

Explicit schemes are simpler to implement than implicit
schemes, and their fast computation time per iteration fa-
cilitates using smaller time-steps making them well suited
for representing fast dynamics such as pressure waves. Ex-
plicit schemes, however, are typically bound2 by the Courant-
Friedrichs-Lewy (CFL) condition limiting time-steps according
to:

|λ|
∆t
∆x
≤ 1, (39)

where ∆t is the time step ∆x is the grid cell-size and λ is the
velocity of the characteristic being resolved. This restriction is
very limiting in the case of multi-phase flow since ∆t must be
designed to allow for the worst-case value of λ which in most
cases is the sound velocity of liquid ∼ 1000 m/s, much greater

2There are exceptions known as explicit large time step schemes.
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than the other transport phenomena of interest (Lorentzen and
Fjelde, 2005).

Consequently, when computational efficiency is essential,
implicit schemes are normally superior due to their potential for
large time steps. An alternative is the semi-implicit schemes
which resolve the slow characteristics, related to mass propa-
gation, explicitly while the fast pressure characteristics are re-
solved implicitly.

Both the OLGA (Bendiksen et al., 1991) and
LedaFlow (Danielson et al., 2011) numerical schemes are
pressure-based and implicit. The FlowManagerTM scheme
due to Evje and Flåtten (2006); Holmås and Løvli (2011)
is essentially a density-based implicit method, incorporating
some ideas from the classical pressure-based schemes. We-
Mod, developed by IRIS, uses a semi-implicit scheme with
a slopelimiter technique which can be categorized as a finite
element pressure-based method (Lorentzen and Fjelde, 2005).

Among the explicit schemes, the density-based AUMSV
scheme (Evje and Fjelde, 2002) has proved useful for the drift-
flux model (Udegbunam et al., 2014), as it provides an efficient
combination of simplicity, accuracy and robustness. Conse-
quently it is used in the StraumeTM Hydraulic Simulator de-
veloped by Kelda Drilling Controls (2015).

6. Simulation Study

In this section we will attempt to evaluate and compare the
ability of the models covered in the preceding survey to quali-
tatively recreate the dynamics of three different gas-liquid flow
scenarios encountered in drilling. The parameters are identi-
cal over the three scenarios except for the parameter changes
indicated in Table 3.

6.1. Models used

In the simulations study, a total of 6 models are used for the
kick scenario and 5 for the two UBD scenarios. These are sum-
marized in Table 2. Here we use OLGA as reference to illustrate
the dynamics that we would like to recreate with the simpler
models.

At this point we again refer to Table 1 and note that we
are only investigating the ability of the different mathematical
structures represented to capture the qualitative transient behav-
ior of the scenario. That is, we do not evaluate quantitative per-
formance of the models, as this is mainly determined by which
closure relations are used and these are beyond the scope of this
paper.

6.2. Scenario 1: Dynamically handled gas kick

In this scenario, see Fig. 5 (a), a well is drilled using MPD
at BHP = 260 bar when a high pressure zone of 270 bar is en-
countered. This causes a gas influx for the next 10 minutes,
at which point the choke opening is decremented, increasing
back-pressure and attenuating the kick. The gas is then circu-
lated out.

6.2.1. Model performance
The drift flux models, Fig. 5 (b), are able to give a good quali-

tative representation of the kick incident. It is unclear, however,
how to enable the reduced DFM to capture a shut-in incident
with liquid back-flow. This can limit the applicability of this
model in some instances.

The LOL model fails due to its inability to account for the
gas position as it percolates through the well, see Fig. 5 (c).
The Lagrangian model is able to amend this by using a state
to track the position of the gas bubble. This model work well
for single bubble dynamics, i.e. when the duration of the influx
is limited, however, it stops working when the gas reaches the
choke.

Finally, the 1-phase model does not include 2-phase dynam-
ics and so only captures the changes in flow-rate and choke
opening. We note that this might still be enough for certain con-
trol applications, although one has to handle the large changes
in the effective bulk modulus that then occurs when gas enters
the well.

6.3. Scenario 2: UBD connection

This scenario recreates the dominating dynamics of a con-
nection in an underbalanced well by ramping down the liquid
injection rate, keeping it at zero flow for 20 minutes, and then
ramping it back up again, see Fig. 6 (a). This causes the gas in
the well to start replacing the liquid causing lower bottom-hole
pressure and increased gas influx consequently resulting in an
increase in the WHP.

6.3.1. Model performance
Again we conclude that the drift flux models show satisfac-

tory performance, see Fig. 6 (b). The majority of the discrepan-
cies that can be observed between the high-fidelity models and
the DFMs are due to difficulty to accurately replicate the well-
head pressure resulting from the highly varying multi-phase
flow-rates through the choke.

Due to the inability of the lumped model to capture the gas
distribution accurately, the hydrostatic pressure difference over
the well had to be significantly modified, see Fig. 6 (c). A rea-
sonable closure relation to deal with this issue can likely be de-
veloped with some effort. Given that this is fixed, however, the
LOL model gives a reasonable representation of the response of
the bottom-hole pressure, and consequently the increased gas-
influx and its corresponding increase of WHP.

6.4. Scenario 3: UBD operating envelope

This scenario is inspired by the fact that an underbalanced
gas-well exhibits very different dynamics when operating at dif-
ferent draw-downs, see (Aarsnes et al., 2016). At 2 hour inter-
vals the choke opening is decremented and the well allowed to
reach steady-state. As the wells nears the balance point, the
WHP exhibits a characteristic inverse response, and then goes
overbalanced toward the very end of the simulation, see Fig. 7
(a).
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Table 2: Ability of models used in the simulation study to qualitatively represent dynamics in given scenario.
Scenario Suitability

Model Equations Reference Scenario 1 Scenario 2 Scenario 3
High fidelity models:
OLGA - (Bendiksen et al., 1991) Reference model
Drift flux models:
Full DFM (13)–(15) (Lage et al., 2000) Good Good Good∗

Red DFM (24)–(26) (Ambrus et al., 2015) Good† Good Good∗

ODE models:
LOL mod (35)–(36) (Nygaard and Nævdal, 2005) Poor Fair∗ Fair∗

1-ph mod (32) (Kaasa et al., 2012) Poor Poor Poor
Lagrangian (33)–(34) (Hauge et al., 2013) Good N/A N/A

∗Requires extra modifications to closure relations to fit specific scenario.
†Difficulty with shut-in and liquid back-flow.

6.4.1. Model performance
In this scenario the DFMs give a largely correct representa-

tion of the behavior, and they are able to capture the qualitative
effects of the different operating regimes (Aarsnes et al., 2016),
see Fig. 7 (b):

1. Intuitive regime
2. Non-intuitive regime
3. Unstable/slugging regimes close to the balance point.
4. Overbalanced regime.

There is a discrepancy, however, in regard to at which points
the qualitative response of the models change. This is deter-
mined in large part by the closure relations, hence these should
be tuned/adapted to the observed response or selected with care.

The lumped model is also able to represent the difference
between the intuitive and non-intuitive response, but again the
pressure drop over the well requires tuning to obtain this, see
Fig. 7 (c).

7. Conclusion

This paper have considered the topic of obtaining models
representing gas-liquid flow dynamics encountered in drilling
for the purpose of model based estimation and control design.
We have used the framework that a complete simulation model
is made up of a mathematical structure, closure relations and a
numerical scheme, and argued that while the qualitative behav-
ior of the model to a large degree is determined by the math-
ematical structure, the quantitative accuracy is primarily given
by the closure relations.

For model based controller and estimator design it is desir-
able to have simpler models than what is obtained from general
1st principle considerations. Significant simplifications neces-
sarily entail removing equations, thus altering the mathematical
structure. This can be interpreted physically as imposing instan-
taneous equilibrium of certain dynamics, which yields static re-
lations in place of the dynamic equations removed.

Simplifications reviewed in this paper employed imposing
equilibriums:

Figure 8: Relation between the models considered in this paper.

• Between two phases: interphasic relaxation.

• Between two or more spatial locations: lump dynamics.

• Overall: discard dynamics.

Using these processes one can extend the hierarchy of relax-
ation models derived from the Baer-Nunziato model, shown in
Fig. 2. Specifically, the models considered in this paper follows
the simplification processes as shown in Fig. 8.

The literature survey combined with a simulation study that
was performed indicates that quite significant simplifications
can be undertaken without removing essential qualitative be-
havior required to represent two-phase drilling dynamics. The
optimal blend between accuracy and simplicity for several ap-
plications seems to be somewhere in between the classical 3
PDE drift flux model, and the lumped ODE models. The re-
duced drift flux model that has seen renewed interest in recent
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years is consequently very promising.
The main challenges to be dealt with in future work is to

adapt closure relations to simplified models and investigate how
these can be effectively combined with estimation techniques.
Dealing directly with PDEs for controller and estimator design
in a robust manner also remains a challenge due to the com-
plexity of most such proposed solutions.
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Table 3: Simulation scenarios
Scenario 1: MPD gas kick Scenario 2: UBD connection Scenario 3: UBD operating envelope

Time: Reservoir- Choke-
Pressure: opening:

0 minutes 200 bar Z = 6%
40 minutes 270 bar Z = 6%
50 minutes 270 bar Z = 3%

Time: Rig pump:
0 minutes qL = 13.33kg/s

120 minutes qL = 0kg/s
140 minutes qL = 13.33kg/s
240 minutes qL = 0kg/s
260 minutes qL = 13.33kg/s

Time: Choke opening:
0 minutes Z = 20%

120 minutes Z = 12%
240 minutes Z = 8%
360 minutes Z = 5%
480 minutes Z = 3.5%

(a) (b) (c)

Figure 5: Pressure trends for Scenario 1.

(a) (b) (c)

Figure 6: Pressure trends for Scenario 2.

(a) (b) (c)

Figure 7: Pressure trends for Scenario 3.
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