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Abstract 
Existing studies have developed some advanced controls 
for energy storage system charging/discharging in a 
building cluster (enabling PV power sharing among 
different buildings), which can effectively improve the 
aggregated performances. However, in the existing 
controls, the flexible demand shifting ability of electric 
vehicles (EVs) are rarely considered, leading to limited 
performance improvements at building cluster level. 
Thus, this study proposes a coordinated control of 
building cluster with both energy sharing and the EV 
charging considered, with the purpose of improving the 
cluster-level performance. The simulation results show 
that in a typical summer week in Sweden, the developed 
control can increase the cluster-level daily renewable self-
consumption by 40% and meanwhile reduce the 
electricity bills by as much as 20% compared with 
conventional controls for a summer week in Ludvika, 
Sweden. 
1. Introduction 
The integration of distributed energy systems has 
promoted the transformation of buildings’ role from 
energy consumers to energy prosumers, i.e. energy 
consumers who produce energy for their own 
consumption using distributed energy technologies 
(Huang, Copertaro et al. 2020). The transformation of 
buildings’ role into energy prosumers provides 
opportunities for collaborations among buildings to 
improve the overall cluster-level performances. When 
multiple building prosumers are in a building cluster, they 
can share their excessive renewables with others in 
shortage (Fan, Huang et al. 2018). Such energy sharing 
can help improve the building-cluster-level renewable 
self-consumption rates and thus reduce the grid power 
usage (due to an increased share of renewable energy 
utilization). A study conducted by Luthander et al. ( 2016) 
shows that that even a simple energy sharing (i.e. 
aggregate electricity demand and supply) among 21 
houses in Sweden can easily improve the PV power self-
consumption by over 15%. While when there is shared 
energy storage, the improvement in PV power self-
consumption can even reach 29%. 
To achieve energy sharing among buildings, existing 
studies have developed a number of advanced controls. 
For example, Odonkor et al. (2015) proposed a control 
method of zero energy buildings (ZEBs) using genetic 
algorithm and Pareto decision making based on an 

adaptive bi-level decision model (with a facilitator agent 
at cluster level and local systems at single NZEB level) 
(Odonkor and Lewis, 2015). Fan et al. (2018) proposed a 
collaborative demand response control of zero energy 
buildings for enhancing the building-cluster-level 
performances. In their method, the control of each 
building was conducted in sequence, and the optimization 
of one building’s operation was based on the previously 
optimized buildings’ operation (Fan et al., 2018). Prasad 
and Dusparic developed a Deep Reinforcement Learning 
based method for ZEB community (Prasad and Dusparic 
2019). The abovementioned controls optimize the 
building cluster performance in a bottom-up way, and 
they merely perform very limited collaborations among 
buildings. With the purpose of maximizing the energy 
sharing within a building cluster, researchers have 
developed controls that directly use the building-cluster-
level performances as the optimization targets. For 
instance,  Huang et al. developed a top-down control for 
a cluster of building prosumers equipped with electrical 
energy storage system (Huang, Wu et al. 2018). In their 
study, the optimal performances that can be achieved are 
first searched by using an advanced searching algorithm. 
Then the optimal performances at the top-level are 
divided into separate goals for each individual building at 
the bottom-level. Similarly, in a three-step demand 
response control algorithm is developed considering the 
dynamic pricing. Taking into account of the demand 
prediction uncertainty, in a robust collaborative control is 
developed.   
These existing controls can effectively improve the 
performances at building cluster level. However, electric 
vehicles (EV), which also play an important role in the 
building cluster scale energy systems, are usually 
considered as non-scheduled electrical loads (such as 
lighting) and their flexible demand shifting ability is 
rarely used (Taşcıkaraoğlu, 2018; Huang et al., 2019). As 
a result, the flexible demand shifting ability of EVs are 
rarely considered together with the building control, 
leading to limited performance improvements at building 
cluster level (Barone et al., 2019; Dallinger et al., 2013). 
For instance, in practice the EV charging will start once 
they are plugged into charging stations. However, in such 
charging period the renewable generation may be 
insufficient to cover the EV charging load, leading to grid 
electricity imports. On the other hand, when there is 
surplus renewable generation, the EVs cannot be used as 
electricity storage if they have already been fully charged, 
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leading to the surplus renewable energy exports. As a 
result, the overall building-cluster-level performance is 
not fully optimized.     
By properly scheduling the EV charging loads, the 
batteries in EVs can be used as flexible energy storage to 
help regulate the electricity demands in the power grid. 
Existing studies have also developed some advanced 
controls for EVs. For instance, Geth et al. developed a 
coordinated charging control for a number of EVs (Geth, 
Willekens et al. 2010). In their control, a vehicle owner 
first indicates the point in time when the batteries should 
be fully charged. Then, the aggregator collects this 
information and calculates when each EV can start 
charging, based on two rules: (i) charging is most 
economically when the total demand (including the 
residential, industrial and EV consumption) is low, and 
(ii) the EVs can be charged during working hour in the 
working places. Similarly, Usman et al. proposed an 
automated coordinated control of EV fleets, which can 
plan the charging strategy at the cheaper moments while 
keeping the vehicle charged enough to complete its 
scheduled trips (Usman, Knapen et al. 2016). Their 
control uses a grid agent to grant tokens to the EVs in idle 
state based on the grid electricity prices. By shifting 
charging loads to low electricity price period (usually 
with low aggregated electricity demands in the power 
grid), this control can effectively increase the match 
between the available power and the consumed power. 
The abovementioned studies can effectively improve the 
economic performances of EV or EV fleets. However, 
these studies typically consider EVs as a separate role in 
the urban energy system and thus neglect their integration 
with the building controls.  
To sum up, the existing studies have developed some 
advanced building side controls, which enables renewable 
energy sharing and aims at optimizing building-cluster-
level performance via regulating the energy storage 
charging/discharging. However, the flexible demand 
shifting capability of EVs is not considered in the cluster-
level controls. Therefore, this study proposes a 
coordinated control of building cluster with both energy 
sharing and the EV charging considered, with the purpose 
of improving the cluster-level performance by taking 
advantage of energy sharing and storage capability of 
electricity batteries in both buildings and EVs.  
2. Methodology  
This section introduces the developed coordinated 
control. Fig. 1 presents the flowchart of the developed 
control optimization method. The aim of the coordinated 
control is to coordinate the operation of energy storage 
(installed in each single building) and the EVs, to achieve 
the optimal cluster-level performances. The coordinated 
control consists of four steps. In Step 1, all the buildings 
in the building group are considered as a ‘representative’ 
building, and the electrical demand, renewable energy 
generation and load shifting capacity of the 
‘representative’ building are predicted, i.e. its electrical 

demand/renewable generation/demand shifting capacity 
equals the aggregated demand/ generation/capacity of all 
buildings inside the cluster. In Step 2, the operation of the 
‘representative’ building and the EV charging rates are 
optimized using genetic algorithm (GA). The 
performance of the ‘representative’ building, obtained by 
simultaneous optimization of the building and EV 
operation, is considered to be the best performances that 
the building group can achieve (Shen, Li et al. 2016). In 
Step 3, the operation of each single building inside the 
building group is coordinated using non-linear 
programming (NLP) based on the ‘representative’ 
building’s operation obtained from Step 2. In Step 4, the 
performances of the proposed coordinated control are 
compared with two existing controls, including a 
conventional individual control (Scenario 1 (Shen, Li et 
al. 2016)), which does not enable renewable sharing and 
charge the EVs immediately after being parked, and an 
existing coordinated control (Scenario 2 (Gao and Sun 
2016)), which enables full renewable energy sharing but 
also charges the EVs immediately after being parked. The 
details of each step are introduced below. 

 
Figure 1 Flowchart of the coordinated control 

Step 1: Estimation of the ‘representative’ building’s 
demand and storage 
In this step, all the buildings inside the cluster are 
considered as a ‘virtual’ building. Its hourly electricity 
demand ( 𝐸𝐸𝑑𝑑,𝑖𝑖

𝑟𝑟  (kW·h)) equals the aggregated hourly 
electricity demand (including the household electricity, 
and electricity for heating or heat pumps) of each single 
building (𝐸𝐸𝑑𝑑,𝑖𝑖

𝑗𝑗  (kW·h)) (i indicates time with a unit of 
hour), its hourly renewable generation ( 𝐸𝐸𝑠𝑠,𝑖𝑖

𝑟𝑟  (kW·h)) 
equals the aggregated hourly renewable generation of 
each single building (𝐸𝐸𝑠𝑠,𝑖𝑖

𝑗𝑗  (kW·h)) and its load shifting 
capacity ( 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟  (kW·h), i.e. battery capacity) is the 
aggregated load shifting capacity of each single building 
(𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 (kW·h)). 

Step 3: Coordination 
of single building’s 
battery operation 
using NLP

Step 2: Optimization 
of the ‘representative’ 
building’s operation 
and EV charging 
rates using GA

Step 4: Performance 
comparison and 
analysis

Step 1: Estimation of 
the ‘representative’ 
building’s electricity 
demand, supply and 
storage

Search ranges and 
constraints

Buildings and 
system models

GA 
Optimizer Fitness function 

estimator

• Optimized 24-hour battery charging rates of the ‘virtual’ building: [𝑢𝑢1𝑟𝑟∗, 𝑢𝑢2𝑟𝑟∗, …𝑢𝑢24𝑟𝑟∗]
• Optimized charging rates for each EV: [𝑢𝑢𝑡𝑡1

𝑒𝑒𝑒𝑒,1∗,𝑢𝑢𝑡𝑡1+1
𝑒𝑒𝑒𝑒 ,1∗, … 𝑢𝑢𝑡𝑡1+𝑛𝑛1

𝑒𝑒𝑒𝑒,1∗ ], [𝑢𝑢𝑡𝑡2
𝑒𝑒𝑒𝑒 ,2∗,𝑢𝑢𝑡𝑡2+1

𝑒𝑒𝑒𝑒 ,2∗, …𝑢𝑢𝑡𝑡2+𝑛𝑛2
𝑒𝑒𝑒𝑒 ,2∗ ],...

Weather 
data in 

future 24h

Coordinated 24-hour battery charging rates of each building [𝑢𝑢1
𝑗𝑗 ,𝑢𝑢2

𝑗𝑗 , …𝑢𝑢24
𝑗𝑗 ] (j=1,2,…,N)

[𝐸𝐸𝑒𝑒𝑒𝑒 ,1
𝑟𝑟 ,𝐸𝐸𝑒𝑒𝑒𝑒 ,2

𝑟𝑟 , …𝐸𝐸𝑒𝑒𝑒𝑒 ,24
𝑟𝑟 ]Fitness trial 

values

Electricity price
[𝑝1𝑠𝑠 ,𝑝2𝑠𝑠 , …𝑝24𝑠𝑠 ]

Input

Input

Battery charging rates of N buildings in the ith hour [𝑢𝑢𝑖𝑖1 ,𝑢𝑢𝑖𝑖2 , … , 𝑢𝑢𝑖𝑖𝑁𝑁]

Non-linear programming

Objective functions: minimize total electricity cost  𝐽𝐽 = 𝑖𝑖 𝑢𝑢𝑖𝑖1 ,… ,𝑢𝑢𝑖𝑖𝑁𝑁

Constraints of shifting: ∑ 𝑢𝑢𝑖𝑖
𝑗𝑗𝑛𝑛

𝑗𝑗=1 = 𝑢𝑢𝑖𝑖𝑟𝑟∗ ; −∅i−1
𝑗𝑗

  ≤𝑢𝑢𝑖𝑖
𝑗𝑗 × 𝜏𝜏 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 −∅i−1

𝑗𝑗
 

Optimized parameters: battery charging/ discharging rates of each 
building in the ith hour         [𝑢𝑢𝑖𝑖1 , 𝑢𝑢𝑖𝑖2 , … 𝑢𝑢𝑖𝑖𝑁𝑁]

Coordination in the ith time slot (i=1,2,…,24)

Output in the ith time slot

Output in all the 24 time slots

Buildings and 
systems

Weather data in 
future 24h

Scenario C1: No energy sharing, EVs are charged when 
plugged in
Scenario C2: Full: energy sharing, the EVs are charged when 
plugged in

Electricity 
costs (C)

V.S.

V.S.

• Its demand equals the aggregated demand of each single building.
• Its power generation equals the aggregated generation of each single building.
• Its storage capacity equals the aggregated capacity of each single building.

𝐸𝐸𝑑𝑑,𝑖𝑖
𝑟𝑟 = ∑ 𝐸𝐸𝑑𝑑,𝑖𝑖

𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗𝑛𝑛
𝑗𝑗=1

Battery charge rates 
[𝑢𝑢1𝑟𝑟 , 𝑢𝑢2𝑟𝑟 , … 𝑢𝑢24𝑟𝑟 ]

EV charging rates 
[𝑢𝑢𝑡𝑡1
𝑒𝑒𝑒𝑒 ,1 ,𝑢𝑢𝑡𝑡1+1

𝑒𝑒𝑒𝑒,1 , … 𝑢𝑢𝑡𝑡1+𝑛𝑛1
𝑒𝑒𝑒𝑒,1 ],...

Renewable 
energy self-

utilization (SC)

𝐸𝐸s,𝑖𝑖
𝑟𝑟 = ∑ 𝐸𝐸𝑠𝑠,𝑖𝑖

𝑗𝑗𝑛𝑛
𝑗𝑗=1

Electricity price
[𝑝1𝑠𝑠 , 𝑝2𝑠𝑠 , …𝑝24𝑠𝑠 ]
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Step 2: Optimization of the ‘representative’ building’s 
operation using GA  
The GA algorithm searches the optimal charging/ 
discharging rates of both the battery and EVs that can 
minimize the electricity costs of the ‘representative’ 
building. For example, the EVs can be scheduled to be 
charged in periods with sufficient renewable generations 
while not charged in periods with insufficient generations. 
In the GA simulation, the inputs mainly include the 
battery charging/discharging rates (to be optimized), the 
EV charging rates (to be optimized), the EV parking 
periods, the future 24-hour weather data, building 
parameters, and battery parameters. The EVs are different 
from the building integrated electricity storage system, as 
they are not constantly connected into the buildings. This 
study uses four parameters to characterize an EV (e.g. the 
kth EV): arrival time to the charging port (tk), parking 
periods in the charging port (nk), initial state of charge 
(SOC0

k), and the required state of charge when the car 
departs from the charging port (SOC1

k). These parameters 
are considered known and will be used as inputs in the 
optimization. 
In each generation of GA, trials of 24-hour thermal 
storage hourly charging/discharging rates (i.e., 
[u1v, u2v, … u24v ] kW) and charging rates of each EV (i.e. 
[𝑢𝑢𝑡𝑡𝑘𝑘

𝑒𝑒𝑒𝑒,𝑘𝑘,𝑢𝑢𝑡𝑡𝑘𝑘+1
𝑒𝑒𝑒𝑒,𝑘𝑘 , …𝑢𝑢𝑡𝑡𝑘𝑘+𝑛𝑛𝑘𝑘

𝑒𝑒𝑒𝑒,𝑘𝑘 ] kW) are generated by the GA 
optimizer. The representative building’s hourly power 
demand ( 𝐸𝐸𝑑𝑑,𝑖𝑖

𝑟𝑟  kW) and hourly renewable power 
generation (𝐸𝐸𝑟𝑟,𝑖𝑖

𝑟𝑟   kW) in the future 24 hours is then 
predicted using the building and system models. The 
charging/discharging rates of the electrical battery should 
meet the following two constraints:  
(i) The battery charging amount could not exceed the 
remaining battery storage capacity.  
(ii) The battery discharging amount could not exceed the 
stored electricity in the battery. These two constraints are 
expressed by Eqn. (4) (Lu, Wang et al. 2015), 

0 ≤ ∅0𝑟𝑟 + (𝑢𝑢1𝑟𝑟 + 𝑢𝑢2𝑟𝑟 + ⋯+ 𝑢𝑢𝑖𝑖𝑟𝑟) × 𝜏𝜏 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟  where i=1,2,…,24   (1) 

where ∅0𝑒𝑒  (kW·h) is the amount of electricity energy 
initially stored in the electrical energy storage system, 𝜏𝜏 
is the duration of battery charging/discharging (i.e., 1 hour 
in this study). 
Similarly, the charging rates of the kth EV should meet 
these two constraints, as expressed by Eqn. (2). 𝑆𝑆𝑆𝑆𝐶𝐶0,𝑘𝑘 is 
the initial state of charge when the kth EV arrives at the 
charging port. 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒  (kW·h) is the capacity of the kth EV 
battery. 𝑡𝑡𝑘𝑘 is the arrival time of the kth EV at the charging 
port, and nk is the parking duration. 

0 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶0,𝑘𝑘 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒 + (𝑢𝑢𝑡𝑡𝑘𝑘
𝑒𝑒𝑒𝑒,𝑘𝑘 + 𝑢𝑢𝑡𝑡𝑘𝑘+1

𝑒𝑒𝑒𝑒,𝑘𝑘 + 𝑢𝑢𝑡𝑡𝑘𝑘+𝑖𝑖
𝑒𝑒𝑒𝑒,𝑘𝑘 ) × 𝜏𝜏 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒 

where i=1,2,…, nk  (2) 

In addition, the EV battery should be charged to a user-
specified level (𝑆𝑆𝑆𝑆𝐶𝐶1,𝑘𝑘) before they depart the charging 
port. This constraint is expressed by Eqn. (3). When 
𝑆𝑆𝑆𝑆𝐶𝐶1,𝑘𝑘 equals 1, it represents the EV users require the EV 

battery to be fully charged before they depart the charging 
port. 

𝑆𝑆𝑆𝑆𝐶𝐶0,𝑘𝑘 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒 + (𝑢𝑢𝑡𝑡𝑘𝑘
𝑒𝑒𝑒𝑒,𝑘𝑘 + 𝑢𝑢𝑡𝑡𝑘𝑘+1

𝑒𝑒𝑒𝑒,𝑘𝑘 + ⋯+ 𝑢𝑢𝑡𝑡𝑘𝑘+𝑛𝑛𝑘𝑘
𝑒𝑒𝑒𝑒,𝑘𝑘 ) × 𝜏𝜏 ≥ 𝑆𝑆𝑆𝑆𝐶𝐶1,𝑘𝑘 ×

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒       (3) 

This study considers the strategy to minimize daily 
electricity cost of the building group. Following this 
control goal, a fitness function is determined, as expressed 
by Eqn. (4) (Salom, Widén et al. 2011).  

𝐽𝐽𝑔𝑔𝑟𝑟𝑖𝑖𝑑𝑑 = min (𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡)                                   (4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = ∑ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑖𝑖
𝑟𝑟 × 𝜏𝜏 × 𝜒𝜒𝑖𝑖 , �

𝜒𝜒𝑖𝑖 = 𝜒𝜒𝑏𝑏𝑏𝑏𝑏𝑏, 𝑖𝑖𝑖𝑖 𝐸𝐸𝑒𝑒𝑒𝑒,𝑖𝑖
𝑟𝑟 > 0

𝜒𝜒𝑖𝑖 = 𝜒𝜒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 , 𝑖𝑖𝑖𝑖 𝐸𝐸𝑒𝑒𝑒𝑒,𝑖𝑖
𝑟𝑟 ≤ 0

24
𝑖𝑖=1                  (5) 

where 𝜒𝜒𝑖𝑖  (kr/(kW·h)) is the electricity price in the ith time 
slot. 𝜒𝜒𝑏𝑏𝑏𝑏𝑏𝑏  (kr/(kW·h)) is the price of purchasing 
electricity from the power grid, and 𝜒𝜒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠  (kr/(kW·h)) is 
the feed-in-tariff. The outputs of the GA search are the 
‘representative’ building’s battery charging/discharging 
rates ([𝑢𝑢1𝑟𝑟∗,𝑢𝑢2𝑟𝑟∗, … 𝑢𝑢3𝑟𝑟∗] kW) in the next 24 hours and the 
charging rates of each individual EV 
([𝑢𝑢𝑡𝑡1

𝑒𝑒𝑒𝑒,1∗,𝑢𝑢𝑡𝑡𝑘𝑘+1
𝑒𝑒𝑒𝑒,𝑘𝑘∗, … ,𝑢𝑢𝑡𝑡𝑘𝑘+𝑛𝑛𝑘𝑘

𝑒𝑒𝑒𝑒,𝑘𝑘∗ ], ... kW). The optimized battery 
charging/ discharging rates of the ‘representative’ 
building are used in Step 3.  
Step 3: Coordination of single building’s operation using 
NLP   
In this step, the single building’s battery 
charging/discharging rates (i.e. 𝑢𝑢𝑖𝑖

𝑗𝑗  is the jth building in 
the ith hour) are coordinated using NLP based on the 
‘representative’ building’s operation (Zhao, Lu et al. 
2015). The NLP is conducted in each hour and will be 
repeated 24 times for obtaining the building’s daily 
operation. The fitness function of the NLP is expressed by 
Eqns. (6) and (7), which aims at minimizing the electricity 
costs of the building group. 

𝐽𝐽𝑁𝑁𝑁𝑁𝑁𝑁 = min�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖�                                    (6) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖 = ∑ �𝐸𝐸𝑑𝑑,𝑖𝑖
𝑗𝑗 × 𝜒𝜒𝑖𝑖�

2𝑛𝑛
j=1                               (7) 

In order to reduce the uneven allocation of the battery 
charging/discharging rates (otherwise only a few 
buildings take benefits from the demand response), the 
square of each building’s operational cost is used in the 
fitness function. 𝐸𝐸𝑑𝑑,𝑖𝑖

𝑗𝑗  (kW·h) is the energy demand of the 
jth building in the ith hour after applying the 𝑢𝑢𝑖𝑖

𝑗𝑗  (kW) 
amount of battery charging/discharging, which is 
calculated by the models presented in Section 3. 𝜒𝜒𝑖𝑖  
(HKD/(kW·h)) is the electricity price in the ith hour. In the 
ith hour, the optimized parameters in the NLP are the 
hourly battery charging/discharging rates of all the 
buildings inside the building group, i.e., [𝑢𝑢𝑖𝑖1,𝑢𝑢𝑖𝑖2, … ,𝑢𝑢𝑖𝑖𝑁𝑁] 
(kW), where N indicates the number of buildings in the 
building group. The battery charging/discharging rates in 
each hour should follow the constraints below. 
 (i) The sum of battery charging/discharging rates of each 
building ( 𝑢𝑢𝑖𝑖

𝑗𝑗  (kW)) should equal the battery 
charging/discharging of the ‘representative’ building (𝑢𝑢𝑖𝑖𝑟𝑟∗ 
(kW)) (obtained from Step 2). 

∑ 𝑢𝑢𝑖𝑖
𝑗𝑗𝑁𝑁

𝑗𝑗=1 = 𝑢𝑢𝑖𝑖𝑟𝑟∗                                        (8) 
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 (ii) For each single building, the electricity charging 
amount must be smaller than the remaining storage 
capacity of the battery, and the electricity discharging 
amount must be smaller than the amount of electricity 
stored in the battery. There are 2N inequality constraints 
for N buildings. 

−∅i−1
𝑗𝑗

 ≤ 𝑢𝑢𝑖𝑖
𝑗𝑗 × 𝜏𝜏 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 − ∅i−1

𝑗𝑗
     (j=1,2,…N, respectively)     (9) 

where 𝜏𝜏  is the charging duration (i.e., 1 hour), 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 
(𝑘𝑘𝑘𝑘ℎ) is the battery capacity of the jth building, ∅i−1

𝑗𝑗  
(kW·h) is the electricity energy stored in the jth building’s 
battery. ∅i−1

𝑗𝑗  (kW·h) is calculated by Eqn. (10). 
∅i−1
𝑗𝑗 = (𝑢𝑢1

𝑗𝑗 + 𝑢𝑢2
𝑗𝑗 + ⋯+ 𝑢𝑢𝑖𝑖−1

𝑗𝑗 ) × 𝜏𝜏                       (10) 

Step 4: Performance comparison and analysis 
In this step, the performances of the proposed coordinated 
control are compared with two existing controls in aspects 
of renewable energy self-consumption improvements and 
economic cost savings. The two existing controls include 
a conventional individual control (Scenario 1 (Shen, Li et 
al. 2016) (Gao and Sun 2016)), which does not enable 
renewable sharing and charge the EVs immediately after 
connecting them, and an existing coordinated control 
(Scenario 2 (Huang, Wu et al. 2018)), which enables full 
renewable energy sharing in the building cluster but 
charges the EVs immediately after connecting them. In 
both the two comparative studies, the EVs demand are 
first computed and then added to the building electricity 
demand, which will then be used as inputs for battery 
charging/discharging controls. In Scenario 1 (i.e. an 
existing individual control) (Shen et al. 2016), GA was 
used for searching the optimal battery 
charging/discharging rates in each building, which is 
similar to the control optimization of the ‘representative’ 
building (see Step 2 in Fig. 2 without EV related 
variables). After obtaining the individual buildings’ 
optimal operation, their electrical demands were 
aggregated for evaluating the building-cluster-level 
performances. In Scenario 2 (i.e. an existing coordinated 
control) (Gao and Sun, 2016), the battery 
charging/discharging rates of all the three buildings are 
optimized simultaneously using GA, and the 
minimization of the building-cluster-level performance 
was used as the fitness function.  

Table 1 Configuration of the three scenarios 
Scenario EV control? Energy sharing? 

1  Charged immediately 
when plugged in No 

2 Charged immediately 
when plugged in Full sharing 

3  Charged at any time when 
parked Full sharing 

3. Buildings and system modelling 
This section introduces the building information and 
system modelling. Each building is installed with a 
renewable energy system (i.e., PV panels), an electricity 
storage system (i.e., battery), as well as an EV. 

3.1 Building modelling 
This study considered a real building cluster located in 
Ludvika, Dalarna region, Sweden. This building cluster 
consists of three separate buildings, as shown in Fig. 2. 
These buildings will be improved by a series of 
renovation plans including installation of PV, battery 
storage, direct current (DC) micro grid, and EV charging 
station. It is assumed the heating is provided by district 
heating system. So, the PV panels will only need to 
provide power supply to the domestic electricity demand 
(e.g. lighting, TVs, dish wash). 
 

 
Figure 2 Bird view of the case building cluster located in 

Ludvika, Sweden 
3.2 Renewable energy system modeling  
The power generation from the PV panel 𝐶𝐶𝑁𝑁𝑃𝑃  (kW) is 
calculated by Eqn. (14) (Klein et al., 2004), 

𝐶𝐶𝑁𝑁𝑃𝑃 = 𝜏𝜏 × 𝐼𝐼𝐴𝐴𝐴𝐴 × 𝐼𝐼𝑇𝑇 × 𝜂𝜂 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑃𝑃                          (11) 

where 𝜏𝜏 is the transmittance-absorptance product of the 
PV cover for solar radiation at a normal incidence angle, 
ranging from 0 to 1;  𝐼𝐼𝐴𝐴𝐴𝐴  is the combined incidence angle 
modifier for the PV cover material, ranging from 0 to 1; 
𝐼𝐼𝑇𝑇  (𝑘𝑘/𝑚𝑚2) is the total amount of solar radiation incident 
on the PV collect surface; 𝜂𝜂 is the overall efficiency of the 
PV array; 𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑃𝑃 (𝑚𝑚2) is the PV surface area. The local 
weather data in Ludivika was used as inputs with a time 
resolution of 1 hour. 
3.3 Electrical battery and EV battery modeling 
This study used simplified electrical battery and EV 
battery models. The electricity stored in the battery is 
calculated using a simplified model, as expressed by 
Eqns. (4) and (5). It is estimated from the hourly charging 
rates (Sun, Huang et al. 2018). This study considers three 
EVs. Table 2 summarizes the capacity, maximum 
charging rates as well as the parking periods of each EV. 
EV 1, EV 2 and EV 3 are assumed to be charged in 
Building A, B and C, respectively. To consider the 
various EV usage, these three EVs are assumed to have 
different parking periods. EV 1 is assumed to be owned 
by a resident living in the building, and thus it is parked 
at night from 18:00 to 07:00 in the next day. EV 2 and EV 
3 are assumed to be owned by some working staff in the 
building estate, and they are parked during daytime (i.e. 
one from 08:00~16:00 and the other from 09:00~17:00). 
The EV battery capacity and maximum charging rates are 
referred  from the available EV models in the market in 
(Ustun, Zayegh et al. 2013). 
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Table 2 Capacity, charging limits and parking periods of 
the three different EVs, data obtained from (Ustun, 

Zayegh et al. 2013) 

ID 
Battery 
capacity 
(kW∙h) 

Maximum 
charging rates 

(kW) 

Parking 
period 

EV 1 22 4 18:00~07:00   
EV 2 27 5 08:00~16:00 
EV 3 53 10 09:00~17:00 

 
In all the three scenarios, the EVs are required to be fully 
charged before they leave the charging station (Note that 
the time of departure is considered as a known parameter 
set by the EV owners). When the EVs arrive in a charging 
station in the home, a random SOC parameter (between 0 
and 1) is assumed to represent the remaining storage in 
the EV battery. 
4. Case studies and results analysis 
In the case studies, a typical summer week was selected 
to validate the developed coordinated controls. The 
weather data of Ludvika was used for modelling the local 
renewable generations. This section first presents the 
individual building’s electricity demand and renewable 
generation information. Then, the detailed EV charging 
and battery charging results obtained from the two 
scenarios (see Step 4 in Section 2) and the developed 
control are compared and analyzed. Finally, the overall 
economic and energy performances are compared. 
Table 3 summarizes the input parameters used in the case 
studies. According to the building dimension, 100 m2, 200 
m2 and 300 m2 roof areas are planned for installing PV 
panels in the three buildings, respectively. It was assumed 
each building is installed with an electrical battery with 
capacity of 20 kW∙h and maximum charging/ discharging 
rates of 6 kW. The price of purchasing electricity from the 
power grid was set as 0.16 €/(kW∙h). Considering the 
negative impacts on the grid stability and safety, the feed-
in-tariff was set as 0.05 €/(kW∙h), which is lower than 
price of electricity purchase (Huang, Lovati et al. 2019). 
The price of electricity trading in the building cluster was 
set as 0.1 € /(kW∙h). Such price setting will provide 
incentives for energy sharing within the building cluster, 
i.e. the building owners can earn more by selling their 
excessive renewable energy to the building cluster than 
sell to the power grid, and vice versa.  

Table 3 System configuration and electricity prices 
Input parameter Value 

Area of PV panel in Building A (m2) 100 
Area of PV panel in Building B (m2) 200 
Area of PV panel in Building C (m2) 300 

Battery capacity (kW∙h) 20 
Battery maximum charging/discharging rates (kW) 6 

Price of electricity sold to the grid (€/(kW∙h))  0.05 
Price of grid electricity purchased (€/(kW∙h))  0.16 

Price of electricity trading in building cluster (€) 0.1 

 
4.1 Electricity demand, supply and mismatch 
Fig. 3 displays the hourly electricity demand, hourly PV 
generation, and the hourly electricity mismatch of the 
three buildings in the selected week. Note that the heating 
needs of the three buildings are assumed to be met by the 
district heating system. Thus, the electricity demand only 
includes the domestic electricity loads (i.e. lighting, 
washing machine, TV, etc.). The trends of PV power 
production of the three buildings are similar, since the 
solar irradiation is nearly the same for the three buildings 
which are located in the same location. As Building C has 
the largest roof area, more PV panels can be installed on 
its roof. Thus, it has the largest average PV production.  
Power mismatch of each building is calculated as the 
deviation between its hourly power demand and the 
hourly renewable generation. The diversity between the 
power mismatch provides good opportunities for the 
buildings to collaborative with each other in aspects of 
energy sharing. For instance, at noon (i.e. 11:00~16:00) 
in the first day of the selected summer week, Building A 
has insufficient renewable generations (i.e. 7.6 kW∙h 
more demand), while Buildings B and C have excessive 
renewable generations (i.e. 24.7 kW∙h and 55.8 kW∙h 
more supply, respectively).  Buildings B and C can share 
their surplus renewable generation with Building A to 
avoid grid power imports (for Building A) and power 
exports to the grid (for Buildings B and C), and thus help 
improve the overall performance at the building-cluster-
level.  

 
Figure 3 The hourly power demand (red), renewable 
generation (blue) and power mismatch (black) of the 

three buildings in the selected summer week 
4.2 Detailed battery control and energy flow 
To have a close look at the charging of EVs and battery 
storage, as well as the energy flow in the system, the 
detailed operation in the first day of the selected week is 
presented and analyzed in this section. Note that the EV 
charging loads are exactly the same for the three 
scenarios. The initial SOCs when EVs arrive at the 
charging stations are the same for three scenarios. The 
initial SOCs upon arrival for the three EVs are 0.29, 0.61 
and 0.62, respectively. All the EVs are required to be fully 
charged when they depart the charging stations, i.e. SOC 

Building A

Building B

Building C
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equals 1. Fig. 4 presents the State of Charge (SOC) of the 
three EVs’ battery and the aggregated battery in the first 
day of the selected week. For Scenarios 1 and 2, since the 
EVs are charged at their maximum charging rates (i.e. 4 
kW, 5 kW and 10 kW for the three EVs, respectively) 
immediately after being plugged into the charging ports, 
there is a stable increase in the SOCs for all the three EVs 
in the beginning of parking periods. In the developed 
control, the EVs are charged flexibly in the parking 
period. In some timeslots, they are charged at a high rate; 
while in some timeslots, they are charged at a low rate (or 
even zero). Despite the different charging patterns, all the 
EV batteries are fully charged (as specified in the case 
study, see Section 3.3) before they depart the charging 
ports in the three scenarios.  

    
Figure 4 State of Charge (SOC) of the three EVs and the 

aggregated battery in the first day of selected week 
Regarding the battery storage usage, the aggregated 
battery has not been fully charged (and thus not fully 
utilized) in Scenario 1, while it has been fully charged 
(and thus fully utilized) in Scenario 2 and the developed 
control. This is because in Scenario 1 the collaboration 
(i.e. renewable energy sharing) is not allowed among the 
buildings, while in Scenario 2 and the developed control, 
collaboration is enabled (see Fig. 6 for detailed energy 
sharing). The collaboration enables buildings to store 
their surplus renewables in other building’s battery, 
thereby helping to increase the overall battery utilization. 
Such increased battery utilization can help the building 
cluster keep more renewable energy onsite instead of 
exporting to the power grid, and thus contribute to 
increased renewable energy self-consumption rates. 
Fig. 5 depicts the electricity energy flow of the building 
cluster (i.e. electricity demand), aggregated PV 
production, power grid, aggregated battery and three EVs 
in the first day of the selected week for the three different 
scenarios. The aggregated energy exchanges within the 
building cluster become zero in the aggregated level, 
since the amount of purchased electricity from the 
building cluster compensates with the amount of 
electricity sold to the building cluster. In the period 
9:00~12:00, for Scenario 1 and Scenario 2, large 
electricity demand occurs, as EV 2 and EV 3 are charged 
immediately after being plugged in. Unfortunately, the 
renewable energy generation is not sufficient in this 

period to meet the large demands. As a result, a large 
amount of grid electricity is purchased by the building 
cluster, i.e. 48.7 kW∙h and 52 kW∙h for Scenarios 1 and 2, 
respectively. In Scenario 3 (developed control), as EV 2 
and EV 3 can be flexibly charged in any timeslot during 
the parking period, the controllers set relatively small EV 
charging rates in this period. Consequently, the amount of 
grid power purchase is significantly reduced in the 
developed control, i.e. 14.6 kW∙h. In the period 
14:00~17:00, for Scenario 1, since there is no 
collaboration among buildings, only a small part of the 
surplus renewable energy is kept onsite, while a large part 
of the surplus renewables (i.e. 28.5 kW∙h) is exported to 
the power grid at a low price. In Scenario 2, contributed 
by the energy sharing within building cluster, more 
renewable energy can be stored in the battery. After the 
batteries in the building cluster all being fully charged, 
only a small amount of surplus renewable energy (i.e. 
14.1 kW∙h, which is only half of the amount of exported 
electricity in Scenario 1) is still exported to the power 
grid. Scenario 2 has better performance compared with 
Scenario 1. Since the batteries of EV 2 and EV 3 have 
already been fully charged in the period 9:00~12:00, there 
is no energy flow for them in the period 14:00~17:00. In 
the developed control, considering the large renewable 
energy production in this period, the controller shifts the 
charging load of EV 2 and EV 3 to this period. Part of the 
surplus renewable generation is stored in the building 
battery and part of the surplus renewables is used to 
supply the EV load. As a result, exporting renewable 
energy to the power grid is completely avoided. This can 
effectively improve the renewable energy self-
consumption rate of the building cluster.  

  
Figure 5 Detailed energy flow (of building, PV systems, 

battery and three EVs) in the building cluster in each 
scenario in the first day of the selected week 

To sum up, in Scenario 1, the building cluster exported 
41.3 kW∙h electricity to the grid and imported 177.0 kW∙h 
electricity from the grid. In Scenario 2, the building 
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cluster exported 23.0 kW∙h electricity to the grid and 
imported 159 kW∙h electricity from the grid. Scenario 2 
performs better than Scenario 1 (i.e. with reduced energy 
imports/exports) as energy sharing enables the building 
cluster to keep more renewable energy on-site. While 
using the developed control, the building cluster exported 
0 kW∙h electricity to the grid and imported 135.6 kW∙h 
electricity from the grid. Scenario 3 performs even better 
than Scenario 2 (i.e. with reduced energy 
imports/exports), as the controller shifts EV charging 
loads to periods with large renewable production (and 
thus help keep more renewable energy used onsite in case 
the batteries have been fully charged).   
4.3 Economic and energy performance comparison 
This section compares the overall economic and energy 
performance of different controls. Table 4 summarizes the 
building-cluster-level daily electricity costs and 
renewable energy self-consumption rates. in different 
scenarios. Fig. 6(a) compares the daily renewable energy 
self-consumption rates of the three scenarios in the 
selected week. The relative performances improvements 
of Scenario 2 and the developed control compared with 
Scenario 1 are also depicted. Compared with Scenario 1, 
Scenario 2 improved the renewable energy self-
consumption by 5%~24%. This is because the 
collaboration enables buildings to share their surplus 
renewable energy with other buildings with insufficient 
supply and thus help reduce the electricity exports to the 
power grid (i.e. keep more renewable energy onsite). 
Compared with Scenario 2, the developed control further 
improves the renewable self-consumption rates by 2% to 
12%. This is because the developed control makes use of 
the flexible charging ability of EVs. By shifting the EV 
charging load to periods with large renewable generation 
periods, more renewable energy can be used onsite, 
especially when the electrical battery storages are fully 
charged.   

 
Figure 6 Comparison of the daily renewable energy self-

consumption rates and electricity costs of the three 
scenarios 

Fig. 6(b) compares the daily electricity costs of the three 
scenarios in the selected week. Due to increased 
renewable energy self-consumption rates and thus less 
grid power purchase, Scenario 2 achieves 11%~28% cost 
saving compared with Scenario 1, and the developed 
control achieves 7%~17% more cost saving compared 
with Scenario 2 (see Table 4). The relative improvements 
in economic performance is much larger than the relative 
improvements in daily self-consumption rates. This is 
because the building cluster purchase electricity from the 

power grid at a high price (i.e. 0.16 €/(kW∙h)) but sell 
electricity at a much lower price (i.e. 0.05 €/(kW∙h)). 
When the building cluster exports more renewables to the 
power grid (i.e. in Scenario 1), they will need to buy more 
electricity from the grid at a high price, as the aggregated 
daily electricity demand is fixed. 
5. Conclusion  
This study has proposed a coordinated control of building 
clusters for improving the cluster-level performance, with 
both energy sharing and EV charging considered. The 
developed coordinated control first uses a ‘representative’ 
building to represent the whole building cluster and 
optimizes its energy storage operation as well as the EV 
charging using genetic algorithm. The optimized 
performance of the building cluster is considered to be the 
optimal one that maximizes the energy sharing within the 
building cluster by coordinating individual building’s 
operation. Then, non-linear programming is used to 
coordinate the operation of each individual building. For 
validation, the developed control has been tested using the 
energy demand and supply data on a real buildings cluster 
(with three EVs considered) in Ludvika, Sweden, and its 
detailed energy performance (i.e. renewable self-
consumption rate) and economic performance (i.e. 
electricity cost) have been compared with two scenarios 
(i.e. one does not enable energy sharing and one allows 
full energy sharing, both do not have EV charging 
controls). The major findings are summarized as follows: 
• The developed coordinated control provides a 

mechanism to coordinate each single building’s 
operation and EV charging demands for improved 
building cluster performances.  

• In aspect of renewable utilization, the coordinated 
control improved the daily self-consumption rates 
by as much as 37% compared with Scenario 1 and 
as much as 12% compared with Scenario 2. This is 
because the developed control shifts the EV 
charging load to periods with large renewable 
generation periods, and thus more renewable energy 
are used onsite, especially when the electrical 
battery storages are fully charged.  Note that the time 
of departure is an important factor affecting the EV 
charging control and is considered as a known input 
in this study decided by the EV owner. In return, EV 
owner can be charged less for the electricity usage. 

• In aspect of economic costs, the coordinated control 
reduced the daily electricity costs by as much as 36% 
compared with Scenario and as much as 17% 
compared with Scenario 2. This is because the 
developed control reduces the amount of high-price 
grid electricity imports. 

In this study, the detailed driving patterns of EVs are not 
considered, and the SOC when they arrive the charging 
ports are determined by some random values. Future work 
will take account of the predictive EV driving patterns in 
the optimization to achieve better performances. 
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Meanwhile, the uncertainty in demand and renewable 
prediction is not considered in this study. Future work will 
try to develop more robust controls.     
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