
5International Conference Organised by  
IBPSA-Nordic, 13th–14th October 2020, 
OsloMet

SINTEF
PROCEEDINGS

BuildSIM-Nordic 2020
Selected papers

IBPSA



Editors: 
Laurent Georges, Matthias Haase, Vojislav Novakovic and Peter G. Schild

BuildSIM-Nordic 2020
Selected papers

SINTEF Proceedings

SINTEF Academic Press

International Conference Organised by IBPSA-Nordic, 
13th–14th October 2020, OsloMet



SINTEF Proceedings no 5
Editors: 
Laurent Georges, Matthias Haase, Vojislav Novakovic and Peter G. Schild
BuildSIM-Nordic 2020
Selected papers
International Conference Organised by IBPSA-Nordic, 
13th–14th October 2020, OsloMet

Keywords:
Building acoustics, Building Information Modelling (BIM), Building  
physics, CFD and air flow, Commissioning and control, Daylighting and 
lighting, Developments in simulation, Education in building performance 
simulation, Energy storage, Heating, Ventilation and Air Conditioning 
(HVAC),  Human behavior in simulation, Indoor Environmental Quality (IEQ), 
New software developments, Optimization, Simulation at urban scale,  
Simulation to support regulations, Simulation vs reality, Solar energy  
systems, Validation, calibration and uncertainty, Weather data & Climate  
adaptation, Fenestration (windows & shading), Zero Energy Buildings 
(ZEB), Emissions and Life Cycle Analysis

Cover illustration: IBPSA-logo

ISSN  2387-4295 (online)
ISBN 978-82-536-1679-7 (pdf)

© The authors 
Published by SINTEF Academic Press 2020
This is an open access publication under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

SINTEF Academic Press
Address:  Børrestuveien  3
 PO Box 124 Blindern
 N-0314 OSLO
Tel:  +47 40 00 51 00 

www.sintef.no/community
www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings 

on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are  

administered by the conference organizers and proceedings editors. Detailed  

procedures will vary according to custom and practice in each scientific community.



Identifying grey-box models of Norwegian apartment block archetypes 
 

Marius Bagle1*, Harald Taxt Walnum1, Igor Sartori1 
1SINTEF Community, Oslo, Norway 

 
* corresponding author: marius.bagle@sintef.no 

 
 

Abstract 
Identification of grey-box models to describe the heat 
dynamics of buildings is treated extensively in literature, 
However, to identify these models, data from controlled 
heating experiments is needed, which is not feasible in 
many cases. In this work, the aim is to overcome this 
threshold by using datasets from simulations of detailed 
white-box models to identify the grey-box models. Given 
that the white-box models are validated and calibrated 
against real measurement data, the need for real 
measurement data is bypassed, thus enabling the use of 
grey-box models identified from simulation data in real -
world predictive controllers. The results show that a three-
state grey-box model is able to capture the heat dynamics 
of the white-box model over a time period of ~1 week in 
the summer months.  
Introduction 
A potentially large amount of flexibility resides in the 
space heating of residential buildings. To realize this 
potential, it is necessary to model heat demand with 
models that are accurate enough and suitable for real time 
control. Purely physical (white-box) models are ill-suited 
for the purpose due to the level of detail required, the high 
uncertainties associated with knowledge of key technical 
parameters and the difficulty to treat non-technical 
features such as user behavior. Well-suited for this 
purpose are grey-box models, which combine a relatively 
simple physical descriptions of the building with data-
driven inference of key parameters. In  (Xingji Y., 
Laurent, & Sartori, 2019), the validation performance of 
grey-box models based on physical knowledge of 
buildings and grey-box models extracted from technical 
standards are compared. In (Walnum, Sartori, & 
Lindberg, 2019), a backward selection procedure is used; 
by removing elements in the model and testing the 
different permutations in validation. In both papers, 
measurement data from a controlled heating experiment 
on a real building is used. This is the challenge with grey-
box models. In addition to energy use and weather data, 
the indoor temperature should also be known, with the 
same hourly or sub-hourly resolution. Such data are 
scarcely available in most cases. Furthermore, it is not 
given that measurements from normal operation of 
buildings provide datasets that are ‘rich’ enough 
(containing enough statistical variability) to successfully 
drive the identification process. In (Sourbron, Verhelst, & 
Helsen, 2012), the authors conclude that the building 

control system should cause sufficient excitation of the 
building components whenever possible in test periods.  
This paper presents a method that aims at overcoming this 
bottleneck by combining features of both white-box and 
grey-box modelling. A set of white-box models 
(specifically, IDA-ICE models) representing the 
Norwegian stock of apartment blocks is available, based 
on ca. 20 archetypes previously developed in the 
TABULA/EPISCOPE project (Rønneseth & Sartori, 
2018). Validation of the hourly load profiles of such 
archetypes against a large dataset of measurements is 
undergoing in a parallel research activity. Provided that 
load profiles are validated, it is legitimate to assume that 
the indoor temperature profiles from the IDA-ICE 
archetypes are also representative for the real building 
stock. Under this assumption, the grey-box models can be 
identified from simulation of the archetypes. A Pseudo 
Random Binary Sequence (PRBS), aiming at exploring a 
wide and rapidly changing set of indoor temperatures 
around the comfort zone, is applied as the control signal 
for the heating system. Finally, validation of the identified 
models will focus on short term predictions (one day to 
one week) as this is the typical range of control horizon 
for predictive controllers. 
Methods 
For the model identification process, datasets from IDA-
ICE simulations, using archetype models of Norwegian 
apartment blocks is used. Datasets from twenty-one 
variations of eight archetypes have been made available 
through a parallel activity in ZEN.  

Table 1. Overview of archetypes. 
Name Building 

year 
# of 

floors/apartments 
Floor 
area 
[m2] 

AB_01 < 1956 4 / 8 557 
AB_02 1956-1970 4 / 16 1115 
AB_03 1971-1980 4 / 24 1672 
AB_04 1981-1990 4 / 24 1672 
AB_05 1991-2000 4 / 24 1672 
AB_06 2001-2010 4 / 24 1672 
AB_07 2011-2020 4 / 24 1672 
AB_08 >2020 4 / 24 1672 

 
 

BuildSim-Nordic 2020

- 293 -



 
Each archetype is a representative apartment block from 
each decade, with the exception of "AB_01", which 
represents apartment blocks built before 1956, and 
"AB_08", representing the passive house standard. The 
building standard (most importantly, the insulation) 
improves as the buildings get newer. Table 1 summarizes 
the archetypes. 
Figure 1 shows the standard layout of the archetypes as 
they are modelled in IDA-ICE. A common method used 
when modelling multi-story buildings is to use a three-
story building, with multipliers for the middle zones. This 
reduces both modelling and simulation time, without 
sacrificing accuracy in the results. Each apartment 
consists of three zones: living room, bedroom and 
bathroom (Rønneseth & Sartori, 2018). However, because 
the controlled heating input in the living room and 
bedroom is waterborne (district heating), and the 
bathroom is equipped with electric floor heating, the 
bathroom is disregarded. To find a representative 
temperature for the apartment block, a weighted average 
of the temperatures is taken, with the temperatures on the 
middle floor weighted by 2, since we are dealing with 4 
floors. 

 
Figure 1. Apartment block layout in IDA-ICE (Rønneseth & 

Sartori, 2018). 

The IDA-ICE simulations are done for a typical 
meteorological year (TMY) (Renné, 2016), with a 
Pseudo-random binary signal (PRBS) applied to the 
heating control system. The signal is applied from the 1st 
to the 20th in every month of the year. One issue with the 
signal is that it is applied to the zone-level heaters in the 
IDA-ICE models, while there still is a weather 
compensation curve modulating the supply temperature 
of the waterborne heating system. Thus, the signal is not 
a true PRBS, since the heating power has a certain 
dependancy on the outdoor temperature. Figure 2 shows 
the extracted dataset for “AB_03” in May. We see that the 
indoor temperature 𝑦𝑦𝑦𝑦𝑦𝑦 is allowed to deviate substantially 
from normal comfort limits.  

 
Figure 2. Example input dataset. 

To identify suitable models from the data, the forward 
selection procedure in (Bacher & Madsen, 2011), which 
uses maximum likelihood estimation, is employed. 
Consider a series of measurements: 

𝑌𝑌𝑛𝑛 = [𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛−1, … ,𝑦𝑦1 ,𝑦𝑦0] (1) 
The likelihood function is the joint probability density: 

𝐿𝐿(θ;𝑌𝑌𝑛𝑛) = 𝑝𝑝(𝑌𝑌𝑛𝑛|θ) (2) 
where θ is the vector of model parameters. Another way 
to write this is: 

𝐿𝐿(θ;𝑌𝑌𝑛𝑛) = ��𝑝𝑝(𝑌𝑌𝑘𝑘|𝑌𝑌𝑘𝑘−1, θ)
𝑁𝑁

𝑘𝑘=1

� 𝑝𝑝(𝑌𝑌0|θ) (3) 

i.e. as a product of conditional densitities, with 𝑝𝑝(𝑌𝑌0|θ) as 
a parameterization of the starting conditions (Kristensen, 
Madsen, & Jørgensen, 2004). The set of parameters θ�  
that maximizes the likelihood of the model is then found 
by solving to the optimization problem: 

θ� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
θ

{ 𝐿𝐿(θ;𝑌𝑌𝑁𝑁)} (4) 

The software CTSM-R, developed at DTU, is used to 
identify the models. CTSM-R, or Continuous Stochastic 
Time Modelling in R, is an R package providing a 
framework for identifying and estimating stochastic grey-
box models. A grey-box model consists of a set of 
stochastic differential equations coupled with a set of 
discrete time observation equations, which describe the 
dynamics of a physical system and how it is observed. The 
grey-box models can include both system and 
measurement noise, and both nonlinear and nonstationary 
systems can be modelled using CTSM-R . Internally, it 
uses an extended Kalman filter to set up the conditional 
densities from the parametrized initial conditions, and a 
quasi-Newton method for solving the optmization 
problem (Madsen, 2018). An issue with gradient-based 
methods in general is that it finds a local optimum, i.e., 
there is no guarantee that the solution found is the most 
optimal on the entire parameter space. 
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A forward selection process is employed by utilizing a 
statistical test, in which each model considered is a subset 
of a larger model (Bacher & Madsen, 2011). The starting 
point for the procedure is the smallest feasible model, and 
possible improvements are added successively until the 
maximum amount of information is extracted from the 
data. The criteria for this is a statistical testing procedure 
involving likelihood-ratio tests: when the p-value is below 
a certain limit (e.g. 0.05, which corresponds to a 95 %-
confidence level), the more complex model is selected in 
favor of the simpler model. If no additions yield a p-value 
below the limit, we have found a sufficient model. We 
start the selection procedure with the smallest feasible 
model:  

 
Figure 3. Model Ti 

𝑑𝑑𝑇𝑇𝑖𝑖 =
1

𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖
(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑖𝑖)𝑑𝑑𝑑𝑑 +

1
𝐶𝐶𝑖𝑖

(𝑃𝑃𝑠𝑠 + 𝑃𝑃ℎ + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑 + σ𝑖𝑖𝑑𝑑ω𝑖𝑖 (5) 

𝑌𝑌𝑘𝑘 = 𝑇𝑇𝑖𝑖,𝑘𝑘 + 𝑒𝑒𝑖𝑖 (6) 
with descriptions of the variables and parameters listed 
below. Since we are dealing with mathematical models, it 
is most accurate to characterize the descriptions as 
interpretations in the case of parameters found with 
maximum likelihood estimation. The physical meaning 
for the same parameter will change as the model order 
increases (Bacher & Madsen, 2011): 
𝑇𝑇𝑖𝑖  – Indoor air temperature 
𝑇𝑇𝑎𝑎 – Outdoor temperature 
𝐶𝐶𝑖𝑖 – Thermal capacitance of interior 
𝑅𝑅𝑖𝑖𝑖𝑖 – Thermal resistance from interior to ambient 
𝐴𝐴𝑤𝑤 – Effective window area 
σ𝑖𝑖  – Variance of the Wiener (stochastic) process 
Following the example of (Bacher & Madsen, 2011), 
states to add in the forward selection process are Tm and 
Te. They represent the temperature of the heat 
transportation medium and building envelope 
respectively. For conciseness,

 
Figure 4. Model TiTeTmAeWs 

 only the equations and circuit diagram for the complete 
model TiTeTmAeWs are shown here. These two additional 

states result in two additional state equations. 
Furthermore, a renaming of the resistance associated with 
the interior from 𝑅𝑅𝑖𝑖𝑖𝑖 (directly from interior to ambient) to 
𝑅𝑅𝑖𝑖𝑖𝑖 (from interior to envelope) is necessary, as well as 
substituting 𝑇𝑇𝑎𝑎 with 𝑇𝑇𝑒𝑒 in equation 5: 
 

𝑑𝑑𝑇𝑇𝑖𝑖 =
1

𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖
(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑖𝑖)𝑑𝑑𝑑𝑑 +

1
𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖

(𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑖𝑖)𝑑𝑑𝑑𝑑 

+
1
𝐶𝐶𝑖𝑖

(𝑃𝑃𝑠𝑠 + 𝑃𝑃ℎ + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑘𝑘 ∗ 𝑊𝑊𝑊𝑊)𝑑𝑑𝑑𝑑 + σ𝑖𝑖𝑑𝑑ω𝑖𝑖 (7) 

𝑑𝑑𝑇𝑇𝑚𝑚 =
1

𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝑚𝑚
(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑚𝑚) + σ𝑚𝑚𝑑𝑑ω𝑚𝑚 (8) 

𝑑𝑑𝑇𝑇𝑒𝑒 =
1

𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝑒𝑒
(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑒𝑒)𝑑𝑑𝑑𝑑 +

1
𝑅𝑅𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒

(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑒𝑒)𝑑𝑑𝑑𝑑  

+ σ𝑒𝑒𝑑𝑑ω𝑒𝑒 (9) 
 

where the added parameters are: 
𝑇𝑇𝑒𝑒 - Envelope temperature 
𝑇𝑇𝑚𝑚 – Medium temperature 
𝑅𝑅𝑖𝑖𝑖𝑖 - Thermal resistance from interior to envelope 
𝑅𝑅𝑒𝑒𝑒𝑒 - Thermal resistance from envelope to ambient 
𝑅𝑅𝑖𝑖𝑖𝑖 – Thermal resistance from interior to medium 
𝐶𝐶𝑚𝑚 – Thermal capacitance of medium 
𝐶𝐶𝑒𝑒 - Thermal capacitance for the envelope 
σ𝑒𝑒  – Wiener process variance for Te 
σ𝑚𝑚 – Wiener process variance for Tm 

𝑘𝑘 – Wind heat transmission coefficient [unit: K∗s
kWh∗m

] 

Generally, the grey-box models considered in this work 
can be expressed as continuous, stochastic state-space 
matrix equations. This can be written as: 
 

𝑑𝑑𝐓𝐓 = 𝐀𝐀𝐀𝐀𝑑𝑑𝑑𝑑 + 𝐁𝐁𝐁𝐁𝑑𝑑𝑑𝑑 + 𝐄𝐄𝐄𝐄𝑑𝑑𝑑𝑑 + 𝑑𝑑𝛚𝛚 (10) 
 
where T is the temperature state vector, U is the 
controllable input vector, and the transition matrices A 
and B consist of simple parameters only to preserve model 
linearity.  This also applies to the matrix E, which 
contains the coefficients for the disturbance vector V, 
where uncontrolled heating inputs are lumped. The term 
𝑑𝑑𝛚𝛚 represents the stochastic part of the model, which is 
represented by the Wiener process. 
After model identification and p-value testing, models are 
validated using datasets from normal operation, i.e. the 
heating control system trying to maintain a constant set-
point temperature (no nighttime setback). Figure 5 shows 
the entire model identification process, from IDA-ICE 
simulation to validation of the models. Processes are 
colored green, data is colored light blue, and decisions 
purple. Notice the stippled lines around the IDA-ICE 
simulation with PRBS-signals, which is an ongoing 
parallel research activity.  
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Figure 5. Flowchart of the model identification process.  
Results 
Due to the large number of archetypes and models that 
have been investigated in the work leading up to this 
paper, the presentation of results will be limited to the 
archetype "AB_03" variant 2 for space considerations 
(apartment block from the seventies, windows changed, 
renovated). We consider this to be a good representation 
of the "average" apartment block in the Norwegian 
building stock. Furthermore, of all the models identified, 
the ones from the training dataset in May are presented, 
since this month has the most variability with regard to 
solar radiation and outdoor temperature. For validation, 
the models identified in CTSM-R, which are continuous 
time state-space models, are discretized in accordance 
with the time step of the of the dataset used for training (5 
min). First, we consider the results from the p-value test.  

Table 2. Forward selection, AB_03 var 2, May 
Iteration  Models   

0 
# params 
𝑙𝑙(θ;𝑌𝑌𝑛𝑛) 

Ti 
6 

389.22 
1 

# params 
𝑙𝑙(θ;𝑌𝑌𝑛𝑛) 
p-value 

TiTe 
10 

1769.12 
0 

TiTm 
10 

1773.16 
0 

TiAe 
n.a. 
n.a. 
n.a. 

TiWs 
7 

389.22 
0.29 

2 
# params 
𝑙𝑙(θ;𝑌𝑌𝑛𝑛) 
p-value 

TiTeTm 
14 

1828.35 
0 

TiTeWs 
11 

1765.28 
1 

TiTeAe 
11 

1470.86 
1 

3 
# params 
𝑙𝑙(θ;𝑌𝑌𝑛𝑛) 
p-value 

TiTeTmWs 
15 

1828.35 
1 

TiTeTmAe 
15 

1829.27 (?) 
0.17 

4 
# params 
𝑙𝑙(θ;𝑌𝑌𝑛𝑛) 
p-value 

TiTeTmAeWs 
16 

1829.27 
1 

For the May dataset, the p-value test suggests both TiTe 
and TiTm as improvements on the one-state model Ti, 
with a p-value of  0 for both. This signifies that the models 
describe the data significantly better than the one-state 
model. Since TiTm has a slightly higher log-likelihood, 
this is the model selected in the first iteration. The model 
with wind speed (Ws) added as a disturbance generator 
does not yield any improvement on the log-likelihood, 
hence this model is dropped and the extension saved for 
later. In the next iteration, the only model that yields any 
improvement is the three-state model TiTeTm. The other 
extensions actually yield lower log-likelihoods than the 
best models in the previous iteration. 
In the third iteration, the extensions Ae (splitting of solar 
gains in internal and envelope parts) and Ws do not yield 
any significant improvements over TiTeTm. Strictly 
speaking, the model selection process should end here, 
but for completeness, we try fitting the full model. It has 
the same log-likelihood as TiTeTmAe, thus, there is no 
improvement. Hence, the model selection process is 
finished, with TiTeTm as the "winner".  

 
Figure 6. ACF of the residuals 

To investigate the assumption of white-noise residuals 
(effects not captured by the model are uncorrelated and 
identically and independently distributed), we look at the 
autocorrelation function of the residuals. It shows the 
correlation of the residuals (𝑌𝑌 − 𝑌𝑌�) in the time domain. 
For this assumption to hold with a 95 % confidence level, 
ca. 19 of 20 lags have to be inside the blue line in the plots.  
Figure 6 shows the autocorrelation of the residuals for a 
selection of the models considered in the forward 
selection process. For the one-state model, Ti, visual 
inspection of the ACF-plot tells us that at least 7 out of the 

BuildSim-Nordic 2020

- 296 -



96 lags shown in the plot is outside the 95 % confidence 
interval, thus, the model does not describe the heat 
dynamics of the apartment block sufficiently. For the two-
state-model, TiTe, the lags from timestep zero to seven are 
dampened, but there is an emergence of lags around 
timestep 20 that was not present in the previous model. 
Counting the lags yields 5 terms outside the confidence 
interval. Hence, this model is also insufficient for 
describing the heat dynamics. The next model, TiTeTm, 
shows a dampening of the lags around timestep 20, and 
they appear now to be within the confidence band, and we 
have three lags outside it. This means that the white-noise 
assumption on the residuals holds. The complete model, 
TiTeTmAeWs, shows no improvement, and it can be 
concluded that judging by the autocorrelation plots, the 
model TiTeTm is a sufficient model. 
To test the prediction performance of the models 
identified, we look at the open-loop out-of-sample 
predictions for a selection of the models (TiTe, TiTe, 
TiTeTm). The validation datasets contain data for normal 
operation of the heating system, i.e. keeping the zones at 
a constant 20 degrees Celsius (there is no nighttime 
lowering of the temperature). In order to get a reasonable 
estimate of the hidden states (in our case, Tm and Te), a 
one-step ahead prediction, where the correct ("measured") 
temperature is fed back to the model, is run for 48 hours 
immediately preceding the week selected for open-loop 
prediction. This should give a better estimate of the 
hidden states than the naïve approach of simply setting 
them equal to the value of Ti at the start of the validation 
period.  

 
Figure 7. Validation, May models (Jan., Feb., May) 

Figure 7 shows the prediction open-loop prediction of the 
models Ti, TiTe, TiTeTm and TiTeTmAeWs identified with 
PRBS-operation in May on validation datasets with 
normal operation in January, February and May. From the 
plots, it can be seen that the models generally fails in the 
winter months of January and February. An exception 
here is the one-state model Ti, which manages to track the 
actual temperature for almost 4 days. This may be due to 

the total capacitance being smaller than for the other 
models (see table 2.), i.e. needing less heat to maintain the 
set-point temperature. In addition, the effective window 
area estimated for Ti is on the smaller side, at 11.25 m2, 
which makes gives the solar gains relatively little 
importance in the model, making it more consistent with  
the moderate solar radiation in January. We see the same 
trend in February, Ti tracks the set-point temperature best, 
but here there is drop-off after 12 hours, and although the 
model recovers somewhat, there is a persistent offset of at 
least 1 degree Celsius. For validation in May, the 
predictions from TiTeTm follows the actual temperature 
for 4 days, which has to be considered good prediction 
performance in this context.  

 
Figure 8. Validation, May models (June, July, Aug.) 

Figure 8 shows the open-loop predictions of models 
identified in May on validation datasets in June, July and 
August. It can immediately be seen that prediction 
performance is better in these months than in the winter 
months. The model TiTeTm again appears to have to best 
performance, although there is an issue with the initial 
conditions. The temperature (of the interior, "measured") 
jumps up immediately after the first time step, which 
signifies that the estimation of the initial values of the 
hidden states is too high. We can interpret this as one or 
more of the hidden states having a biased energy balance. 
Indeed, by looking at table 3, it is seen that the estimated 
initial value of the medium temperature, 𝑇𝑇𝑚𝑚0, is estimated 
to -24.6 ℃ for both the complete model and TiTeTm. This 
is clearly a non-physical situation; the heat transportation 
medium should not have a temperature that is higher than 
the envelope. According to (Coninck, Magnusson, 
Åkesson, & Helsen, 2016), this is a situation in which 
numerical optimality should be balanced against models 
with parameters that make sense physically. A less 
optimal in the numerical sense, i.e. a model with a lower 
log-likelihood, can be a more beneficial model for 
prediction and forecasting, given that it has sensible 
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parameters, not necessarily in the absolute numbers, but 
at least in relative terms. This non-physicality can also be 
inferred from the estimated time constants and UA-
values[W/℃m2]: the time constant of the envelope ranges 
from 137 to 218 hours as different topologies are 
considered, and the UA-values range from 0.83 to 7.88. 
Searching the entire parameter space for both numerically 
feasible and physically sensible models with a gradient-
based method is not a trivial task, and no attempt to solve 
this in a systematic fashion has been undertaken in this 
work. 

Table 3. Model parameters, identification May 
Parameters TiTeT

mAeWs 
TiTeTm TiTe Ti 

𝑇𝑇𝑖𝑖0 [℃] 19.39 19.39 19.37 25.47 
𝑇𝑇𝑒𝑒0 [℃] 20.08 20.14 19.30 n.a. 
𝑇𝑇𝑚𝑚0 [℃] -24.60 -24.59 n.a. n.a. 
𝐶𝐶𝑖𝑖 kWh/℃] 8.20 8.27 5.04 75.16 
𝐶𝐶𝑒𝑒 [kWh/℃] 1024 488.3 2939 n.a. 
𝐶𝐶𝑚𝑚 [kWh/℃] 0.30 0.33 n.a. n.a. 
𝑅𝑅𝑖𝑖𝑖𝑖 [℃/kW] 0.013 0.013 0.015 *0.49 
𝑅𝑅𝑖𝑖𝑖𝑖[℃/kW] 0.58 0.55 n.a. n.a. 
𝑅𝑅𝑒𝑒𝑒𝑒[℃/kW] 0.18 0.28 0.075 n.a. 
𝐴𝐴𝑤𝑤[m2] 89.39 102.52 81.76 11.25 
𝐴𝐴𝑒𝑒 [m2] 178.0 n.a. n.a. n.a. 
𝑒𝑒𝑖𝑖  -5.60 -5.61 -16.3 -25.5 
σ𝑖𝑖   -8.35 -8.35 -0.63 -0.90 
σ𝑚𝑚  3.71 3.66 n.a. n.a. 
σ𝑒𝑒   -0.98 -1.01 -0.72 n.a. 
τ1 [h] 0.102 0.102 0.074 36.99 
τ2[h] 0.184 0.192 n.a. n.a. 
τ3 [h] 181.06 137.66 218.4 n.a. 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 [kWh/℃] 1033 496.9 2944 75.16 
𝑈𝑈𝑈𝑈 [W/℃m2] 0.905 0.835 7.88 1.42 

 
We consider instead models identified in September, 
which yielded more consistent results. Figure 9 shows the 
open-loop predictions on the same validation datasets as 
Figure 8. The prediction performance of TiTe especially 
is improved. Furthermore, the performance of the three-
state model TiTeTm is also improved, with a closer 
tracking of the actual temperature in the timeframes 
where the May models showed satisfactory performance , 
and a decreased tencency to diverge towards the end of 
the weeks.  
Table 4 shows the time constants and UA-values for a 
selection of the models identified on the September 
dataset. The consistency across the model topologies is a 
significant improvement on the models identified on the 
May dataset. . The UA-value lies between 1.51 and 1.64, 
values that can be considered reasonable. The smallest  

 

 
Figure 9. Validation, Sept. models (June, July, Aug.) 

time constant is right around the sampling time of 0.0833 
hours in the topologies with more than one state. This 
makes sense, as this is the smallest timeframe in which 
any dynamics can be captured by the model. If a sampling 
time of one hour were to be used instead, a small time 
constant of around 1 hour would be seen instead.   
 

Table 4. Essential model parameters, identification 
September 

Parameters TiTeTmAe
Ws 

TiTeTm TiTe Ti 

τ1 [h] 0.073 0.061 0.101 32.84 
τ2 [h] 3.31 2.61 n.a. n.a. 
τ3 [h] 131.32 125.5 90.78 n.a. 
𝑈𝑈𝑈𝑈  [W/℃m2] 1.51 1.52 1.64 1.53 

 
Comparing identification results across archetypes is 
another indicator of the consistency of the results. Due to 
issues with opitmizer convergence and time limits, this 
exercise has been limited to the archetypes AB01.5 (old 
building, renovated windows), AB03, AB07 and AB08 in 
this work. Table 5 shows the results. There is a difference 
in how the resistances and capacitances are handled, e.g. 
for AB_01, the resistances are higher than for AB_07 
(which corresponds to TEK10) and AB_08 (passive house 
standard). On the other hand, if the capacitances are taken 
into account, the results make more sense. As the building 
standard increases, the time constants increase. This is in 
line with the expected: because of better insulation in the 
walls, there is a larger tendency for the heat to remain in 
the envelope. As for the UA-value, it decreases in 
accordance with the building standard, with the exception 
of AB_03, where it increases. 
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Table 5. Model parameters across archetypes, TiTe, 
May dataset 

Parameters AB01.5 AB03 AB07 AB08 
𝑇𝑇𝑖𝑖0[℃] 19.24 19.37 21.16 21.79 
𝑇𝑇𝑒𝑒0[℃] 19.12 19.30 21.11 21.76 
𝐶𝐶𝑖𝑖 [kWh/℃] 1.70 5.04 20.15 26.04 
𝐶𝐶𝑒𝑒 [kWh/℃] 310.8 2939 755.0 892.7 
𝑅𝑅𝑖𝑖𝑖𝑖 [℃/kW] 0.036 0.015 0.005 0.0045 
𝑅𝑅𝑒𝑒𝑒𝑒[℃/kW] 0.39 0.074 0.30 0.39 
𝐴𝐴𝑤𝑤[m2] 176.62 81.76 164.8 162.4 
𝑒𝑒𝑖𝑖  -17.51 -16.28 -8.73 -9.13 
σ𝑖𝑖   -0.83 -0.63 -9.83 -10.10 
σ𝑒𝑒   -1.04 -0.72 -1.69 -1.74 
τ1 [h] 0.608 0.074 0.104 0.113 
τ2 [h] 122.1 218.4 233.0 355.0 
𝑈𝑈𝑈𝑈 [W/℃m2] 4.93 7.88 2.33 1.79 

 
To compare the parameters obtained through model 
identification in CTSM-R with the parameters of the IDA-
ICE models, some assumptions are necessary. Although 
reports of the simulation models are available, they do not 
contain any information about the thermal capacity of the 
apartment blocks. To alleviate this, we use (Standard 
Norge, 2014) to get approximate values for the 
capacitances. Assuming a relatively heavy building (100 
Wh/Km2), and a ceiling height of 2.7 m, the envelope 
thermal capacity can be calculated. The thermal capacity 
of the interior is more straightforward, taking 0.342 
Wh/m3K as the specific heat capacity of air at 15 ℃ 
(Dixon, 2007; Jones, 1978). The per floor area normalized 
heat transfer coefficient UA is found from simulation 
reports in IDA-ICE. If it is assumed that the most of the 
thermal resistance is connected to the envelope, an 
approximation of the long time constant can be found by 
multiplying the envelope capacitance and the total 
thermal resistance (inverse of the UA-value), since these 
are the parameters that dominates the dynamics of the 
system at low frequencies. Table 6 shows the results of 
this estimation. As can be seen from the table, both the 
capacitances and the UA-values are overestimated by a 
significant margin. However, the time constants are quite 
close, which means that the overestimation of the 
capacitances and the underestimation of  the resistances 
balance each other out to yield a seemingly good estimate 
of the time constants, and hence the heat dynamics of the 
buildings. Nevertheless, it must be kept in mind that the 
values we are comparing the estimated model parameters 
to are estimates themselves, so further investigation into 
the possibility for a more thourough reporting of the IDA-
ICE model is needed.  
 
 
 

Table 6. Estimated/reported parameters (IDA-ICE) 
Parameters AB01.5 AB03 AB07 AB08 
𝐶𝐶𝑖𝑖 [kWh/℃] 0.5 1.5 1.5 1.5 
𝐶𝐶𝑒𝑒 [kWh/℃] 60 160 160 160 
𝑈𝑈𝑈𝑈 [W/℃m2] 0.98 0.51 0.39 0.25 
τ2 [h] (apprx.) 120 188 246 380 

 
Discussion 
The results from the model identification are varied. For 
some validation datasets, the open-loop prediction 
performance may be regarded as sufficiently adequate for 
MPC application purposes (with prediction horizon 
typically from one to few days, and actuation of only 1-
step ahead control signal in closed loop). This is generally 
in the months with little to no controllable heat input 
(summer months). In the winter months, however, only 
the single-state model Ti is able to track the actual 
temperature. An explanation could be that the indoor 
temperature – from the IDA ICE archetypes – in these 
months is almost constant, which is an unrealistic 
situation in real life. Were there more variability in the 
measured temperature, the model could perhaps capture 
these dynamics. This aspect might be improved by 
changing the low-level controllers of the heating system 
in the IDA-ICE archetypes, which are now simulated as 
an ideal PI-controller.   
Furthermore, as was mentioned in the Methods section, 
there is also some modulation of the heating input through 
a weather compenstion curve in the central heating system 
in the IDA-ICE model, which means that the heating 
signal is not pure PRBS. Hence, the heating input in May 
is significantly smaller than in January. However, in 
January, the solar radiation is small, so this would mean 
that the models will have poor prediction performance on 
the months with more significant solar radiation. May 
should be a good a compromise with regard to the trade-
off between heating and solar. In the results, better 
prediction and more consistent parameter estimates were 
shown for September, but the same argument could be 
made for this month. There is also the possibility of bugs 
in the IDA-ICE archetype models beyond this. However, 
since IDA-ICE simulation is not the topic of this paper, 
this is left for further work.   
Another point of uncertainty is the merging and weighing 
of the temperatures for the different zones. It could be that  
this simple approach smoothes out dynamics in the 
temperature that might be needed for better and more 
consistent results from the model identification. To 
investigate this further, a model with zoning could be set 
up. These models, however, would quickly become 
convoluted, with many parameters and states, and would 
increase the computational time needed for convergence 
of the log-likelihood optimization by an order of 
magnitude.  
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Nevertheless, it could simply be that there is not enough 
variability in datasets generated from simulation software 
to drive the model identification process. This aspect is 
worth further investigation, especially with respect to the 
low-level controls (i.e. PI controller) in the simulated 
heating system, since this maintains an unrealistically 
constant (and challenging from a statistical analysis 
viewpoint) indoor temperature. 
Conclusion 
The software package CTSM-R has been used in order to 
obtain reduced-order models, based on data from the 
building simulation program IDA-ICE, obtained by using 
a Pseudo-random binary signal. A forward selection 
procedure is employed to find a model that sufficiently 
describes the data. A three-state model, TiTeTm, is found 
to the best alternative, both in the log-likelihood p-value 
test, and in the validation performance.  In the weeks 
selected for validation, the models identified on the 
Septemeber dataset shows better prediction performance 
than the models identified on the May dataset. These 
parameters of these models also exhibit more reasonable 
physical values. In general, the models perform better on 
the validation datasets when there is no controlled heating 
input. 
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