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Abstract 
This paper presents a novel optimization model for the calculation of the water value of a 
hydropower plant. The model has a time horizon of 1 year with 1-day decision stages, considers 
sales of both energy and frequency restoration reserves (FRR) and is solved by stochastic 
dynamic programming. The novelty of the model is that it considers the producer’s price-making 
ability in the FRR market. The proposed model is used to obtain the water values of an existing 
hydropower plant. The water values are then used to simulate the day-ahead scheduling of the 
hydropower plant in a 100-year scenario. The results are compared to those obtained without 
considering the producer’s price-making ability in the FRR market. The profit increase is modest 
compared to the uncertainty existing in the day-ahead scheduling in all analysed cases. 
However, the water spillage is significantly lower if the producer’s price-making ability in the 
FRR market is considered when computing the water value. This last result may have important 
implications for the plant’s operation, especially when the reservoir is also used for the purpose 
of flood control, as the one used as case study in the paper, and many others all over the world. 
 
Keywords: Hydroelectric power generation; Water value; Frequency restoration reserve 
market; Price-maker producer; Mixed integer quadratic programming; Stochastic dynamic 
programming. 
 
Nomenclature 
Abbreviations 
EM day-ahead electricity market. 
RM day-ahead automatic frequency restoration reserve market. 
LP linear programming. 
MILP mixed integer linear programming. 
MIQP mixed-integer quadratic programming. 
RDC residual demand curve. 
SDP stochastic dynamic programming. 
SDDP stochastic dual dynamic programming. 
TSO Transmission System Operator. 
Indexes/Sets 
𝑑𝑑 ∈ 𝐷𝐷 Daily decision stage (1,…,dmax). 
𝑒𝑒 ∈ 𝐸𝐸 Intervals of the plant aggregate power-discharge curve (1,…,emax). 
𝑒𝑒 ∈ 𝐸𝐸𝑢𝑢 Intervals of the plant aggregate power-discharge curve in which units 1,2,...,u are on. 
𝑡𝑡 ∈ 𝑇𝑇 Hour within the day (1,…,24). 
𝑢𝑢 ∈ 𝑈𝑈 Hydro unit of the plant (1,…,umax). 
 
Constants/Parameters 
CF Conversion factor from m3/s to Mm3/h [0.0036 (Mm3/h)/(m3/s)]. 
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EV Rate of hourly evaporated water volume per flooded area [Mm3/km2]. 
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  Maximum plant power generation [MW]. 
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 Minimum plant power generation [MW]. 
𝐼𝐼𝑡𝑡  Intercept of the linear approximation of the residual demand curve in the day-ahead 

automatic frequency restoration reserve market in hour t [€/MW] 
𝐾𝐾1𝑏𝑏𝑏𝑏 Coefficient of the linear approximation of the storage-maximum bottom outlet flow 

curve [(m3/s)/Mm3]. 
𝐾𝐾2𝑏𝑏𝑏𝑏 Coefficient of the linear approximation of the storage-maximum bottom outlet flow 

curve [m3/s]. 
𝐾𝐾1𝑒𝑒𝑒𝑒 Coefficient of the linear approximation of the storage-flooded area curve [km2/Mm3]. 
𝐾𝐾2𝑒𝑒𝑒𝑒 Coefficient of the linear approximation of the storage-flooded area curve [km2]. 
𝐾𝐾𝑠𝑠𝑠𝑠 Conversion factor between the volume of water stored above the spillway level and the 

maximum flow through the spillway [(m3/s)/Mm3]. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑𝑑𝑑 Fraction of the committed downward reserve used in real-time [p.u.]. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑢𝑢𝑢𝑢 Fraction of the committed upward reserve used in real-time [p.u.]. 
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 Minimum flow that can be released through the hydro units [m3/s]. 
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  Maximum flow that can be released through the hydro units [m3/s]. 
𝑄𝑄𝑡𝑡𝑤𝑤𝑤𝑤 Water inflow to the reservoir in hour t  [m3/s]. 
𝑄𝑄𝑄𝑄𝑒𝑒 Length of the e-th interval of the plant aggregate power-discharge curve [m3/s]. 
𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢 Plant flow above which the u-th unit is started-up [m3/s]. 
𝑅𝑅𝑡𝑡 Ratio between the upward and total reserve that the reserve offers must fulfil in hour t. 
𝑆𝑆𝑡𝑡 Slope of the linear approximation of the residual demand curve in the day-ahead 

automatic frequency restoration reserve market in hour t [€/MW/MW]. 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  Maximum water storage [Mm3]. 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 Minimum water storage [Mm3]. 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 Minimum water storage [Mm3]. 
𝑉𝑉𝑠𝑠𝑠𝑠 Volume of water stored in the reservoir when it is full up to the spillway level [Mm3]. 
𝑌𝑌𝑒𝑒  Slope of the e-th interval of the plant aggregate power-discharge curve [MW/(m3/s)]. 
𝛼𝛼 Wear-and-tear cost of the hydro units due to interhourly variations in the generated 

power [€/MW]. 
𝛽𝛽 Shut-down and start-up cost of the hydro units [€]. 
𝜋𝜋𝑡𝑡𝑒𝑒𝑒𝑒 EM price in hour t [€/MWh]. 
𝜋𝜋𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑑𝑑 Price in hour t of the net reserve used in real-time when it is downward [€/MWh]. 

𝜋𝜋𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟,𝑢𝑢𝑢𝑢 Price in hour t of the net reserve used in real-time when it is upward [€/MWh]. 

 
Binary variables 
𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 = 1 if the stored volume at the end of hour t is above Vsp. 
𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 = 1 if there is more upward reserve used in real-time than downward one in hour t. 
𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 = 1 if the u-th hydro unit is shut-down at the beginning of hour t. 
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 = 1 if the u-th hydro unit is on-line in hour t. 
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 = 1 if the u-th hydro unit is started-up at the beginning of hour t. 
Non-negative variables 
efp expected future profit [€]. 
𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢 Upward reserve in hour t [MW]. 
𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑 Downward reserve in hour t [MW]. 
𝑔𝑔𝑡𝑡 Power generated in hour t [MWh]. 
𝑔𝑔𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  Decrease in the generated power between hour t-1 and t [MW]. 
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𝑔𝑔𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖  Increase in the generated power between hour t-1 and t [MW]. 
𝑝𝑝𝑑𝑑 Profit in the d-th decision stage [€]. 
𝑞𝑞𝑡𝑡𝑏𝑏𝑏𝑏 Flow released through the bottom outlets in hour t [m3/s]. 
𝑞𝑞𝑡𝑡
ℎ𝑝𝑝 Flow released through the hydro units in hour t [m3/s]. 
𝑞𝑞𝑡𝑡
𝑠𝑠𝑠𝑠 Flow released through the spillway in hour t [m3/s]. 
𝑞𝑞𝑞𝑞𝑡𝑡𝑒𝑒 Flow released through the hydro units in hour t in the e-th interval of the plant aggregate 

power-discharge curve [m3/s]. 
𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒 Endogenous state variables at the beginning of the d-th decision stage. 
𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒 Exogenous state variables at the beginning of the d-th decision stage. 
𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑 Net reserve used in real-time when it is downward [MWh]. 
𝑢𝑢𝑢𝑢𝑡𝑡

𝑢𝑢𝑢𝑢 Net reserve used in real-time when it is upward [MWh]. 
𝑣𝑣𝑡𝑡 Volume of water stored in the reservoir at the end of hour t [Mm3]. 
𝑣𝑣𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 Volume of water stored above the spillway level at the end of hour t [Mm3]. 
𝑣𝑣𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 Volume of water stored below the spillway level at the end of hour t [Mm3]. 
𝑣𝑣𝑡𝑡𝑒𝑒𝑒𝑒 Volume of water evaporated in hour t [Mm3]. 
𝑣̅𝑣𝑇𝑇 ,𝑣𝑣𝑇𝑇  Discrete values of the initial storage closest to 𝑣𝑣𝑇𝑇 from above and below, respectively. 
𝑧̃𝑧𝑑𝑑 Optimal cumulative expected profit from the beginning of the d-th decision stage to the 

end of the planning period [€]. 
 
I. Introduction 
 
Traditionally, operational decisions of hydropower plants were made by a centralized operator 
who sought to minimize the power system operation cost while meeting the electricity demand 
[1]. The process by which such centralized operator made operational decisions of both hydro 
and thermal power plants is a multistage decision process [2] which has often been decomposed 
into several decision processes, each with a different planning horizon (short-, medium- and 
long-term), degree of detail and treatment of uncertainty to make it numerically tractable [3]. 
The coordination between the medium- and short-term generation scheduling in centralized 
electricity markets has usually been realised by means of future cost functions that express the 
expected power supply cost as a function of the system’s state at the end of the short-term 
scheduling horizon. The first derivative of the future cost function with respect to the volume of 
water stored in the system gives information about the opportunity cost of water, also known 
as the water value [4]. The water value represents the tradeoff between the immediate cost 
savings due to the immediate use of the available water and the expectation of the future cost 
savings due to the storage and later use of the water [5]. 
 
Since the beginning of the nineties, electricity markets all over the world have gradually 
experienced a continuous process of deregulation [6], [7]. As a consequence of the deregulation, 
the operational decisions of power plants are no longer made by a centralized operator but by 
generation companies. The goal of generation companies is not anymore meeting the electricity 
demand at minimum cost but to maximize their profit. In deregulated electricity markets the 
water value represents the tradeoff between the immediate gain due to the immediate use of 
the available water and the expectation of the future gain due to the storage and later use of 
the water [8]. 
 
Even though the structure of the existing deregulated electricity markets is country-specific, 
most of them are organised around a day-ahead wholesale electricity market (EM), where 
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generation companies submit bids for selling energy in the following day [9]. Generation 
companies can correct forecast errors or unforeseen events close to real-time in the so-called 
intraday electricity markets [10], and can help the Transmission System Operator (TSO) ensure 
the power system reliability by providing the so-called ancillary services [11]. 
 
The first attempts to compute the water value in a deregulated electricity market considered 
only the sales of electricity in the EM were [12] and [13]. To the best of our knowledge, the work 
presented in [14] was the first one considering other markets different from the day-ahead 
electricity market in the medium-term generation scheduling of a hydropower plant. The 
authors of [14] considered the secondary load-frequency control (or automatic frequency 
restoration reserve) market operated by the Swiss TSO Swissgrid in the medium-term 
generation scheduling of a large open-loop pumped-storage power plant. According to the 
results obtained in [14], considering the secondary load-frequency control market operated by 
Swissgrid for the computation of the water value would have a minor impact on the power plant 
profit. The secondary load-frequency market of Swissgrid was later considered in [15] and [16] 
to compute the water value of a small hydropower system with pumping capacity. 
 
The spinning reserve markets operated by the Norwegian TSO Statnett were considered when 
computing the water value in [17] and [18]. The medium-term generation scheduling models 
used in [17] and [18] are both based on stochastic dynamic programming (SDP) and stochastic 
dual dynamic programming (SDDP), as proposed in [13]. A scheduling horizon of 1 and 2 years 
was used in [17] and [18], respectively, with weekly decision stages in both cases. The 
decomposed weekly decision problem is formulated as a linear programming (LP) problem in 
both [17] and [18] and do not therefore consider binary decisions regarding the start-up or shut-
down of the hydro units. As discussed in [17], this might lead to overestimate the ability of the 
hydropower system to sell spinning reserves. A set of linear constraints was added in [19] to the 
decomposed weekly decision problem in order to cope with the above-mentioned issue. The 
added constraints had previously been used to model the start-up costs of generating units and 
pumps in the medium-term generation scheduling of the Icelandic power system in [20], and 
were first proposed in [21]. The authors of [19] found that in periods with low energy prices and 
high reserve prices the SDP/SDDP model tended to operate the power station below the 
minimum output. A detailed short-term generation scheduling model based on mixed integer 
linear programming (MILP) is used in [19] to quantify the approximation errors of the SDP/SDDP 
model used to compute the water value. The water value obtained by the SDP/SDDP model 
(represented by cuts) were used in the short-term scheduling model to calculate the profit of 
the hydropower system under study in all the scenarios sampled in the last forward pass of the 
SDP/SDDP model. The average profit obtained with the MILP model turned out to be around 1 
% lower than the one obtained by the SDP/SDDP model. 
 
Similar constraints were added in [18] to discourage the model from operating below the 
station’s minimum output. The results obtained in [18] are quantitatively similar to those 
presented in [14]: the consideration of the spinning reserve sales in the medium-term 
generation scheduling has a minor impact (~1 %) on the hydropower system’s profit. 
 
A simplified version of the decomposed weekly problem formulated in [18] was used in [22], 
without the above-mentioned discouraging linear constraints, to derive an analytical expression 
for the water value of a single hydropower reservoir in the same market context as in [18]. A 
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few interesting conclusions about the influence of the spinning reserve capacity sales on the 
water value were drawn from the analytical expression and verified in a case study. 
 
The consideration of start-up or shut-down decisions in [17], [18] and [22] would make the 
expected future revenue function (also referred to as profit-to-go [14] or cost-to-go function in 
centralized market contexts [23]) non-concave, and would therefore be necessary to 
“concavisate” it [24]. Instead, the authors of [25] chose to use an SDP-based medium-term 
generation scheduling model to compute the water value of a single hydropower reservoir, in 
the same market context as in [18], and to formulate the decomposed weekly decision problem 
as a mixed integer linear programming (MILP) problem, considering the status (on/off) of the 
hydro generators as binary decisions. The results obtained in [25] are quantitatively similar to 
those obtained in [14] and [18]. 
 
All the above-mentioned articles where the water value is computed in a multi-market context 
assume that the hydropower producer acts as a price-taker in both the energy and reserve 
markets. Some articles have dealt with the medium-term generation scheduling of hydropower 
producers whose bids may alter the clearing price of the day-ahead [24], [26] and intraday 
electricity markets [27]. However, as far as we know, there are no papers considering the ability 
of the hydropower producer to alter the clearing prices of the reserve market in medium-term 
hydropower scheduling. This research gap is the main motivation of this paper. 
 
The influence of a power producer on the clearing prices in different markets depends on the 
producer’s size relative to each market's demand [28]. Taking as a reference the criterion used 
in [29], the assumption that the reserve bids of a hydropower producer do not alter the clearing 
price of the reserve market is not very realistic. Just as an example, on 17 April/18 July 2018 
43/40 electricity producers submitted reserve bids to the day-ahead automatic frequency 
restoration reserve market (hereinafter referred to as RM) operated by the Spanish TSO (REE), 
respectively, and only 4/10 of them would be considered as price-taker according to the criterion 
used in [29]. The gate closure time of the RM is 4 pm. The hourly marginal prices and reserves 
allocated to each participant are known by 4:30 pm. The allocated reserves are all paid at the 
market’s marginal price. The allocated reserves can be no, partly or wholly used in real-time. 
The real-time use of the reserves is paid at the marginal price of the manual frequency 
restoration reserves (known as tertiary regulation reserves in the Spanish power system). 
 
The objective and contribution of this paper is twofold: a) to present a novel medium-term 
generation scheduling model for the computation of the water value of a hydropower plant 
participating as a price-taker in the EM operated by OMIE and as a price-maker in the RM; b) to 
assess how the producer’s price-making ability in the RM impacts it's expected profit. 
 
The proposed medium-term scheduling model has been used to obtain the water values (policy) 
of a hydropower plant in an offline optimization process solved by SDP. Subsequently, the water 
values were used to simulate the day-ahead scheduling of the plant in a 100-year synthetic 
scenario. The simulation is performed by running a day-ahead scheduling model on a rolling 
horizon basis. The water values obtained by the medium-term scheduling model are used as 
input to the day-ahead scheduling model, and are not updated during the simulations. 
Simulations were also performed using water values obtained from two other medium-term 
scheduling models: one assuming participation only in the EM as a price-taker, and the other 
assuming participation as a price-taker in both markets. The results of the simulations have been 
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duly compared to each other in terms of the plant’s profit and water spillage. The scheduling 
model is formulated in the context of the Spanish electricity market but can be easily adapted 
to be used in other electricity markets where both energy and reserves are allocated in day-
ahead auctions. In order to make the second contribution of the paper applicable to other 
reserve markets, we have performed the above-mentioned comparison in some additional 
cases. 
 
The rest of the paper is organized as follows. Section II describes the proposed medium-term 
generation scheduling model. Section III presents the main data of the case study. The results of 
the paper are discussed in section IV and the conclusions are duly drawn in section V. 
 
II. Medium-term scheduling model 
 
The model has a scheduling horizon of 1 year with 1-day decision stages d. The objective of the 
model is to maximise the expected profit of the hydropower plant for the entire scheduling 
horizon. The hydropower producer is assumed to be risk-neutral and to participate as a price-
taker in the EM and as a price-maker in the RM. The EM and the RM are assumed to be 
simultaneously cleared. The daily decision stages d are divided into hourly periods t, consistently 
with the programming periods of the EM and RM. Information about the EM and RM can be 
found in the websites of the OMIE and REE. 
 
In Spain there are 1,228 hydropower units distributed in a few hundred reservoirs with a storage 
capacity ranging from .25 to almost 3,000 Mm3. 51 companies submit selling bids in the EM on 
behalf of their own or others’ hydropower plants. Each company has its own planning/decision 
models and these are confidential. Around 50 % of the Spanish hydropower reservoirs are 
classified by the system’s TSO as “annual regime reservoirs”. These reservoirs have a seasonal 
storage capacity, i.e. they’re able to store the natural water inflows for a period of several 
months. The use of a scheduling horizon of one year is suitable for these reservoirs. 
 
The model is solved by means of an SDP approach similar to the one used in [25]. This allows 
straightforward consideration of non-convexities, such as generator start-stop decisions. 
Moreover, the results obtained with the proposed model can help evaluate the importance of 
price-maker effects in the medium-term scheduling. 
 
Three exogenous stochastic state variables 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒 are considered in the model: the daily water 
inflow volume, the daily average EM price and the daily average residual demand curve (RDC) 
of the RM. The hydro storage volume is a state variable endogenous to the optimisation 
problem. The daily water inflow volume has been modelled as a discrete Markov chain, whereas 
the other exogenous stochastic state variables have been modelled in two different ways. The 
rationale for this is explained in section III.2. The average RDCs have been modelled as linear 
monotonic decreasing functions defined each by an intercept and a slope, as in [30]. According 
to [31], the RDCs of the RM can be linearly approximated with an acceptable approximation 
error. There exist other approaches which might be useful to consider the competition between 
producers in the RM, such as agent-based modelling or game theory techniques. However, these 
approaches are out of the scope of the paper. 
 
The future expected profit at the beginning of decision stage d for a certain system state 
{𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒} is given by the well-known Bellman equation (1), where xd represent the set of 
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decision variables in decision stage d, and can be recursively calculated by decomposing the 
problem into daily subproblems. 
 

𝑧̃𝑧𝑑𝑑(𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑝𝑝𝑑𝑑(𝑥𝑥𝑑𝑑 , 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) + 𝔼𝔼[𝑧̃𝑧𝑑𝑑+1(𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 , 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 )|𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒]} (1) 
 
The decomposed daily decision problem has been formulated as a mixed-integer quadratic 
programming (MIQP) problem described by (2)-(23). For this problem, the realisation of the 
exogenous stochastic state variables is assumed to be known for the first stage d. This is one of 
the two reasons why we have chosen to use daily decision stages instead of weekly ones (see 
the second reason in section III.1). Assuming a perfect foresight of the RM prices 1-week ahead 
is too optimistic. The initial state is defined by the initial storage v0 (which is the only endogenous 
state variable 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) and the above-mentioned exogenous stochastic state variables 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒. The 
initial storage is discretised in Nen values. The exogenous stochastic state variables are 
discretised in Nex nodes, each containing information of the three variables. Note that the day 
index has been omitted in the formulation, except to indicate change of day in a few equations. 
The decision variables (unknowns) xd of the decomposed daily decision problem are: the power 
generated, upward and downward reserve, hydro units’ status (on/off), start-ups and shut-
downs, flow released through the hydro units, the spillway and the bottom outlets, the volume 
of water evaporated in hour t, the volume of water stored in the reservoir, above and below the 
spillway level at the end of hour t, and the increase/decrease in the generated power between 
hour t-1 and hour t. 
 

𝑧̃𝑧𝑑𝑑(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) = 𝑚𝑚𝑚𝑚𝑚𝑚 ���𝜋𝜋𝑡𝑡𝑒𝑒𝑒𝑒 · 𝑔𝑔𝑡𝑡 + �𝐼𝐼𝑡𝑡 + 𝑆𝑆𝑡𝑡 · 𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢� ·

𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢

𝑅𝑅𝑡𝑡
− 𝛼𝛼 · �𝑔𝑔𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖�                       

𝑡𝑡∈𝑇𝑇

− 𝛽𝛽 · �(𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 + 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢)
𝑢𝑢∈𝑈𝑈

� + � [ℙ(𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 |𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) · 𝑧̃𝑧𝑑𝑑+1(𝑣𝑣𝑇𝑇 , 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 )]
𝑠𝑠𝑠𝑠𝑑𝑑+1

𝑒𝑒𝑒𝑒 ∈𝑁𝑁𝑒𝑒𝑒𝑒

� (2) 

 
𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 − 𝑣𝑣𝑡𝑡𝑒𝑒𝑒𝑒 + 𝐶𝐶𝐶𝐶 · �𝑄𝑄𝑡𝑡𝑤𝑤𝑤𝑤 − 𝑞𝑞𝑡𝑡

ℎ𝑝𝑝 − 𝑞𝑞𝑡𝑡𝑏𝑏𝑏𝑏 − 𝑞𝑞𝑡𝑡
𝑠𝑠𝑠𝑠�;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (3) 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑣𝑣𝑡𝑡 ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (4) 
 
𝑣𝑣𝑡𝑡𝑒𝑒𝑒𝑒 = 𝐸𝐸𝐸𝐸 · (𝐾𝐾1𝑒𝑒𝑒𝑒 · 𝑣𝑣𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝑒𝑒);  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (5) 
 
𝑞𝑞𝑡𝑡𝑏𝑏𝑏𝑏 ≤ 𝐾𝐾1𝑏𝑏𝑏𝑏 · 𝑣𝑣𝑡𝑡 + 𝐾𝐾2𝑏𝑏𝑏𝑏;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (6) 
 
𝑞𝑞𝑡𝑡
𝑠𝑠𝑠𝑠 ≤ 𝐾𝐾𝑠𝑠𝑠𝑠 · 𝑣𝑣𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (7) 
 
𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑣𝑣𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (8) 

 
𝑣𝑣𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 ≤ (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑠𝑠𝑠𝑠) · 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (9) 

 
𝑉𝑉𝑠𝑠𝑠𝑠 · 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ≤ 𝑣𝑣𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑉𝑉𝑠𝑠𝑠𝑠;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (10) 
 
𝑞𝑞𝑡𝑡
ℎ𝑝𝑝 ≥ 𝑄𝑄𝑄𝑄𝑄𝑄1 · 𝑜𝑜𝑜𝑜𝑡𝑡1 + ∑ [(𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢−1) · 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢]𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢=2 ;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (11) 
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𝑞𝑞𝑡𝑡
ℎ𝑝𝑝 ≤ 𝑄𝑄𝑄𝑄𝑄𝑄2 · 𝑜𝑜𝑜𝑜𝑡𝑡1 + ∑ [(𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢+1 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢) · 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢]𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−1

𝑢𝑢=2 + �𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚� ·
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢

𝑚𝑚𝑚𝑚𝑚𝑚 ;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (12) 
 
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 ≥ 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢+1;  ∀ 𝑢𝑢 ∈  𝑈𝑈  | 𝑢𝑢 <  𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ∧ ∀ 𝑡𝑡 ∈ 𝑇𝑇 (13) 
 
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 = 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 − 𝑜𝑜𝑜𝑜𝑡𝑡−1𝑢𝑢 ;  ∀ 𝑢𝑢 ∈  𝑈𝑈 ∧ ∀ 𝑡𝑡 ∈ 𝑇𝑇 (14) 
 
𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 ≤ 1; ∀ 𝑢𝑢 ∈  𝑈𝑈 ∧ ∀ 𝑡𝑡 ∈ 𝑇𝑇 (15) 
 
𝑞𝑞𝑡𝑡
ℎ𝑝𝑝 = 𝑄𝑄𝑄𝑄𝑄𝑄1 · 𝑜𝑜𝑜𝑜𝑡𝑡1 + ∑ 𝑞𝑞𝑞𝑞𝑡𝑡𝑒𝑒𝑒𝑒∈𝐸𝐸 ;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (16) 

 
𝑞𝑞𝑞𝑞𝑡𝑡𝑒𝑒 ≥ 𝑄𝑄𝑄𝑄𝑒𝑒 · 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢+1;  ∀ 𝑒𝑒 ∈ 𝐸𝐸𝑢𝑢 ∧  ∀ 𝑢𝑢 < 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ∧ ∀ 𝑡𝑡 ∈ 𝑇𝑇 (17) 
 
𝑞𝑞𝑞𝑞𝑡𝑡𝑒𝑒 ≤ 𝑄𝑄𝑄𝑄𝑒𝑒 · 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢;  ∀ 𝑒𝑒 ∈ 𝐸𝐸𝑢𝑢 ∧ ∀ 𝑢𝑢 ∈  𝑈𝑈 ∧ ∀ 𝑡𝑡 ∈ 𝑇𝑇  (18) 
 
𝑔𝑔𝑡𝑡 = 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 · 𝑜𝑜𝑜𝑜𝑡𝑡1 + ∑ (𝑌𝑌𝑒𝑒 · 𝑞𝑞𝑞𝑞𝑡𝑡𝑒𝑒)𝑒𝑒∈𝐸𝐸 ;  ∀ 𝑡𝑡 ∈ 𝑇𝑇  (19) 
 
𝑔𝑔𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑡𝑡 − 𝑔𝑔𝑡𝑡−1;  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (20) 
 

𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 · ∑ 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢𝑢𝑢∈𝑈𝑈 − 𝑔𝑔𝑡𝑡;  ∀ 𝑡𝑡 ∈ 𝑇𝑇  (21) 
 
𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑 ≤ 𝑔𝑔𝑡𝑡 − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 · ∑ 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢𝑢𝑢∈𝑈𝑈 ;  ∀ 𝑡𝑡 ∈ 𝑇𝑇  (22) 
 
𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑡𝑡 · �𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑟𝑟𝑡𝑡

𝑢𝑢𝑢𝑢�;  ∀ 𝑡𝑡 ∈ 𝑇𝑇  (23) 
 
The objective function (2) maximizes the income obtained from the energy and reserve sold in 
the EM and RM minus the start-up, shut-down and wear and tear cost of the hydro units, plus 
the future expected profit, which is given by the last summation term of (2). Traditional ramp 
up/down constraints and minimum up/down times are not considered in the paper. Instead, we 
consider in the objective function the wear and tear cost of interhourly power variations, as well 
the hydro units’ start-up and shut-down costs. Parameters α and β were estimated from [32] 
and [33], respectively. 𝑧̃𝑧𝑑𝑑+1 is modelled by means of a piecewise linear function similar to the 
one used in [25] (equations (4)-(6) in that paper). This piecewise approximation is equivalent to 
a linear interpolation. It should be noted that 𝑣𝑣𝑇𝑇 is a decision variable of the problem. In general, 
this variable does not take any of the Nen values into which the initial storage has been 
discretized. Thus, for a given 𝑣𝑣𝑇𝑇, 𝑧̃𝑧𝑑𝑑+1(𝑣𝑣𝑇𝑇 , 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 ) is linearly interpolated from 𝑧̃𝑧𝑑𝑑+1(𝑣̅𝑣𝑇𝑇 , 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 ) 
and 𝑧̃𝑧𝑑𝑑+1�𝑣𝑣𝑇𝑇 , 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 �. Eq. (3) represents the water mass balance. The storage is limited by Eq. 
(4). The evaporation volume is estimated by Eq. (5) as a function of the flooded area. The 
maximum flow that can be released through the bottom outlets is limited by Eq. (6). The 
maximum flow that can be released through the spillway is limited by Eqs. (7)-(10). Eqs. (11)-
(19) are used to model the plant’s aggregate generation characteristic and to calculate the status 
of the hydro units. A piecewise linear power-discharge curve is used in each decomposed daily 
decision problem to model the plant aggregate generation characteristic. The curve is selected 
as a function of the initial storage v0 and is therefore known a priori. The curve is defined from 
the following parameters: Gmin, Gmax, QIe, Qmax, QONu and Ye. These parameters vary as a function 
of the initial storage. We have not explicitly included this dependence in the formulation for the 
sake of brevity. The variation in head between days is therefore considered through the proper 
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selection of the piecewise linear power-discharge curve. Intraday head effects are neglected in 
the paper, accordingly to [34]. Eqs. (11) and (12) are used to calculate the maximum and 
minimum flow that can be released through the on-line hydro units. Eq. (13) guarantees that 
the hydro units are brought on-line in the proper order. Eq. (14) and (15) are used to calculate 
the number of start-up and shut-down manoeuvres of each unit. Eqs. (16)-(18) are used to 
calculate the flow released through the on-line hydro units. Eq. (19) is used to calculate the 
power generated by the on-line hydro units. The interhourly variation of power output is 
calculated in Eq. (20). Eqs. (21) and (22) are used to limit the reserve capacity, as a function of 
the on-line hydro units. Eq. (23) is used to meet the ratio between the upward and total reserves 
set by the TSO.  
 
The SDP solution procedure is summarised in the following pseudocode, where the index j refers 
to the iteration step of the procedure. 
 
1) 𝑗𝑗 ← 0; 𝑧̃𝑧𝑑𝑑

𝑗𝑗(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) ← 0; ∆← ∞ 
2) while Δ > ԑ do 
3) 𝑗𝑗 ← 𝑗𝑗 + 1 
4) for 𝑑𝑑 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , … ,1 do 
5) for 𝑣𝑣0 = 𝑣𝑣01, 𝑣𝑣02, … , 𝑣𝑣0

𝑁𝑁𝑒𝑒𝑒𝑒  do 
6) Select power-discharge curve 

(𝑄𝑄𝑄𝑄𝑄𝑄1, … ,𝑄𝑄𝑄𝑄𝑄𝑄𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ;𝑄𝑄𝑄𝑄1, … ,𝑄𝑄𝑄𝑄𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 ;𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚;𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚;𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚) 
7) for 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑒𝑒𝑒𝑒 (𝜋𝜋𝑡𝑡𝑒𝑒𝑒𝑒 , 𝐼𝐼𝑡𝑡 , 𝑆𝑆𝑡𝑡 ,𝑅𝑅𝑡𝑡) do 
8) Solve (2)-(23) 
9) end for 
10) end for 
11) end for 
12) ∆← 𝑚𝑚𝑚𝑚𝑚𝑚�(𝑧̃𝑧𝑑𝑑

𝑗𝑗(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) − 𝑧̃𝑧𝑑𝑑
𝑗𝑗−1(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒))/𝑧̃𝑧𝑑𝑑

𝑗𝑗−1(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒)� 
13) end while 
14) 𝑧̃𝑧𝑑𝑑(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) ← 𝑧̃𝑧𝑑𝑑

𝑗𝑗(𝑣𝑣0, 𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) 
 
Once the SDP algorithm has converged, the water values of the hydropower plant are computed 
by a discrete differentiation of the last summation term of (2) with respect to 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 . A similar 
pseudocode is used in [25]. The theoretical background on which this recursion solution 
procedure is based is explained in detail in [35]. 
 
III. Case study 
 
III.1 Power plant data 
 
The most important data of the hydropower plant used as case study are included in Table 1. 
The hydropower plant is located in the Northwest of Spain, sells energy in the EM, and is 
considering the possibility of selling reserves in the RM. As can be seen in Table 1, each of the 
three power plant’s units has a spinning reserve capacity of 81.9 MW (104.2-22.3). The plant’s 
spinning reserve capacity when the three units are running is equivalent to 27/35% of the 
maximum hourly requirement for upward/downward reserve (900/700 MW) in the RM. The 
second reason (the first reason is explained in section II) why we have chosen to use daily 
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decision stages, instead of weekly ones, is the relatively short period necessary to empty the 
reservoir at maximum flow (approximately 3.5 weeks).  
 
The historical series of daily water inflows were taken from the web page of the “Centro de 
Experimentación y Obras Públicas” (CEDEX) (http://ceh-flumen64.cedex.es) and correspond to 
the years 1963-2005. Lag-1 autocorrelation of the daily average water inflow is 0.80, which can 
be considered a notable autocorrelation, and for this reason, it was modelled as a lag-1 Markov 
chain with 5 discrete states, each representing a different “type” of daily average water inflow, 
namely: extraordinarily low, low, medium, high, extraordinarily high. The discrete values of the 
Markov chain have been obtained from the above-mentioned 43-year historical series. The 
lowest and highest historical values were used as the lowest and highest discrete states of the 
Markov chain and supposed to represent the lowest and highest 2-th percentiles of the historical 
series. The central part of the historical series was divided into three groups each with an equal 
frequency [36]. The mean values of the three groups were used as central discrete values of the 
Markov chain. The motivation to consider the highest and lowest 2-th percentiles of the 
historical series was to make the model as robust as possible [37]. The reservoir volume has 
been discretised into 9 equidistant values from previous experiences of the authors with this 
hydropower plant [34]. 
 

Table 1. Hydropower plant data. 
Maximum reservoir water content (Mm3) 644.6 
Minimum reservoir water content (Mm3) 71.0 

Maximum water elevation (masl) 329.5 
Minimum water elevation (masl) 270.0 

Tailwater elevation (masl) 198.0 
Number of hydro units 3 

Type of hydro units Francis 
Number of penstocks 3 
Maximum flow (m3/s) 279 (3 x 93) 
Minimum flow (m3/s) 40 

Maximum power (MW) 312.6 (3 x 104.2) 
Minimum power (MW) 22.3 

 
III.2 Energy and reserve markets data 
 
The historical data of the EM and RM were taken from the website of OMIE (www.omie.es) and 
from the REE’s information system (https://www.esios.ree.es/es), respectively. In the period 
2010-2015, the lag-1 autocorrelation of the daily average energy and reserve prices were 0.77 
and 0.66, respectively, whereas the cross-correlation between the two variables was -0.43. From 
these values, we chose to model the daily average energy price and the daily average RDC of the 
RM in two different ways, namely: each as an independent lag-1 Markov chain, and as a single 
lag-one joint Markov chain. The GARCH-ARIMAX and SARIMA models presented, respectively, 
in [30] and [38] have been used to generate a set of 200-year synthetic series of both the daily 
average EM price and the daily average RDC of the RM. The discrete states of the Markov chain 
of the daily average EM price were obtained from the above-mentioned synthetic series, by 
following an approach similar to the one used to build the Markov chain of the daily average 
water inflow. The discrete states of the Markov chain of the daily average RDC of the RM and 
the joint Markov chain of the daily average EM price and RDC of the RM have been obtained 
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from the above-mentioned synthetic series, by applying the well-known kmeans clustering 
algorithm, in a similar way to [18]; both Markov chains have 3 discrete states. The above-
mentioned SARIMA model has been used to generate a set of two-variable (intercept and slope 
of the daily average RDC of the RM) samples for each day of the scheduling horizon of the 
medium-term scheduling model (365 days). We have used the kmeans algorithm to determine 
3 two-variable centroids (cluster centers), each representing approximately 1/3 of the samples, 
for each day of the scheduling horizon. Since the initialization of the kmeans algorithm in Matlab 
is by default random, we have run it a few hundred times and have selected the set of centroids 
representing quasi-equally distributed clusters that is provided by the kmeans algorithm more 
often. The discrete values of the Markov chain of the daily average RDC of the RM are the two-
variable samples closest to the centroids of the set. This process has been performed every day 
in the scheduling horizon of the medium-term scheduling model (365 days). We have proceeded 
in a similar way to determine 3 three-variable (daily average EM price, intercept and slope of 
the daily average RDC of the RM) centroids for each day of the scheduling horizon and then 
select the discrete values of the joint Markov chain of the daily average EM price and RDC of the 
RM. In the period 2010-2015, the correlation between the daily average EM/RM prices and the 
daily average water inflow was -0.34/0.14, and has therefore been ignored in the paper. 
 
In summary, a total number of 9 initial volumes x 5 water inflows x 3 pairs of EM price-RM RDC 
(9 initial volumes x 5 water inflows x 3 EM prices x 3 RM RDC) decomposed daily subproblems 
are solved at each daily decision stage d when the cross correlation between the daily average 
EM price and the daily average RDC of the RM is (is not) considered. 
 
III.3 Simulations by short-term model 
 
The day-ahead generation and reserve scheduling of the hydropower plant has been simulated 
in a 100-year synthetic scenario using the short-term MIQP model described by (3)-(27). The 
objective function of the model is given by Eq. (24). The model has a 24-h scheduling horizon 
and is aimed at maximizing the profit of the hydropower plant in the EM and RM, and from the 
real-time use of the reserves committed in the RM, assuming the hydropower plant participates 
as a price-taker in the EM and as a price-maker in the RM, and taking into account the start-up, 
shut-down and wear and tear cost of the hydro units, as well as the expected future profit, which 
is given by the last summation term of (24). 
 

𝑚𝑚𝑚𝑚𝑚𝑚 ���𝜋𝜋𝑡𝑡𝑒𝑒𝑒𝑒𝑔𝑔𝑡𝑡 + �𝐼𝐼𝑡𝑡 + 𝑆𝑆𝑡𝑡𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢�

𝑟𝑟𝑡𝑡
𝑢𝑢𝑢𝑢

𝑅𝑅𝑡𝑡
+ 𝜋𝜋𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡
𝑢𝑢𝑢𝑢 − 𝜋𝜋𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑 − 𝛼𝛼�𝑔𝑔𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖�
𝑡𝑡∈𝑇𝑇

− 𝛽𝛽�(𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢 + 𝑜𝑜𝑜𝑜𝑡𝑡𝑢𝑢)
𝑢𝑢∈𝑈𝑈

� + � [ℙ(𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 |𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒) · 𝑧̃𝑧𝑑𝑑+1(𝑣𝑣24, 𝑠𝑠𝑠𝑠𝑑𝑑+1𝑒𝑒𝑒𝑒 )]
𝑠𝑠𝑠𝑠𝑑𝑑+1

𝑒𝑒𝑒𝑒 ∈𝑁𝑁𝑒𝑒𝑒𝑒

� (24) 

 
𝑢𝑢𝑢𝑢𝑡𝑡

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝑢𝑢𝑢𝑢𝑟𝑟𝑡𝑡

𝑢𝑢𝑢𝑢 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑𝑑𝑑𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑   ∀ 𝑡𝑡 ∈ 𝑇𝑇 (25) 
 
𝑢𝑢𝑢𝑢𝑡𝑡

𝑢𝑢𝑢𝑢 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 · 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡;  ∀ 𝑡𝑡 ∈ 𝑇𝑇  (26) 
 
𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 · (1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡); ∀ 𝑡𝑡 ∈ 𝑇𝑇  (27) 
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The simulations have been performed assuming a perfect forecast of the next day water inflow, 
and of all market random variables, namely: hourly prices of the EM (𝜋𝜋𝑡𝑡𝑒𝑒𝑒𝑒), hourly RDCs of the 
RM (𝐼𝐼𝑡𝑡 , 𝑆𝑆𝑡𝑡), hourly prices of the reserve used in real-time (𝜋𝜋𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟,𝑢𝑢𝑢𝑢,𝜋𝜋𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑑𝑑  ), and the percentage 

of the committed upward and downward reserve requested by REE in real-time 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑢𝑢𝑢𝑢,𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑𝑑𝑑). The reserve committed in the RM can be no, fully or partially requested in 
real-time by the TSO, both upward and downward (25)-(27). The hydropower producer receives 
an additional income from the net reserve used in real-time when it is positive (upward) and has 
to pay for the net reserve used in real-time when it is negative (downward). The reserve used in 
real-time has an impact on the hourly flow released through the hydro units, and on the wear 
and tear cost of the hydro units. In order to consider such an impact �𝑢𝑢𝑢𝑢𝑡𝑡

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑� has been 
added to 𝑔𝑔𝑡𝑡 in Eqs. (19) and (20). Note that the activation of reserves was not considered in the 
medium-term scheduling model presented in Section II. We chose to consider the real-time use 
of the committed reserve in the short-term scheduling in order to obtain a (to the possible 
extent) feasible operation schedule. Its consideration in the medium-term scheduling is a 
potential future line of research. 
 
𝑧̃𝑧𝑑𝑑+1 is used in the last summation term of (24) to compute the expected future profit as a 
function of the final storage volume. 𝑧̃𝑧𝑑𝑑+1 is the link between the medium- and short-term 
scheduling. It is obtained in the last iteration of the SDP solution procedure described in section 
II), and is modelled by means of a piecewise linear function similar to the one used in [25]. A 
piecewise linear approximation similar to the one used in [25] (equations (4)-(6) in that paper) 
is applied to the discrete values of 𝑧̃𝑧𝑑𝑑+1 and considered in the short-term MIQP model. Four 
different medium-term scheduling models have been used to compute 𝑧̃𝑧𝑑𝑑+1, namely: 
 
- Model 1: considers that the hydropower plant participates only in the EM as a price-taker. 
- Model 2: considers that the hydropower plant participates as a price-taker in both the EM 

and RM. 
- Model 3: the one proposed in the paper without considering the cross-correlation between 

the daily average prices of the EM and the RDCs of the RM. It considers that the hydropower 
plant participates as a price-taker in the EM and as a price-maker in the RM. 

- Model 4: the one proposed in the paper considering the cross-correlation between the daily 
average prices of the EM and the RDCs of the RM. It considers that the hydropower plant 
participates as a price-taker in the EM and as a price-maker in the RM. 

 
The procedure to obtain 𝑧̃𝑧𝑑𝑑+1 is analogous across the four models. Of course, 𝑧̃𝑧𝑑𝑑+1 is weighted 
in (2) consistently with the transition probabilities of the Markov chains of the exogenous 
stochastic state variables considered by each model. The exogenous stochastic state variables 
of Model 1 are the daily water inflow volume and the daily average EM price. The exogenous 
state stochastic variables of Model 2 are the daily water inflow volume, the daily average EM 
price and the daily average RM price. The exogenous stochastic state variables of Model 3 and 
4 are those described in section II. The objective function and constraints of Models 3 and 4 are 
identical (2)-(23). The objective function and constraints of Models 1 and 2 are not included in 
the paper for the sake of conciseness. Fig. 1 summarizes the procedure used to obtain the results 
presented in the next section of the paper. 
 
The GARCH-ARIMAX and SARIMA models presented, respectively, in [30] and [38] have been 
used to generate the 100-year synthetic series of both the daily average EM price and the daily 
average RDC of the RM. The 100-year synthetic series of the daily average water inflow has been 
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generated from the Markov chain used to model this variable for the computation of the plant’s 
water value. 
 
IV. Discussion of results 
 
The formulation of the decomposed daily decision problems of Model 3 and Model 4 (2)-(23) is 
an MIQP formulation where the objective function is quadratic and all constraints are linear. The 
formulation of the decomposed daily decision problems of Model 1 and Model 2 is an MILP 
formulation. We have used CPLEXTM v12.2 to solve both MIQP and MILP problems. CPLEXTM uses 
a branch and cut algorithm to solve problems with integer variables and dual simplex to solve 
the LP/QP problems of the branch and cut tree of MILP/MIQP problems. 
 

 
Fig. 1. Procedure followed to obtain the results. 

 
Table 2 summarizes the CPU time and number of iterations necessary for Models 1-4 to 
converge, as well as the number of constraints, variables and integer variables of the 
decomposed daily decision problems of each Model. 
 

Table 2. CPU time, iterations, equations and variables of Models 1-4. 

 
 
The profit obtained by the hydropower plant throughout the entire simulation period is shown 
in the last column [Profit (M€)] of Table 3. The water volume at the end of the simulation period 
when using the water value provided by Model 1/2/3/4 is 404.28/543.95/482.05/480.87 Mm3. 
In order to make a fair profit comparison, we have calculated the future revenue the plant would 
get from the extra volume obtained with respect to the lowest volume (404.28) and have added 
this revenue to the profit obtained in the simulations when using the water value provided by 
Models 2-4. In order to calculate this extra revenue, it’s necessary to attribute a monetary value 
to the extra volume with a unique criterion. We have used as valuation criterion the water value 
provided by Model 3 (i.e. the slopes of the profit-to-go-function). The profit shown in the last 
column of Table 3 includes this extra revenue. The results shown in Table 3 seem to indicate that 

Model 1

Model 2

Model 3

Model 4

Simulations by short-term MIQP model (3)-(27)

Simulations by short-term MIQP model (3)-(27)

Simulations by short-term MIQP model (3)-(27)

Simulations by short-term MIQP model (3)-(27)

Profit

Profit

Profit

Profit

MEDIUM-TERM 
SCHEDULING

SHORT-TERM SCHEDULING COMPARISON

CPU time 
(s)

Number of 
iterations

Number of 
equations

Total number 
of variables

Number of 
integer variables

Model 1 52.047 3 1391 794 360
Model 2 240.768 3 1463 842 360
Model 3 391.975 4 1463 842 360
Model 4 56.649 3 1463 842 360
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considering the producer’s price-making behaviour in the RM to compute the plant’s water 
value brings a moderate additional profit of 0.09-0.12 % to the hydropower producer with 
respect to the case in which the water value is computed neglecting such an influence (Model 
2). 
 

Table 3. Results of the simulations. 

 
 

As can be seen in Fig. 2, the frequency curves of the reservoir volume corresponding to the cases 
where the water value was computed with Model 1, which may be considered as the standard 
approach followed nowadays by most hydropower producers, are by far the lowest ones. Each 
curve in Fig. 2 shows the percentage of hours (in per unit values) in the 100-year simulation 
period during which the reservoir volume given by the y-ordinate is exceeded. By contrast, those 
corresponding to the cases where the water value is computed with Model 2 are by far the 
highest. The “extreme” behaviour of both the models is due to the modelling inconsistencies 
existing between the short-term scheduling and the medium-term one, as discussed in [39] and 
[40]. Model 1/Model 2 tends to underestimate/overestimate the plant’s water value [25], and 
for this reason, the short-term scheduling model tends to keep a lower/higher reservoir volume 
than in the cases where the water value was computed with Model 3 and Model 4, which are 
consistent with the power plant’s operation strategy. The low reservoir volume obtained as a 
result of the short-term scheduling when using the water value provided by Model 1 has an 
impact on the available head and therefore limits power generation. This is the reason for the 
counterintuitive result that the revenue in the EM obtained when using the water value provide 
by Model 1 is lower than the one obtained with the water value provided by Model 2, even 
though Model 1 only considers sales of energy in the EM.  
 
The only inconsistency between the short- and medium-term scheduling in the cases where the 
water value is computed with Model 3 and Model 4 is that the real-time use of the committed 
FRR has been only considered in the short-term scheduling. The reason for this is that the 
average hourly net energy (upward-downward) used in real-time for automatic frequency 
restoration purposes in the Spanish power system is usually a small fraction of the total 
committed reserve (e.g. in the first semester of 2017 it was 6.6 %). 
 
Fig. 2 also shows the total volume of water spillage throughout the entire simulation. As can be 
seen in the Figure, even though the profit increase is moderate, the cases where the water value 
was computed with Model 3 and 4 have a total water spillage 29% lower than the case where 
the water value was computed with Model 2. The extra spillage obtained with the water values 
provided by Model 2 is 5.85e3 Mm3 (compared to the one obtained with the water values 
provided by Model 3)1. Again, the reason for this extra spillage is that Model 2 overestimates of 
the plant’s water value. The water value provided by Model 2 is higher than that provided by 

 
1 The average annual spilled volume is 58.5 Mm3/year, which is approximately 2 % of the annual average 
water inflow (2876 Mm3). 

Model 1 4337.85 1361.20 -108.63 5590.42
Model 2 4482.26 1480.22 -122.00 5840.49
Model 3 4487.62 1478.71 -118.66 5847.68
Model 4 4482.33 1479.05 -119.06 5842.32

Medium-term 
scheduling model

EM    
(M€)

RM   
(M€)

Operational 
cost  (M€)

Profit 
(M€)
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Models 3 or 4, because the former does not take into account the impact of the reserve offers 
on the RM prices. It should be noted that the total volume discharged through the turbines in 
the cases where the water value was computed with  Model 2/Model 3 is 264708 Mm3/270765 
Mm3 and that the average reservoir volume in these cases is 558/495 Mm3. This difference in 
volume is equivalent to around 4 meters of gross head, and has an impact on the power 
production in terms of the MWh/Mm3 rate of 9 MWh/Mm3. These values explain why using the 
water value computed with Model 2 yields a profit close to the one obtained with the water 
values computed with Model 3 (see Table 3), with a higher water spillage and a lower volume of 
water discharged through the turbines. 
 
This last result may have important implications for the hydropower plant’s operation. This 
hydropower plant, as many others in Spain and other countries all over the world, is also used 
for flood control purposes. In these type of hydropower plants, flood control has usually a higher 
priority than other water usages, such as hydropower production, for obvious reasons. If we 
understand flood control as the set of control actions that are taken so as to avoid damages in 
the area downstream of the reservoir (river bed, river bank, floodplain), minimizing the amount 
of uncontrolled water spillage will always be beneficial. The extra spillage obtained in the case 
where the water value was computed neglecting the producer’s price-making ability in the RM 
can be unacceptable from the point of view of the flood control. 
 
Fig. 2 may make the reader think that participating in the RM will contribute to increase the 
water spillage. In order to be able to say so, it would be necessary to repeat the simulations 
using a short-term model consistent with Model 1, i.e. not considering the participation of the 
hydropower producer in the RM. 

 
Fig. 2. Trajectories of the reservoir volume in the simulation period. 

 
The following conclusions can be drawn from the results shown in Table 3 and Fig. 2: a) 
considering the participation of the hydropower plant in the RM when computing the plant’s 
water values may contribute to increase the power plant’s profit by 4.47-4.60 %, which is 
appreciably higher than the values reported for the reserve markets in Norway [18], [25] and 
Switzerland [14]; b) considering the influence of the hydropower producer on the clearing price 
of the RM when computing the plant’s water value may contribute to further increase the power 
plant’s profit by only 0.12 %, which can be considered modest compared to the uncertainty 
existing in the day-ahead scheduling, and to reduce the water spillage by 29 %; c) the cross-
correlation between the hourly prices of the EM and RM is not significant enough to be 
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considered when computing the plant’s water values; d) if the producer does not consider 
him/herself a price-maker in the RM, his/her water values can be significantly overestimated. 
This does not have a large impact on the plants’ profit, but for practical purposes it is not 
satisfactory to operate with wrong water values. 
 
For the sake of completion, we want to note that the daily head variation obtained as a result 
of the simulations turned out to be lower than or equal to 2.24/1.38/1.69/1.71% of the plant’s 
maximum gross head in 99 % of the days of the 100-year synthetic series. This supports our 
choice of not considering the intraday head variation in the plant’s aggregate generation 
characteristic in the medium- or short-term scheduling models. 
 
In order to test the sensitivity of the representation of the RM market on the results we have 
analysed 8 additional cases. We have created 4/4 synthetic series of the slope/intercept of the 
RM by multiplying the slope/intercept of the historical RDCs of the RM by a factor λ equal to 0.5, 
0.75, 1.25 and 1.5. We have then proceeded as if these synthetic series corresponded to other 
reserve markets in which the impact of the plant’s reserve offers has a different magnitude. The 
water value in these other reserve markets has been computed using only Model 2 and Model 
3. Table 4 shows the results obtained in these additional cases (along with those corresponding 
to λ=1). As expected, the power plant’s profit decreases as the slope of the RDCs becomes more 
pronounced (i.e. λ increases) and as the intercept of the RDCs decreases. The second/fourth last 
column of Table 4 shows the spillage/profit difference, expressed in percentage, when the water 
value is computed considering the influence of the hydropower producer on the clearing price 
of the RM. As can be seen in the Table, the profit increase is modest in all cases, even negative 
in some of them (from -0.27% to 0.32%), compared to the uncertainty existing in the day-ahead 
scheduling, whereas the spillage decrease is significant in all cases (from 19.63% to 35.54%). In 
the day-ahead generation scheduling of a hydropower plant that participates in the EM as price-
taker and in the RM as price-maker, there are 3 main sources of uncertainty, namely: the water 
inflow to the reservoir, the EM price and the RDC of the RM. The uncertainty in the water inflow 
forecast is usually moderate, and given the size of the reservoir used in the case study, it is not 
expected to have an appreciable impact on the plant’s generation schedule or revenue. 
According to [30], the uncertainty in the EM price forecast, measured as the mean absolute 
percentage forecast error, is between 15 % and 20 %. According to [38], the uncertainty in the 
RM RDC forecast, measured also as the mean absolute percentage forecast error, is between 20 
% and 25 %. 
 
The economic results are to some extent expected. High values of the RDC’s slope imply a more 
pronounced decrease of the reserve price as a function of the producer’s reserve offers, and 
therefore a lower profit in the RM, whereas higher values of the intercept imply a higher reserve 
price, and therefore a higher profit in the RM. This is clearly observed in the last column of the 
Table where the ratio between the profit obtained in the RM and the EM is shown. 
 

Table 4. Results of the additional cases. 
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V. Conclusion 
 
A novel optimization model for the calculation of the water value of a hydropower plant has 
been presented in this paper. The model considers sales of both energy and reserve. The novelty 
of the model lies in that it considers the influence of the hydropower producer on the clearing 
price of the reserve market. The model has been used to analyse the impact of the price-making 
behaviour on the overall economical and scheduling results of an existing hydropower plant, 
which is currently operating in the Spanish electricity market. The results obtained in the paper 
indicate that the plant’s profit might increase by up to 0.12 % if the plant’s water values were 
computed considering the producer’s price-making ability in the reserve market. This increase 
is modest compared to the uncertainty existing in the day-ahead scheduling. However, the 
results also indicate that the water spillage significantly decreases if the producer’s price making 
ability in the reserve market is considered to compute the plant’s water value. This last result 
may have important implications for the plant’s operation, especially when the reservoir is also 
used for the purpose of flood control, as the one used as case study in the paper. 
 
The results obtained in the paper assuming the participation of the same hydropower plant in 
other synthetically generated reserve markets are analogous to those obtained for the Spanish 
reserve market. The profit increase is modest in all cases, compared to the uncertainty existing 
in the day-ahead scheduling, and becomes even negative when the slope of the residual demand 
curve or the price of the reserve market decreases. However, the water spillage is always 
significantly lower when the producer’s price-making ability in the reserve market is considered 
to compute the plant’s water value. 
 
We believe that the presented model is well suited for detailed multi-market studies of 
hydropower systems with one or a few reservoirs and with inherit non-convexities in the model 
formulation. Moreover, it can be used to benchmark the scheduling policies from state-of-the-
art linear models, and to quantify the approximation errors in those. The results presented in 
the paper can be useful for hydropower companies to evaluate whether or not to upgrade the 
optimization tools used to compute the water value. The formulation presented in the paper 
might be helpful to undertake such an upgrade. 
 

1 0.5 Model 2 4435.00 1735.62 -113.31 6057.31 19192.07 39.13%
1 0.5 Model 3 4425.77 1733.36 -110.86 6048.27 -0.15% 15423.87 -19.63% 39.17%
1 0.75 Model 2 4461.83 1594.94 -117.64 5939.14 19598.74 35.75%
1 0.75 Model 3 4459.78 1593.81 -115.06 5938.53 -0.01% 14691.37 -25.04% 35.74%
1 1 Model 2 4482.26 1480.22 -122.00 5840.49 19953.74 33.02%
1 1 Model 3 4487.62 1478.71 -118.66 5847.68 0.12% 14106.58 -29.30% 32.95%
1 1.25 Model 2 4499.98 1385.77 -125.60 5760.15 20220.53 30.80%
1 1.25 Model 3 4511.36 1383.40 -121.73 5773.03 0.22% 13622.31 -32.63% 30.66%
1 1.5 Model 2 4512.04 1306.52 -128.15 5690.41 20506.63 28.96%
1 1.5 Model 3 4529.92 1302.45 -124.03 5708.34 0.32% 13219.59 -35.54% 28.75%

0.5 1 Model 2 4803.53 478.80 -97.69 5184.64 15744.14 9.97%
0.5 1 Model 3 4790.33 476.36 -95.93 5170.76 -0.27% 12549.33 -20.29% 9.94%

0.75 1 Model 2 4645.65 939.58 -110.98 5474.26 17784.67 20.23%
0.75 1 Model 3 4639.49 936.20 -108.34 5467.35 -0.13% 13121.52 -26.22% 20.18%
1.25 1 Model 2 4340.68 2061.19 -130.48 6271.38 21682.81 47.49%
1.25 1 Model 3 4350.03 2059.31 -126.71 6282.63 0.18% 15322.78 -29.33% 47.34%

1.5 1 Model 2 4219.25 2662.41 -136.79 6744.87 23199.08 63.10%
1.5 1 Model 3 4234.64 2659.52 -132.42 6761.75 0.25% 16353.95 -29.51% 62.80%

Medium-term 
scheduling model

DM    
(M€)

RM   
(M€)

Operational 
cost  (M€)

Profit 
(M€)

ΔProfit 
(%)

λ 
Intercept

λ 
Slope

Spilled volume 
(Mm3)

ΔSpilled 
volume (%)

RM/DM 
(%) 

This is the accepted version of an article published in Electric Power Systems Research 
http://dx.doi.org/10.1016/j.epsr.2020.106399



Finally, we propose as future lines of research the consideration of risk-aversion constraints for 
the computation of the water value, as well as other energy and ancillary services markets, such 
as the auction intraday markets and the manual FRR market of the Spanish power system, and 
the comparison to other approaches not based on the classical splitting between the medium- 
and short-term generation scheduling as the one suggested in [41] and [42].  
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