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Abstract—We present a framework based on machine learning
for reducing the problem size of a short-term hydrothermal
scheduling optimization model applied for price forecasting. The
general idea is to reduce the optimization problem dimensions by
finding patterns in input data, and without compromising the so-
lution quality. The framework was tested on a data description of
the Northern European power system, demonstrating significant
reductions in computation times.

Index Terms—Power system economics, Machine learning,
Linear programming.

I. I NTRODUCTION

A. Scope

Electricity markets in most regions of the world will see a
higher share of generation from intermittent and renewable
energy sources in the future. Short-term uncertainties are
increasingly likely to impact system operation, which in turn
will impact the volatility of electricity prices. Fundamental
electricity price forecasting models will thus benefit from a
higher level of technical detail and a finer time-resolution to
capture the volatility and provide accurate forecasts.

With increased model complexity and finer time-resolution,
the computational times of fundamental market models will
increase. This work investigates how the complexity of the
short-term hydrothermal scheduling (STHTS) model presented
in [1] can be reduced through machine learning (ML). By
using ML to exploit patterns in the input data, one can reduce
the size of the optimization model before solving it, and thus
save computation time.

B. Literature Review

The use of fundamental optimization models for forecasting
power prices is a well-established practice in many power
markets [2]–[4]. The fundamental models serve to explain
market prices from the marginal generation costs, without
necessarily representing all details of the underlying market
structure. Several articles have explored the use of ML in
electricity price forecasting, and a recent overview is given
in [5]. The models based on ML are mainly concerned with
statistical modelling of consumer prices and not fundamental
modelling approaches. ML has also been extensively used in
energy planning models for forecasting energy demand and
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consumer load [6]. An extensive literature review of long-
and mid-term electricity price forecasting models is provided
in [7].

Several recent works have proposed techniques for reducing
the electricity market problem size in the temporal dimen-
sion [8]–[10]. In [8] an approach to aggregate time steps
based on minimizing the sum of absolute gradients of the
residual load is presented. The authors in [9] analyze the
input data of an electricity market model to dynamically
identify a time-step aggregation that has limited impact on
the optimization results. A method based on hierarchical clus-
tering of consecutive hours according to conventional distance
measures is proposed in [10]. Problem size reduction in the
spatial dimension has been investigated for decades, i.e., by
aggregating detailed hydropower plants and reservoirs into
equivalent representations [11]–[13]. Automized procedures
for such aggregation has been proposed by [14], [15]. To this
end, we note that little work has been reported oncombining
ML and fundamental market modelling to arrive at simplified
fundamental optimization models.

C. Contribution

This work is a summary of the M.Sc. thesis in [16]. We
study a STHTS scheduling model based on linear program-
ming (LP) and present a framework for reducing the LP
problem sizes. For a given LP problem instance, low-impact
constraints are identified and used as target data to train a ML
model. The framework was tested using an artificial neural
network (ANN) to predict low-impact constraints, based on
input data on inflow, wind power production and demand. The
predicted constraints were then removed, and the reduced LP
problems were solved to obtain the price forecast.

More than 10000 LP problems were generated by a STHTS
model in [1] and studied by using the proposed framework. It
was found that the average computation time can be reduced
by 55%, while the mean percentage error in total system cost
was 0.14%.

II. M ODEL AND INPUT DATA

A. STHTS Model

This section provides a brief mathematical description of
the STHTS model, for a more detailed description, see [1],
[17]. The model finds the optimal short-term operation of
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a hydrothermal system, provided that all marginal costs and
system parameters are perfectly known for the next 24 hours.
An hourly time-resolution is used. The model is formulated
as an LP problem in (1),

min c⊺x (1a)

Ax = b
(

λ
)

(1b)

x ≥ 0 , (1c)

wherec is the cost vector,x the vector of decision variables,
A the coefficient matrix, andb the vector of constraint right-
hand side parameters. In this work we are primarily interested
in the price vectorλ. The objective (1a) is to minimize the
costs of operating the system, mainly comprising the thermal
generation cost, the purchase of power and curtailment of
price-inelastic demand. A variable approximating the expected
future cost of operating the system as a function of water
stored in the reservoirs is also included [18].

The major constraints per time step (1 hour) represented in
(1b) are listed below:

• Hydropower reservoir balances, including detailed water-
course topologies

• Power balances for each price zone, where exchange
between zones is limited by grid topology and capacities

• Start-up costs on thermal power plants
• Ramping constraints on HVDC cables
• Benders cuts approximating the future cost function

All measures for efficiency of the problem reduction dis-
cussed in the remainder of this work relates to the cost of
operating the system (c⊺x). Thus, we make the rather strong
assumption that if the optimal cost does not change much when
reducing the LP model, prices will not change much either.

B. Data

We applied the STHTS model on a set of data instances
derived from a description of the Northern European power
system, as illustrated in Fig. 1. The dataset comprises more
than 1000 hydropower stations. A detailed description of an
updated version of this dataset is provided in [19].

Apart from the static data description, time-varying data of
load, inflow and wind power was created as follows:

• Load with hourly time-resolution was generated based
on common power consumption pattern, and then ad-
justed to historical temperature data.

• Inflow with daily time-resolution was obtained from
historical records.

• Wind power with daily time-resolution was obtained
from historical records.

III. M ETHODOLOGY

The optimal solution of the LP problem (1) will be located
at an extreme point of the feasible region. The feasible
region takes the form of a convex polyhedron defined by
the constraint set (1b)-(1c). Both the simplex and the dual
simplex algorithms iterate through a subset of the edges of

Fig. 1. Illustration of price areas and system boundaries in case study. Darker
(blue) color indicates more detailes system representation.

the feasible region, until an optimal solution is found. By
removing constraints that do not constrain the optimal solution,
the overall computational complexity will in most cases be
reduced.

How can we know if certain constraints do not significantly
impact the optimal solutionbefore solving the optimization
problem? Most LP solvers have pre-processing functionality
to remove redundant constraints before solving the problem.
We assume this step has already been conducted. In addition,
for our problem described in the previous section, some
types of constraints can easily be removed a priori based
on problem-specific knowledge. As an example, reservoir
balances for large reservoirs can often be omitted. Typically,
these reservoirs start the day with volumes well within the
allowed boundaries and cannot possible reach their boundaries
within the day. In this work we go a step further, using
ML to remove constraints that are likely not to contribute
significantly to the cost of optimally operating the system.
The methodology consists of a problem size reduction method
described in Section III-A, a constraint classification scheme
described in Section III-B and finally the ML method based
on ANN described in Section III-C.

A. Preparing Training Data with a Genetic Algorithm

A Genetic Algorithm (GA) was used to provide the ML al-
gorithm with training data, in the form of reduced LP models.
We introduced a binary variable to represent each constraint
in (1b), and let the GA control if the constraint should be
included or not. After fixing these binary variables, a modified
set of constraints replaces the original constraints in (1b)
before solving (1). The modification consisted in introducing a
slack variable for each of the deactivated constraints. The GA
was implemented using DEAP, which is a framework written
in Python for performing evolutionary computations [20].
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Fig. 2. Pareto front obtained from the GA model reduction.

Fig. 2 illustrates the Pareto front, mapping the minimum
deviation in system cost, i.e. the objective value in (1a), for
a given number of constraints. After running the GA, we
are left with a large number of LP models (or set of active
constraints) along the Pareto front. These have now been
efficiently reduced in the two considered dimensions.

By analyzing the type of constraints being removed, we
can also obtain important insight on the importance of certain
constraint types. As an example, the majority of the removed
constraints were water balances for larger reservoirs. As men-
tioned earlier, this particular type of constraint can also be
removed a priory. This was done in the circled point with
zero cost deviation in Fig. 2.

B. Constraint Classification

One challenge in predicting the constraints that can be
removed is the large number of individual constraints that
must be classified. The STHTS problem typically has several
million constraints. Creating a multi-label model, with each
label representing a constraint, is challenging both from a
computational and statistical point of view. To overcome this
problem, we split the label-space into smaller parts, creating
classification models for specific types of constraints. In this
work, the following six constraint labels were used:

• Water balances
• Discharge balances
• HVDC cable ramping
• Reservoir bounds
• Bypass bounds
• Discharge bounds
The major advantages of making label clusters are the gain

in computational speed and the interpretability of the results.
On the negative side, one runs the risk that relations between
different parts of the original model may not be discovered by
the ML model.

In this work, several simplifications were made to handle
the vast amount of data. First, the LP models were simplified
assuming imports and exports of power from exogenous
markets as constant values, and that constraints on bypass and
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Fig. 3. Flow chart illustrating the use of ML to reduce LP size.

reservoir were not subject to seasonal changes. Thus, only
the right-hand sides of the water- and power balances were
allowed to vary with time, and none of the variable bounds
were changed. When training the model, only variations in
inflow, load and wind power were considered, as discussed in
Section II-B.

C. Using ML to Reduce Problem Size

An ML model based on ANN was trained to find patterns
that can inform when constraints should be deactivated. The
framework for integrating optimization and ML is illustrated
in Fig. 3.

The STHTS model formulation for a given time instance
serves as a starting point. Subsequently the GA described in
Section III-A is run to create training data. The targets used for
training the ML model are binary vectors indicating whether
a constraint is deactivated or not. The targets were computed
in two consecutive steps:

1. Solving the LP problem, and then evaluating the dual
values to find which constraints can be removed.

2. Use the proposed GA to reduce the problem size even
further.

Step 1 was found necessary from a computational perspec-
tive, to reduce the size of the population to be evaluated by
the GA. We note that the importance of conducting step 1
depends on the compactness of the initial model formulation.

The same input data is provided to the STHTS and the
ML model, as illustrated in Fig. 3. Thus, the ML model
identifies constraints that can be deactivated independently of
the solution from the STHTS model. Based on the information
gained from the ML model, the LP problem is reduced before
being fed to the LP solver.

The ANN model was implemented with Keras [21] and
TensorFlow [22]. The main goal is to find the accuracy
of the reduced LPs suggested by the ML model, and the
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corresponding change in computational time. The accuracy
was measured as the mean absolute error in system objective
value, and the change in computational time as the percent
deviation between solution times of the initial and the reduced
LP problem.

Before training the model, the data were randomly shuffled,
and 10% of the data was reserved as a test set to be used for
evaluating the performance of the final model. The remaining
data were further split into 4 equally sized folds to be used
for cross-validation during the training of the model.

The ANN was made with 4 fully connected neural layers.
The data were first fed into 3 intermediate neural layers
that used a rectified linear unit activation defined asf(z) =
max(0, z). The intermediate layers had up to 2 times more
units than the number of input units to ensure that the model
could be able to capture sufficient structure in the underlying
data. The output layer used the sigmoid activation, given by
σ(z) = 1/(1+exp(z)), and yields likelihoods for which class
each label belong to. In addition, dropout layers with a dropout
rate of 0.5 were placed between each neural layer to combat
overfitting [23]. A dropout rate of 0.5 means that half of the
inputs to the next layer are chosen at random and set equal
to zero, which forces the model to learn redundant patterns,
creating a more robust model.

The loss function that was optimized during training is
based on binary cross-entropy. To further combat overfitting,
we used L2 regularization in each neural layer. The loss-
function is optimized with the RMSProp optimizer [24], which
improves upon earlier stochastic gradient descent methods.

IV. CASE

A. ML performance

Fig. 4 shows graphs of the receiver operating characteristics
(ROC) for the 6 constraint labels when applied to the dataset.
The figure shows both the micro and macro-averaged curves,
that are obtained by averaging the true and false positive rates
of each label. The diagonal straight dotted line indicates the
expected performance over time by randomly guessing each
label. The micro-averaged ROC curves for all 6 models in
Fig. 4 tells that the model is able to predict the most common
labels quite well, with micro-averaged area under the curves
(AUC) scores ranging from 0.86 to 0.94.

In Fig. 5, the total system cost for the original and the
predicted model are presented. At low system costs, the
modified model underestimates the system costs, indicating
that the false positive ratio is too high and that too many
constraints have been removed. When the system costs are
higher, the system costs of the reduced models deviate little
from the system costs of the original problems. We did not
further investigate the reasons for this systematic difference.

Fig. 6 shows the changes in computation time and the
number of Simplex iterations when reducing the LP problem
size. The computation time is measured in deterministic ticks,
which is a unit provided by CPLEX to measure the workload.
The average computation time was reduced by 55%. Although
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Fig. 4. ROC curves related to the test performance of the ML models. The
solid curves are the micro averages, and the dashed curves are the macro
averages.
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Fig. 5. Scatter plot showing the costs of the original problem, and of the
corresponding reduced problem (after deactivating reservoir balances and
cable constraints as suggested by the ML model). The test set consist of
randomly selected daily problems.
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Fig. 6. The distribution of computation times (left) and the number of
iterations (right) for the original and the reduced problems. The black boxes
inside the plots describe the interquartile range, horizontal bars indicate the
mean values.

the computation times are reduced, the average number of
Simplex iterations increased by 12%.

V. CONCLUSIONS ANDFUTURE WORK

We presented a ML-based framework for problem size re-
duction of a short-term hydrothermal scheduling optimization
model. On a general note, designing efficient mathematical
models is an art, and most models have room for improvement.
Some of these improvements can be harvested through careful
model design, including only variables and constraints that are
strictly necessary. Moreover, domain knowledge can be used to
include constraints only when needed (relaxation). Still, after
such improvements, this work demonstrates ample capability
of problem reduction through ML without significantly reduc-
ing the solution quality.

Finally, we would like to point out some possible paths
worthwhile further exploration:

• Rigorous testing and verification of the type and number
of classes used in the multi-label classification problem.

• We applied the objective function value as the perfor-
mance measure for the ML, while the model is mainly
used for price forecasting. Using information from the
obtained price forecasts as the performance measure
seems like a natural extension.

• Other ML algorithms can be applied, as discussed in [16].
• The STHTS is generally nonconvex and is often cast as

a mixed integer programming (MIP) problem. Reducing
the number of constraints in a MIP problem does not
necessarily lead to lower computation times. Thus, the
framework design needs to be revisited if targeting MIP
problems.
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management, Zürich, Switzerland, 1998.

[3] C. Weber,Uncertainty In The Electric Power Industry: Methods And
Models For Decision Support, 1st ed., ser. International Series in
Operations Research & Management Science. Springer, 2004.

[4] A. Helseth, G. Warland, and B. Mo, “A Hydrothermal Market Model
for Simulation of Area Prices Including Detailed Network Analyses,”
International Transactions on Electrical Energy Systems, vol. 23, no. 8,
pp. 1396–1408, 2013.

[5] J. Nowotarski and R. Weron, “Recent advances in electricity price
forecasting: A review of probabilistic forecasting,”Renewable and
Sustainable Energy Reviews, vol. 81, pp. 1548–1568, 2018.

[6] K. B. Debnath and M. Mourshed, “Forecasting methods in energy
planning models,”Renewable and Sustainable Energy Reviews, 2018.

[7] F. Ziel and R. Steinert, “Probabilistic mid-and long-term electricity price
forecasting,”Renewable and Sustainable Energy Reviews, vol. 94, pp.
251–266, 2018.

[8] D. vom Stein, N. van Bracht, A. Maaz, and A. Moser, “Development
of Adaptive Time Patterns for Multi-Dimensional Power System Sim-
ulations,” in Proc. of 14th International Conference on the European
Energy Market, 2017.

[9] G. Savvidis and K. Hufendiek, “Variable time resolution in lp electricity
market and investment models,” inProc. of 15th International Confer-
ence on the European Energy Market, 2018.

[10] S. Pineda and J. M. Morales, “Chronological Time-Period Clustering for
Optimal Capacity Expansion Planning With Storage,”IEEE Transactions
on Power Systems, vol. 33, no. 6, pp. 7162–7170, 2018.

[11] A. Turgeon, “Optimal operation of multireservoir power systems with
stochastic inflows,”Water Resources Research, vol. 16, no. 2, pp. 275–
283, 1980.

[12] O. Egeland, J. Hegge, E. Kylling, and E. Nes, “The Extended Power
Pool Model. Operation Planning of a Multi-River and Multi-Reservoir
Hydro-Dominated Power Production System. A Hierarchical Approach,”
in CIGRE Paper 32-14, 1982.

[13] L. A. Terry, M. V. F. Pereira, T. A. A. Neto, L. F. C. A. Silva, and P. R. H.
Sales, “Coordinating the Energy Generation of the Brazilian National
Hydrothermal Electrical Generating System,”INFORMS Journal on
Applied Analytics, vol. 16, pp. 16–38, 1986.

[14] E. Shayesteh, M. Amelin, and L. Söder, “Multi-Station Equivalents
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