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Abstract 
The calibration of building energy simulation models is 
crucial for addressing the issue of the discrepancy 
between the simulation output and real-world 
measurements. The majority of current research studies 
have used monthly utility bills as calibration data. In this 
study an automated optimization algorithm was 
implemented to calibrate an energy model of a single-
family house using daily and hourly energy consumption 
data. The performance of the calibrated model was tested 
on a different dataset and the simulation output matched 
the measurements with a daily CV(RMSE) of 14%.  This 
study demonstrates that the calibration using currently 
available district heating data can significantly improve 
the performance of building energy simulation. 
 

Introduction 
Building energy simulation can be classified in two main 
categories: physics-based models, which apply physical 
laws to predict the system behaviour, and data-based 
models, which estimate the system properties based on 
statistical analysis of measured data. The advantage of 
(detailed) physics-based models is the ability to predict 
the system behaviour under previously unseen boundary 
conditions. Physics-based building energy simulation 
tools are therefore suitable for predicting the thermal 
performance of buildings e.g. during the building design 
process, in energy retrofit projects, and for various 
research purposes like testing and developing predictive 
control systems. However, many studies have 
documented that there are often significant discrepancies 
between simulation results and measurements (Coakley et 
al. 2014; Petersen et al. 2012). The major reason is that 
the inputs to the simulation model does not correspond to 
the actual conditions. Therefore, current literature 
describes different approaches for the calibration of the 
simulation model to fit the measured data.  
The calibration methods are divided by Coakley et al. 
(2014) into two main approaches: manual and automated.  
Current research has investigated different methods for 
automated calibration; among these are optimization-
based methods. Optimization methods normally consist in 
a minimization problem where an optimal set of 
parameters is found in order to minimize an objective 
function stating the deviation between the simulated 
output and the measurements. Sun and Reddy (2006) 

developed a four-step approach that consist in sensitivity 
analysis, identifiability analysis, uncertainty analysis and 
optimization with a gradient-based algorithm. In order to 
avoid the risk of local minima which are typical of 
gradient-based methods, different algorithms based on 
global search have been investigated in other studies. In 
Asadi et al. (2019), the implemented method is a 
Harmony Search algorithm, which generates the next 
iterations either with a random solution or choosing the 
saved solution with the lowest simulation error. Other 
studies used population-based approaches, where a group 
of solutions is generated in each iteration, for example 
using a particle swarm algorithm as in Yang et al. (2016) 
or a genetic algorithm as in Martínez et al. (2020). To take 
the uncertainties of the under-determined calibration 
process into consideration, Reddy et al. (2007) selected a 
small number of  the best solutions to predict the energy 
use of the model instead of choosing only one solution.  
Current research studies have generally used utility bills 
on a monthly basis as calibration data (Coakley et al. 
2011). Recently, the development and roll-out of e.g. 
smart heat meters and IoT-based sensors technology has 
made data with higher resolution more available, data that 
potentially can improve the robustness of model 
calibration. In the study by Monetti et al. (2015) hourly 
data were used to calibrate a building energy model 
coupling the EnergyPlus building simulation tool and the 
GenOpt optimization program. The case study was a 
small building used exclusively for indoor climate 
experiments, without any occupant and conditioned by 
means of electric resistances. The validation was based on 
performance limits set out by ASHRAE Guideline 14 and 
the results of the calibrated model were found consistent 
with those thresholds. Another calibration study that 
utilized hourly data was performed by Asadi at al. (2019). 
The case study was a large office building and one 
hundred different independent variables were calibrated. 
The calibrated model was able to predict the electricity 
consumption with a proper accuracy after 500 iterations. 
In contrast to the previous mentioned studies, the aim of 
this study is to develop a calibration method that can be 
suitable for single-family houses, addressing the issue of 
the low resolution of district heating data and unmeasured 
indoor temperature, while at the same time keeping the 
computational complexity low. 
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Methodology 
The calibration method applied in this study was an 
iterative process between the calibration algorithm and 
the building energy simulation model made in 
EnergyPlus, a high-fidelity building energy simulation 
tool (Crawley et al. 2001). The model was used for co-
simulation with Matlab where the calibration algorithm 
was implemented. The procedure used was similar to the 
optimization program GenOpt for the minimization of an 
objective function evaluated by an external simulation 
program (Wetter 2016). A first input file for the 
EnergyPlus model was written assigning initial guess 
values to the calibration variables. Based on output from 
EnergyPlus, the Matlab code calculated the new input 
parameters and wrote them in the input file for the next 
EnergyPlus simulation in the calibration iteration. The 
process continued until the maximum number of 
iterations was reached or the convergence criteria were 
met. The flow diagram is shown in Figure 1. 
 

 
Figure 1: Flow diagram of the calibration process 

  
Building model  
The first step of the methodology was to build an energy 
simulation model using all the information currently 
available about the building. The case study is a typical 
single-family house from 1968 located in Aarhus, 
Denmark, occupied by four people (two adults, two 
children). The floor area is approximately 180 m2 and has 
15 rooms distributed on one floor. District heating 
supplies the radiator-based space heating and domestic 
hot water. The geometry and initial assumptions about the 
thermal properties of the constructions was based on as-
built drawings. In order to reduce the complexity of the 

model, the building was modelled as one thermal zone, 
while the walls that separate the different rooms were 
considered as internal mass. Since EnergyPlus models the 
heat conduction through surfaces is modelled as a one-
dimensional problem, thermal bridges cannot be directly 
modelled. Instead, the contribution of thermal bridges was 
accounted for with an additional heat loss through the 
building envelope, hence by increasing the thermal 
conductivity of the materials. 
Hourly electricity consumption data were used to generate 
a daily profile of the internal heat gains. The heat 
dissipated by lighting and other electrical equipment was 
assumed to be a fraction of the electricity consumption 
recorded every hour, and the daily pattern observed in the 
data was used as schedule throughout the year for the heat 
gains in the EnergyPlus model. The occupancy schedule 
was determined from the time of the day when electrical 
appliances were used and from the assumptions that all 
occupants are present during the night. 
The weather data included were the outdoor air 
temperature and the global solar radiation, with a 
resolution of 1·10-9 °C and 1·10-9 W/m2, respectively, 
measured by a near-by weather station. Other 
meteorological data such as humidity and wind speed 
were set to standard values in the EnergyPlus model 
because they were not measured, and it was assumed that 
they do not have a major impact on heat consumption. 
Calibration data 
The output data used to calibrate the model is the energy 
consumed for space heating. The data available was the 
cumulative district energy consumed, recorded on an 
hourly basis with a reading resolution of 1 kWh. This 
resolution does not give the true hourly value as there 
might be a consumption of 1 kWh spread across several 
hours.  Two different possibilities were investigated to 
overcome this issue in the calibration: 1) The hourly 
truncated data were aggregated into larger time 
resolutions, as in Kristensen et al. (2017); 2) the data were 
smoothed using a moving average.  
The available district heating data was the sum of space 
heating and domestic hot water. Domestic hot water 
consumption thus had to be disaggregated from the total. 
For a daily resolution, the domestic hot water 
consumption was calibrated assuming the consumption 
was constant in each day. For an hourly resolution, 
different approaches were used in an attempt to identify 
the profile of the consumption during the day: 1) 
analysing the district heating data measured during the 
summer when the radiators are switched off; 2) Indoor air 
relative humidity logged every 5 minutes in the bathroom 
was used to detect the time of the day when occupants 
took showers. However, a clear daily pattern could not be 
seen in summer, and it was not possible to identify a sound 
correlation between energy consumption peaks and 
periods with high/peak humidity. This can be explained to 
some extent by the low reading resolution of the heating 
energy meter. Therefore, a constant value was assumed 
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for this study, while a more accurate way to separate the 
domestic hot water consumption will be the object of 
future work. 
Sensitivity analysis 
The calibration of building energy simulation models is 
an over-parameterized problem where the parameters 
cannot be uniquely defined. Therefore, it is crucial to 
reduce the number of parameters to be calibrated. The first 
task of the study was to identify the set of parameters that 
drive the majority of the model output variation. The 
method used was the screening method by Morris (1991), 
which is the most common screening technique used for 
sensitivity analysis in relation to calibration of building 
simulation models (Fabrizio et al. 2015). First, a 
minimum and maximum value for each input parameter 
𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 1,2, … , 𝑘𝑘, where k is the number of parameters 
included was defined. These ranges were divided into p=4 
number of points, called levels, equally distant from each 
other, forming a grid of input parameter values, Ω. The 
Morris method then employs a random one-at-a-time 
(OAT) sampling procedure to generate trajectories 
through Ω with each trajectory comprising k+1 random 
model realisations from Ω. The sampling procedure was 
repeated for r=100 trajectories creating a global set of 
r·(k+1) building energy models to be simulated. The 
elementary effect EEi of each input parameter xi for every 
set of k+1 models was calculated from the ratio between 
the variation in output and the variation in input: 
 

𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑌𝑌(𝑥𝑥1,…,𝑥𝑥𝑖𝑖+∆,…,𝑥𝑥𝑘𝑘)−𝑌𝑌(𝑥𝑥1,…,𝑥𝑥𝑖𝑖 ,…,𝑥𝑥𝑘𝑘)
∆

      (1) 

 
where Y(x1, …, xk) is the simulation output, in this case the 
heating demand, and Δ is the distance between each 
parameter level. 
Finally, the influence of each parameter 𝜇𝜇𝑖𝑖 can be ranked 
by calculating the absolute mean of the elementary effects 
following different trajectories (Saltelli et al. 2004): 
 

𝜇𝜇𝑖𝑖 =  ∑ �𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡�
𝑟𝑟
𝑡𝑡=1

𝑟𝑟
    (2) 

The chosen values of p and r are aligned with the findings 
of Petersen et al. (2019) who found that a reliable outcome 
of deploying the Morris method for SA applied to a high 
fidelity BEM (like Energy Plus) is generated by choosing 
p≥4 and then run simulations for r≥100. 
The selection of the parameters to include in the Morris 
analysis was made based on literature review and on the 
quality and reliability of the available building 
information. The geometric properties of the building 
were known with high degree of confidence because they 
were determined from direct measurements and drawings 
and therefore they were not included. Instead, there was 
more uncertainty involved with the thermal properties of 
the building envelope, such as the U-values and the heat 
storage capacities. Therefore, the sensitivity of the 
simulation output to the thermal conductivity and to the 
specific heat of the insulation material of the main 
structures was analysed. The set of studied parameters 
was extended with the infiltration flow rate, the solar 
transmittance of the window glazing, the internal heat 
gains intensity and the set-point temperature for space 
heating. The heat gains from lighting and other electrical 
equipment were combined in one parameter. As 
mentioned in the previous section, a scalable equipment 
schedule was estimated from the electricity consumption 
data, and the maximum intensity was the parameter used 
for the sensitivity analysis. The level of occupancy 
outside of working hours was known and the heat gains 
from occupants were not analyzed in this study. The 
results obtained are shown in Table 1. 
From the assessment of the results of this analysis the 
parameters with the highest influence are: the 
conductivity of the external wall insulation, the 
infiltration rate, the heating set-point temperature and the 
domestic hot water consumption. These parameters were 
selected as calibration variables.  
 
 

 
 

Table 1: Results from sensitivity analysis 
Parameter Unit Minimum Maximum µ 
Set-point temperature °C 18 24 2.030 
Infiltration flow rate l/(s·m2) 0.32 1.28 0.544 
External wall insulation conductivity W/(m·K) 0.02 0.07 0.244 
Domestic hot water consumption kWh/h 200 700 0.130 
Window glazing solar factor - 0.30 0.80 0.085 
Window glazing conductivity W/(m·K) 0.03 0.07 0.053 
Roof insulation conductivity W/(m·K) 0.02 0.07 0.052 
Internal heat gain maximum intensity W/m2 0.80 1.50 0.024 
External wall specific heat J/(kg·K) 400 1200 2.375·10-3 
Internal wall specific heat J/(kg·K) 400 1200 9.765·10-5 
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Optimization algorithm 
The objective function to be minimized is a goodness-of-
fit function which is calculated combining the mean bias 
error with the coefficient of variation of root mean 
squared error. The mean bias error (MBE) is calculated 
from the sum of the differences between the observed and 
simulated values, normalized by the sum of the observed 
values, as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 [%] = ∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡 )𝑇𝑇
𝑡𝑡=1
∑ 𝑦𝑦𝑡𝑡𝑇𝑇
𝑡𝑡=1

 ·  100      (3) 

 
where 𝑦𝑦�𝑡𝑡 is the simulated output at time step t, 𝑦𝑦𝑡𝑡  is the 
measured value at time step t, and T is the total number of 
time steps. 
 
CV(RMSE) is calculated by normalizing the root mean 
squared error to the mean of the observed values, as in the 
following equations: 
 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) [%] = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦�

 ·  100             (4) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
                     (5) 

 
𝑦𝑦� =  ∑ 𝑦𝑦𝑡𝑡

𝑇𝑇
𝑇𝑇
𝑡𝑡=1                                   (6) 

 
The goodness-of-fit function is calculated from a 
weighted sum of the CV(RMSE) and the MBE. 
 

𝐺𝐺𝐺𝐺𝐺𝐺 = �𝑤𝑤𝐶𝐶𝐶𝐶
2 𝐶𝐶𝐶𝐶2+ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀

2 𝑀𝑀𝑀𝑀𝑀𝑀2

𝑤𝑤𝐶𝐶𝐶𝐶
2 +𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀

2        (7) 

 
where (wcv + wmbe) = 1. The ratio between the weighting 
factors was chosen to be wcv:wmbe = 1:3 as in Reddy at al. 
(2007). 
 
Different algorithms can be applied to minimize the 
objective function, some of which evaluate the gradient of 
the objective function, while others are stochastic meta-
heuristic methods (Wetter et al. 2004). Based on the 
assumption of an objective function without 
discontinuities, a simple gradient descent algorithm was 
implemented. The variables of each iteration are changed 
by moving in the direction of the negative of the gradient 
of the objective function. The step size for moving is 

proportional to the gradient and to a defined learning rate. 
Thus, the values are updated using the following equation: 
 

𝑥𝑥𝑖𝑖,𝑡𝑡  = 𝑥𝑥𝑖𝑖,𝑡𝑡−1   −  𝛼𝛼 𝛿𝛿
𝛿𝛿𝑥𝑥𝑖𝑖
𝐺𝐺𝑂𝑂𝐹𝐹(𝑥𝑥1,𝑡𝑡−1, … , 𝑥𝑥𝑁𝑁,𝑡𝑡−1)     (8) 

 
Where xi,t is the value of the variable xi in the iteration t, α 
is the learning rate, N is the number of variables and 
𝛿𝛿
𝛿𝛿𝑥𝑥𝑖𝑖

𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑁𝑁) is the partial derivative of the 

objective function with the respect to the calibration 
variable 𝑥𝑥𝑖𝑖. Since the analytical gradient calculation was 
not practicable, an approximate derivative was calculated 
using finite difference with a proper step size. 
 

Results 
The algorithm was run using a training period which 
extends from the 25th of September 2018 to the 28th of 
March 2019. The objective function was evaluated using 
two different dataset: daily aggregated data or hourly data. 
It was found that after the tenth iteration the GOF function 
only improved by a negligible amount and therefore the 
calibration algorithm was run for 10 iterations. 
The error indices obtained are shown in Table 2. In 
addition to MBE and CV(RMSE), the third metrics 
introduced for model validation is the fit ratio, which is 
calculated as follows: 
 

𝐹𝐹𝐹𝐹𝐹𝐹 [%] = �1 −
�∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡 )2𝑇𝑇

𝑡𝑡=1

�∑ (𝑦𝑦𝑡𝑡𝑇𝑇
𝑡𝑡=1 −𝑦𝑦�)2

�  ·  100  (9) 

 
The fit ratio is a measure of the performance of the model 
compared to a benchmark naive model where the 
prediction is the mean of the observations. It is positive 
when the RMSE of the model is lower than the standard 
deviation, which is the RMSE of the benchmark model.  
The results in Table 2 show that the optimization 
algorithm succeeded in eliminating the mean bias error 
and in reducing considerably the CV(RMSE). 
The measured  and simulated energy consumption with a 
daily and hourly temporal resolution can be observed in 
Figure 2 and 3, respectively.  
The values of the calibration parameters before and after 
the calibration can be read in Table 3. It can be 
immediately seen that the solutions obtained do not show 
a significant variation depending on the temporal 
aggregation used.  

 
Table 2: Error indices (training dataset) 

 Daily data Hourly data 
 Initial model Calibrated model Initial model Calibrated model 
CV(RMSE) [%] 31.99 13.03 43.65 21.47 
MBE [%] - 28.21 - 0.11 - 36.35 0.09 
FIT[%] - 0.06 56.52 - 26.36 37.37 
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Figure 2: Observed and simulated data with daily resolution (training dataset) 

 
Figure 3: Observed and simulated data with hourly resolution (training dataset) 

 
Table 3: Values of the calibration variables (training dataset) 

 Initial model Calibrated model 
  Daily data Hourly data 
λwall [W/mK] 0.045 0.0424 0.0423 
Infiltration [l/(sm2)] 0.960 0.705 0.704 
S.P. temp. [°C] 21.000 19.736 19.750 
DHW [kWh/day] 7.200 6.557 6.471 

BuildSim-Nordic 2020

- 289 -



 
Figure 4: Observed and simulated data with daily resolution (validation dataset) 

 
 
The robustness of the method was evaluated by testing the 
performance of the calibrated model with a different 
dataset. The parameters values estimated on the training 
dataset were used as input values and a simulation was 
performed using the data of four months of the heating 
season 2019/2020, from the 22th of October until the 3rd 
of March. The set of parameters selected was the one 
obtained with daily aggregation because it was the one 
fitting best the training dataset. The model was used to 
make predictions on a daily basis. The simulation output 
and the observations are shown in Figure 4 and the 
statistical indices obtained are summarized in Table 4. 
 

Table 4: Error indices (validation dataset)  

 
The residuals normalized by the maximum value of the 
observations are plotted in Figure 5 and in Figure 6 as a 
function of the outdoor temperature and of the solar 
radiation rate transmitted through the window. The 
residuals are positively correlated with the outdoor 
temperature (the correlation coefficient calculated is 
0.46), while there is a negative correlation with the solar 
radiation (the correlation coefficient is -0.49). 

 
Figure 5: Residuals as a function of the outdoor 

temperature (validation dataset) 

 
Figure 6: Residuals as a function of the solar radiation 

(validation dataset) 

 Initial model Calibrated model 
CV(RMSE) [%] 36.54 13.97 
MBE [%] - 26.19 2.04 
FIT[%] - 127.49 12.46 
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Discussion 
From the assessment of the statistical indices of the 
residuals and of the final parameters values several 
considerations can be made about the calibration process. 
As expected, the simulation error increases with the 
temporal resolution because of the larger dataset to fit and 
because of the significant noise present in the hourly data. 
Furthermore, there is more uncertainty involved with 
hourly data because a profile for the domestic hot water 
consumed during the day was not defined. However, the 
final values of the calibration variables obtained using 
different temporal aggregations do not differ significantly 
from each other. 
The energy consumption of the initial model was higher 
than the measurements. The positive mean bias error was 
removed by the algorithm by choosing a lower insulation 
conductivity, infiltration rate, temperature set-point and 
domestic hot water consumption. Despite that, the final 
values are still comparable with the initial guesses, that 
were based on prior information. This demonstrates that 
the building descriptions and the initial assumptions were 
valid to some extent. 
The calibration parameters were tuned to minimize the 
discrepancy between the simulation output and the 
training dataset. However, the goal of a building energy 
model is the ability to predict the system behaviour under 
any unseen condition. Although the model performance is 
reduced on the validation data compared to the training 
data, the performance is still signicantly better than the 
one of the not calibrated model. Nevertheless, the mild 
correlation between residuals and outdoor temperature 
and solar radiation suggests that the model does not 
perfectly describe how these inputs relate to the output. 
 
Conclusion 
The aim of this paper was to develop and test a calibration 
method for a single-family house using district heating 
data. The approach implemented was a calibration 
algorithm based on numerical optimization. The 
calibration was performed on a training dataset of six 
months and the performance of the calibrated model was 
tested on a different dataset of four months. The 
validation of the model was based on the assessment of 
the mean bias error and of the normalized root mean 
square error on a different dataset.  
The calibration method significantly improved the 
performance of the uncalibrated model both on the 
training and on the validation dataset. Furthermore, the 
parameters estimated were not strongly affected to 
changes in temporal resolution of the calibration data. 
Several challenges and possible improvements have been 
identified for future work. The study has highlighted the 
limits of the calibration data due to the truncation and to 
the indeterminacy of the share of domestic hot water in 
the total energy consumption, especially on an hourly 

level. The issue could be solved in future studies by 
utilizing meters with higher reading resolution and 
separate sensors for the domestic hot water circuit. 
Furthermore, there is a level of uncertainty involved with 
the estimated values of the calibration parameters, 
because a solution that yields to a good model fit could be 
a local optimum (Reddy et al. 2007). The optimization 
algorithm implemented could be improved and used in 
combination with other algorithms in order to ensure the 
convergence to a unique optimal solution.  
Finally, since the simulation error is correlated to the 
weather input data even after the calibration, the model 
could be further improved by extending or modifying the 
set of calibration parameters (for example including the 
glazing solar factor). 
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