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Abstract 
The potential in cost and energy savings by replacing a 
feed forward weather compensated control (WCC) 
controlled radiator system with a linear MPC controller is 
investigated in a Modelica-Python setup. It is shown that 
if the MPC is optimized for minimum energy 
consumption it can reduce the energy consumption by up 
to 12 %. It is also demonstrated how variable price signal 
can influence the heat demand profile, and thereby shift 
energy consumption away from peak hours. By 
introducing a peak load tariff, it is also possible to reduce 
the rapid changes and large peaks often caused by 
optimization-based controllers 

Introduction 
The Clean Energy Package of the European union 
highlights the importance of utilising end-user flexibility 
to support the decarbonisation of the energy system 
(European Commission 2018). A significant part of 
Europe's energy demand for heating and domestic hot 
water is covered by district heating systems. District 
heating can exploit several sources of energy, thus serving 
as a source of flexibility for the electric grid (Sandberg et 
al. 2019). Heat supply usually consists of several 
production units, from base to peak load units, with 
different sources and operational costs. Their operation is 
prioritized to minimize the total system cost. Heat demand 
is mainly dependent on outdoor temperature, although 
factors related to user behaviour also influence the 
demand. Due to increased DHW demand in the morning 
and evening, and the use of night setback controls, 
significant peaks can often be observed during these hours 
(Kensby, Trüschel, and Dalenbäck 2015). To minimize 
the total production cost and related emissions, it is 
usually desirable to minimize the peaks in demand. 
Reducing peak demands, can also remove bottle necks in 
the distribution grid and allow for increased heat delivery. 
Several studies have shown that utilisation of the building 
thermal inertia has a large potential for peak reduction 
(Kensby, Trüschel, and Dalenbäck 2015; Romanchenko 
et al. 2018). 
A common way of controlling buildings with district 
heating is through an outdoor temperature compensation 
curve, that decreases the supply temperature to the 
radiators as the outdoor temperature gets milder than the 
design conditions. This is called weather compensated 

control (WCC) (Hou, Li, and Nord 2019). In many 
buildings, especially older ones, the radiators are only 
equipped with manually adjustable valves, so that WCC 
is the only automated control for the heat supply and 
works as a feed-forward controller. Thus, the indoor 
temperatures fluctuate somewhat in the various rooms, 
given that occupants only marginally adjust the radiator 
valves. In other words, WCC relies on the users' tolerance, 
presuming – without feedback knowledge – that indoor 
temperatures fluctuate within a limited and still 
comfortable range. Such buildings present an opportunity 
for simple and cost-efficient introduction of Smart 
controllers for the heating system. Model predictive 
controls (MPC) is one approach, with the potential to 
improve indoor climate, and reduce both energy 
consumption and peak loads (Halvgaard et al. 2012).  
In MPC, a model representation of the real system is used 
to optimize a sequence of control signals for a finite 
control horizon (Nc) subject to predictions of future 
disturbances (e.g. weather and internal gains), constraints 
(e.g. allowed indoor temperatures) and external signals 
(e.g. energy price). The objective function is typically to 
minimize energy consumption or energy cost. The first 
control signal (uk) is then applied to the system. At the 
next time step (k+1), measurements are returned to the 
control model and the optimization is re-run and a new 
control signal applied. This iterative process is also called 
receding horizon control. 
In this work we demonstrate the potential for how 
replacement of WCC controllers at DH substations with 
MPC can reduce energy consumption and energy cost as 
well as respond to other external signals, such as 
minimizing consumption in peak hours.  

Method 
To evaluate the performance of the model predictive 
controller with different cost functions a test setup with a 
substation emulator in Modelica (Mattsson and Elmqvist 
1997) has been created. The BOPTEST framework (Blum 
et al. 2019) is used to enable co-simulation between the 
emulator and the controller model. A basic schematic of 
the simulation setup is shown in Figure 1 and the main 
components are described in subsections below. The 
emulator model is compiled as a Functional Mock-up 
Unit (FMU) and kept within the BOPTEST docker 
container together with times series data for disturbances 
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(internal gains, outdoor temperature and solar radiation) 
and constraints (indoor temperature band). Measurements 
from the emulator and forecast for the constraints are sent 
to the controller model (in the MPC formulation) for each 
control step and new setpoints are returned. 

 
Figure 1: Schematic of simulation setup 

 
Emulator 
The Modelica substation model is a modified version of 
the substation model presented by Kauko et al. (2018). 
The main components are based on the library presented 
by Rohde et al. (2018). Models from the Buildings 
Library (Wetter et al. 2014) are used for weather data, 
internal gains and communication with the BOPTEST 
framework. The principal layout of the substation model 
is shown in Figure 2. The baseline controller is WCC, 
with a predefined linear supply temperature curve based 
on current outdoor temperature. The prescribed supply 
temperature can be overwritten by the external controller 
model. In this work, the DHW system is not included in 
the evaluation. 

 
Figure 2: Principal layout of emulator substation model 

The building envelope is modelled with a 2R2C network 
as shown in Figure 3. However, with the inclusion of the 
thermal mass and resistance in the radiator, the model 
becomes a 3R3C system. Cw and Ci represent the heat 
capacity of the building envelope and interior 
respectively.  Rw is the resistance between the ambient 
and the envelope and Ri is the thermal resistance between 
the envelope and the interior. The radiator is modelled 
according to EN 442-2 (CEN 2014). weaBus is the 
connection to the external weather data and feeds the solar 
radiation (φs) and the ambient temperature (Ta) to the 
model. Aw denotes the effective window area, so that the 
solar gains into the interior is Aw*φs. The heat from the 
ventilation (φv) is calculated as: 

𝜑𝑣 = �̇�𝑣 × 𝜌𝑎 × 𝑐𝑎(𝑇𝑎 − 𝑇𝑖) (1) 

Where Vv is the ventilation flow rate, ρa is the air density 
and ca is the air heat capacity. The internal gains (φint) are 
defined by a user occupancy, lighting, and other electric 
equipment schedule.  

 
Figure 3: Schematic of building envelope emulator model 

 
MPC formulation 
The MPC formulation consists of a state estimator, a 
controller model, an optimization algorithm and a 
regulator. The whole MPC formulation is programmed in 
Python and communicates with BOPTEST via the request 
API. 
The controller model is a linear and time invariant state 
space formulation of the 2R2C model shown in Figure 4. 
The general form of the state space formulation is given 
in equation (2) and (3). 
         𝑑𝑋(𝑡) = 𝐴(Θ)𝑋(𝑡) + 𝐵(Θ)𝑈(𝑡) + 𝐸(Θ)𝐷(𝑡) (2a) 

𝑌(𝑡) = 𝐶𝑋(𝑡)   (2b) 
where X(t) is the state vector, which in building energy 
modelling usually represents internal temperatures. U(t) 
is the vector of controllable inputs (heat from radiator φh). 
D(t) are disturbances (solar radiation φs, internal heat 
gains φig). A and B are matrices whose elements are 
functions of the parameters Θ, while C describes the 
relation between the model's states (predicted 
temperatures) and the measured outputs Y(t) (measured 
temperatures). 

 
Figure 4: RC network of controller model (2R2C). 

An advantage with the linear and time invariant state 
space model is that it can be reformulated directly into a 
linear programming (LP) optimization problem 
(Halvgaard et al. 2012).  
A set of constraints are applied to the problem. The DH 
heat exchanger is only able to reach a fixed maximum 
supply temperature. This is reformulated into a maximum 
heat emission (𝑢). In addition, a constraint on the indoor 
temperature is added to define a thermal comfort band 
between maximum( 𝑦) and minimum (𝑦). Since there is a 
risk that the only valid solution to the problem is outside 
the allowed temperature range (e.g. during warm periods), 
the temperature constraint is formulated as a soft 
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constraint. The violation of the temperature constraint (δ) 
is included in the objective function with a penalty factor 
(ρ). This yields the following optimization problem: 
 

min[∑ (𝑐𝑘
𝑣𝑎𝑟𝑢𝑘 + 𝜌𝛿𝑘)𝑁𝑐

𝑘=1 ∆𝑡]       (3a) 
𝑠. 𝑡.      𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑑𝑘               (3b) 

𝑦𝑘 = 𝐶𝑥𝑘 (3c) 
𝑦𝑘 − 𝛿𝑘 ≤ 𝑦𝑘 ≤ 𝑦

𝑘
+ 𝛿𝑘          (3d) 

𝑢𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑘                 (3e) 
𝛿𝑘 ≥ 0              (3f) 

 
where 𝑐𝑘

𝑣𝑎𝑟  is the energy cost for each timestep k. The 
problem is formulated in python using the optimization 
package pyomo (Hart et al. 2017) and the GLPK 
optimization algorithm(GLPK 2018).  
The results from the optimization yields a sequence of 
optimum heat emissions from the radiator. This is passed 
to the regulator to transform it to radiator supply 
temperatures. The regulator includes the same equations 
for the radiator as the emulator model, except that it does 
not take the thermal mass into account (i.e. the radiator 
model is steady-state in the regulator).  
As described above, the controller model has two states. 
However, as for a real implementation, the internal state 
(Tw) of the building envelope cannot be measured. To 
estimate this state at each control update step, while 
filtering out measurement and process noise (not included 
in this study), a Kalman filter is applied as state estimator, 
using the FilterPy library (Labbe 2018).  
 
Testcase and objective functions 
To evaluate the potential for the MPC to both improve the 
energy efficiency and to respond to external signals, a 
one-week testcase has been specified. The testcase is 
designed to emulate an energy efficient residential 
building of 1 000 m2. 
 
Model parameters 
The main model parameters for the emulator model are 
shown in Table 1. The properties of the building envelope 
is based on the identified parameters in (Walnum, 
Lindberg, and Sartori 2019), but scaled up to a 1 000 m2 
building. The heating system is dimensioned according to 
the building demand from simulation, with a supply 
temperature of 60 °C at design winter temperature. 
 
Table 1: Model parameters 

Building  
Area [m2] 1 000 
Ci [J/kgK] 3.6 E7 
Cw [J/kgK] 1.4 E8 

Ri [k/W] 1.2 E-3 
Rw [K/W] 1.2 E-2 
Aw [m2] 20 

Ventilation rate [m3/h] 1440 
Heating system  

Qdim [kW] 35 
ΔTrad,nom[K] 30 

nrad  1.3 
Tsup,design [°C] 60 

 
Disturbances, forecasts and constraints 
The weather data and internal gains used in the emulator 
model are shown in Figure 5. The weather data is taken 
from the first week of January in the TMYx dataset for 
Oslo, Blindern (climate.onebuilding.org 2020). 
The internal gains schedule is defined in accordance with 
the national standard for building energy simulations 
SN/TS 3031:2016 (Standard Norge 2016). 
 

 
Figure 5: Weather data and internal heat gains for testcase. 

 
The weather data is transferred to the MPC directly, so 
that it operates with perfect forecast. However, as the 
internal gains are more difficult to predict, the forecast 
sent to the MPC is a constant value equal to the daily 
average. 
The upper indoor temperature constraint (𝑦) is fixed to 
22 °C and the lower indoor temperature constraint is set 
to 18 °C at night (23:00 to 08:00) and to 21 °C during 
daytime (08:00 to 23:00).  
 
Simulated cases 
To evaluate the performance and potential for the MPC, 
several cases have been defined. The baseline case is the 
WCC, which has a supply temperature directly linked to 
the outdoor temperature. The applied curve is shown in 
Figure 6. The curve has been manually tuned to minimize 
the time outside the thermal comfort band of 21-22 °C 
through a full year simulation.  
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Figure 6: WCC temperature compensation curve 

 
To evaluate how the MPC can respond to different price 
signals, artificial price signals with a fixed daily profile 
have been generated. The price signal is split into three 
categories and six periods: 
• Low price(clow): 00:00-06:00 and 22:00- 00:00  
• High price (chigh): 07:00-10:00 and 17:00- 20:00  
• Middle price (cmid): 06:00-07:00, 10:00-17:00 and 

20:00-22:00  
The price signal is defined by the % deviation of chigh from 
cmid, so that cmid and the daily average price is always 
equal to 0.5 NOK/kWh. Four different price signals are 
generated with 0 % (constant price), 10 %, 20 % and 
30 % deviation, respectively.  
In addition, the constant price signal applied together with 
a daily peak power (hourly peak) tariff equal to 
2.25 NOK/(kWh/h) is tested. This corresponds to one of 
the new grid tariff structures proposed by the Norwegian 
Energy Regulatory Authority for the electricity grid 
(Eriksen et al. 2020). 
 
Results 
In the following graphs this terminology is used to refer 
to the different type of controllers and different price 
signals: 
Different controllers: 
• WCC = WCC controller, the baseline 
• MPC-Energy = MPC with min. energy objective 

function 
• MPC-Cost = MPC with min. cost objective function 
Different tariffs: 
• 0, 10, 20, 30 % = level of price variability (min. & 

max. deviation from daily average) 
• Daily peak = tariff with constant energy price & 

additional daily peak power. 
 
Figure 7 shows the resulting energy cost for each case, 
while Figure 8 shows total energy consumption and 
Figure 9 the energy consumption during peak hours. 
Note that MPC-Energy and MPC-Cost give identical 
results at 0% price variability, and this is used as a 
reference for comparison with the other price signals 

when discussing the charts below. First of all, it is worth 
comparing the behaviour of the two reference controllers: 
WCC and MPC-Energy (or MPC-Cost) at 0 % price 
variability, by looking at Figure 10 (at the end), before 
returning to comment on Figure 7 to Figure 9. 

 
Figure 7: Resulting energy cost in NOK  

 
Figure 8: Resulting energy consumption in kWh 

 
Figure 9: Energy consumption during peak hours 

Figure 10 compares the indoor temperatures, the radiator 
supply temperatures, and the supplied heat for the WCC 
and the MPC controllers, respectively, when minimum 
energy is the objective function. One can see that the 
WCC controller holds a relatively constant supply 
temperature, according to the outdoor temperature 
compensation curve, while the corresponding indoor 
temperature fluctuates due to changes in internal gains 
and solar radiation. The MPC on the other hand imposes 
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large variations in the supply temperature, to exploit the 
allowed night setback, and thereby save energy. However, 
this results in very high peak loads in the morning, to 
increase the temperature back up to the daytime 
temperature setpoint. This peak will normally coincide 
with the period with the highest strain on the DH network. 
The hourly energy peak is increased by 72 % compared to 
the WCC. 
From Figure 7 and Figure 8 we can see that the MPC 
reduces both the energy cost and the energy consumption 
with about 12 % compared to the WCC with the constant 
price signal.  
We can see that, as the price variation increases (from 10 
% to 30 %), the MPC-Cost results in increased total 
energy consumption compared to MPC-Energy. 
Nevertheless, the total cost is reduced. This is because the 
MPC algorithm chooses, to some extent, to overheat the 
building when energy is cheaper (therefore increasing 
thermal losses) in order to limit the consumption when 
energy is more expensive. At the 30% deviation case, 
MPC-Cost results in about 5% lover energy costs than 
MPC-Energy (compare green and orange bars in Figure 7 
while it has about 10 % higher energy consumption 
(compare green and orange bars in Figure 8).  
The difference between MCP-Cost and MPC-Energy is 
significant when we look at the energy consumed in the 
peak hours only, as it is shown in Figure 9. However, to 
understand what is happening we need to look at Figure 
11 and Figure 12. 
Figure 11 compares the indoor temperatures, the supply 
temperatures, and the supplied heat for the MPC-Energy 
and all price signals for two selected days. The variable 
price signal (30 % variation) is shown as a grey 
background to emphasise the relation to the price. As the 
deviation in the price increases, we can see that the 
controller applies less night setback, but instead preheats 
the building during night, to allow reduced energy 
consumption during the morning hours with peak energy 
prices. The fact that it holds the indoor temperature at the 
upper constraint, shows that it also utilizes the building 
envelope as thermal storage, in addition to the indoor air. 
The variation in total energy consumption and cost are 
relatively small for the different cases. However, the 
energy consumption shifted away from the peak hours is 
significant, as it is clearly shown in Figure 9. Compared 
to the WCC, the MPC-Cost reduces the energy 
consumption during peak hours by 25 %, 42 % and 48 % 
for the price signals with 10 %, 20 % and 30 % deviation, 
respectively. On the contrary, the MPC-Energy increases 
the energy consumption with 18 % in peak hours, 
compared to the WCC. 
When looking at the results for the Daily peak tariff, the 
cost data cannot be directly compared with the other 
cases, as it adds an extra cost. However, in comparison 
with the WCC, the MPC-Energy results in 5% higher cost 
despite having a 12 % lower energy consumption. On the 
other hand, the MPC-Cost yields 4 % lower cost and 9 % 
lower energy consumption.   

Figure 12 compares the indoor temperatures, the supply 
temperatures, and the supplied heat for the three 
controllers. It shows that the MPC-Cost applies some 
night setback but compared to the MPC-Energy it starts 
reheating much earlier, to avoid high peak energy 
demands.  
 
Discussion 
The results from the controller tests shows a significant 
potential to reduce the energy cost and energy 
consumption by replacing legacy WCC controllers with 
MPC. It also demonstrates how an MPC controller can 
respond to different price signals and thereby shift heat 
loads in time. However, there are several obstacles for 
achieving similar results in a real-life application.  
The test setup is very ideal. The controller model is almost 
equal to the emulator model, and except for the internal 
gains and the ventilation, the controller model works with 
perfect forecast. The dynamics of a real building cannot 
be perfectly described by a three-state model (as done 
with the emulator in this paper), and therefore the 
controller model will be less accurate in reality, and the 
results less optimal.  
Controlling the heat supply of a large building by a single 
average indoor temperature is also suboptimal. However, 
compared to the existing WCC, which is a pure feed- 
forward controller it is an improvement. Implementing 
individual room controllers in such buildings would 
require replacement of all the radiator valves and 
installation of a large set of indoor temperature sensor, 
which would significantly increase the required 
investment cost. An important challenge for 
implementing the proposed MPC would therefore be to 
describe a representative indoor air temperature with 
minimum number of sensors. 
The results also demonstrate how optimized controllers 
can be sub-optimal for the grid operation, by creating 
large changes is the heat demand, either during changes is 
control constraints (night setback temperatures) or during 
changes is the price signal. This shows that as more 
buildings apply smart controllers, developing smart 
pricing schemes becomes more important. The daily peak 
tariff, for example, shows benefit for both the building 
and the energy system. 
 
Conclusion 
In this work we have demonstrated the potential in energy 
and cost savings with replacement of an existing WCC 
controller with MPC in buildings with district heating and 
manual radiator valves. It is also shown how an MPC can 
respond to different prising signals and thereby also shift 
loads in time.  
There are several barriers for implementing such 
controllers in real buildings. However, it is an interesting 
option due to the low installation cost. 
In further work with this approach it is planned to test this 
on a real building. However, first we will increase the 
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complexity of the emulator model, by developing a 
Modelica model of the planned demonstration building.  
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Figure 10: Baseline WCC control vs MPC with minimum energy objective function 

 
Figure 11: Comparison of MPC controller results with different variable prices 
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Figure 12: Comparison of WCC and MPC controllers with peak power tariff 

BuildSim-Nordic 2020

- 130 -




