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Abstract
Transport modelling of oil and other chemicals in the ocean relies on information on

current velocity as a function of position and time, v(x, t). These data will in many cases be
supplied from an ocean circulation model, which produces a velocity field with vectors given
at discrete points on a four-dimensional grid. If we consider for simplicity a passive tracer that
moves with the water velocity at its position, then calculating the trajectory of the tracer, x(t),
starting from a position x0 when t = 0, can be done by numerically integrating the differential
equation ẋ = v(x, t), with the initial condition x(t = 0) = x0.

This immediately raises three questions that every transport modeller must answer:
Which integrator should one use, what timestep to use, and how does one evaluate the current
velocity field at locations between grid points? In this paper, we investigate some of these is-
sues by extensive numerical experiments. The most basic choice in marine pollutant transport
models is the combination of the Forward Euler integrator (x(t + ∆t) = x(t) + v(x, t)∆t)
with nearest-neighbour interpolation (constant values within each grid cell). This is compared
to the more advanced options of 2nd-, 3rd- and 4th-order Runge-Kutta methods, combined
with spline interpolation of first, second and third order in both space and time. As the velocity
field, we have used both an analytically expressed double gyre field, and three nested datasets
from the ROMS model, at 800 m, 4 km and 20 km horizontal resolution.

The main goal of using more advanced numerical integration schemes is to save com-
putational time by allowing the use of a longer timestep, while still obtaining the same accu-
racy as from a simpler method with a shorter timestep. Hence, the choice of timestep is in-
vestigated in detail. Our conclusions are that there is no benefit from using a high-order inte-
grator, unless accompanied by a high-order interpolator, and that in practice, the combination
of linear interpolation and a 2nd-order integrator delivers the best balance between accuracy
and computational effort. Finally, we find that using the same transport timestep as that of the
underlying current dataset is sufficient in the cases we have investigated.

1 Introduction
Trajectory modelling in the marine environment is used to track the position of “ob-

jects of interest” over time. Practical applications include floating objects trajectories for Search
and Rescue operations (SaR, see e.g. De Dominicis et al. (2013)), particle transport (see e.g. Döös
et al. (2016)), oil spill modelling (see e.g. French-McCay (2003); Reed et al. (2000); Zelenke
et al. (2012)) or modelling of chemical discharges (see e.g. Reed and Hetland (2002)). A com-
mon modelling approach is Lagrangian modelling, where “Lagrangian elements” represent
the modelled objects and are transported by the forces of the marine environment produced by
wind, currents, waves, turbulence, etc. Among the advantages of Lagrangian modelling is that
the many properties and characteristics of the transported object or substance, e.g. oil, can be
straightforwardly represented and tracked over time, in addition to merely predicting a spatial
position. Lagrangian transport modelling furthermore benefits from good numerical stability,
and performance will usually degrade gracefully with reduced resolution (longer timesteps,
fewer Lagrangian elements).
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For each Lagrangian element, the transport model will have to solve the transport
equation, which in its simplest form means numerically integrating the differential equation
ẋ = v(x, t) for advection. Trajectory modelling of oil and other chemicals in the ocean
relies on information on, e.g., current velocity as a function of time and location, v(x, t).
These data will in many cases be modelled data themselves, supplied from an ocean circula-
tion model. These models produce a velocity field with vectors given at discrete points, of-
ten on a four-dimensional grid with a given resolution in space and time. For the modeller
this poses three challenges: (1) choice of an integration method to compute advection for
a timestep, (2) the choice of this timestep (its length) and (3) the choice of an interpolation
method to determine the value for v(x, t) in the advection equation. These choices have to be
made under the constraints of computational costs (time) versus the cost of accuracy:

• Short timesteps can be assumed to give good accuracy (almost) independent of the cho-
sen integration method, but come with high computational costs.
• Higher order methods for integration and interpolation increase accuracy, but will also

increase the computational cost at each step.

Different modelling applications have their own requirements of spatial and temporal resolu-
tion, and may have different criteria for balancing computational cost against accuracy. For
example, oil spill simulations covering large areas can operate at timesteps of 1 hour or more,
where the oil might be transported 800 m on average per timestep. For simulation of oil well
drilling discharges, however, the majority of the released mass may be deposited within 1 km
of the release point, and consequently higher resolution in both time and space is required.

Newer applications of transport models for operational monitoring in (near) real time,
with the purpose of direct feedback and decision making, creates higher expectations of ac-
curacy (see e.g. Brönner et al. (2013); Hodges et al. (2015)). Furthermore, oil spill models
are used for hindcast modelling of important events, like the Deepwater Horizon incident (see
e.g. Barker (2011); North et al. (2011)). In these cases, the availability of measurements and
observations for comparison against model results can also lead to an increased focus on ac-
curacy in the modelling. Advances in computational power in recent years allow the produc-
tion of oceanographic data at increasingly high resolution. In order to take advantage of the
increased resolution in the velocity data, care must be taken in the selection of integrator, inter-
polator and timestep in the transport model.

1.1 Integration and Interpolation
It is common knowledge that the 4th-order Runge-Kutta integrator gives better sta-

bility and accuracy than the Forward Euler method, and there are several papers referring
its use in oil spill transport modelling or other marine transport problems (see e.g. Mariano
et al. (2011); Price et al. (2004)). However, these papers do not discuss interpolation of the
velocity field at arbitrary time and location, which is a requirement for any numerical inte-
gration scheme, and which will be shown here to have significant effect on the results. There
is also work referring to interpolation in time, suggesting it should be fourth order, to match
the fourth order integrator, but with no discussion of interpolation in space (Garcı́a-Martı́nez
and Flores-Tovar, 1999). A more general paper exists, doing a more theoretical analysis of the
effect of interpolation on particle path calculations in 3D, but again discussing interpolation
in time only (Darmofal and Haimes, 1996). Another general study considered the effect of
various interpolation schemes in space and time, with the variable-timestep integrator Runge-
Kutta-Fehlberg, but using an analytical expression for a flow field that was then gridded before
interpolation (Mancho et al., 2005). In this paper, we seek to analyse the interaction of nu-

587

Nordam, T., U. Brönner,J. Skancke, R. Nepstad, P. Rønningen, and M.O. Alver, Numerical Integration and Interpolation in Marine 
Pollutant Transport Modelling, Proceedings of the Fortieth AMOP Technical Seminar, Environment and Climate Change Canada, 
Ottawa, ON, pp. 586-609, 2017. 



merical integrators with interpolation in both space and time, using realistic modelled ocean
current data of different resolutions.

The aim of the current paper is to assess the numerical error in transport modelling
results given by the combination of the choices for

• interpolation method
• integration method
• timestep
• spatial resolution of current data

while keeping in mind the practical consideration of “How accurate is ‘accurate enough’ for
the purpose at hand?”

To limit the scope of the study, we consider only transport by currents in the horizon-
tal plane. We ignore wind, buoyancy and the presence of boundaries such as the coast or the
sea bed. Sub-grid turbulent mixing is also ignored. Hence, we are considering the pure advec-
tion problem in two dimensions.

In our simulations, we represent the advected matter as a field of 10000 particles, or
“Lagrangian elements”, which are passively transported by a velocity field. We consider one
case where the velocity field is expressed in analytical form, and one case using real ocean
current data sets. The ocean data are provided on regular quadratic grids, in three different
horizontal resolutions (800 m, 4 km and 20 km, all with timestep 1 hour). We calculate the
global error in the trajectory of each particle, and discuss the average and mean errors found
with different integrators, interpolators and timesteps.

We have chosen to limit the study to the Runge-Kutta family of methods, consider-
ing methods of order 1 to 4 with a constant timestep of integration. For interpolation, we have
used nearest neighbour, linear, quadratic spline and cubic spline interpolation both in the hori-
zontal plane and time, using the same order of interpolation in all directions.

2 Theory
2.1 Transport Equation

The advection-diffusion-reaction equation for a concentration, c, of a substance reads

∂c

∂t
= ∇ · (D∇c)−∇ · (vc) +R, (1)

where v is the advection velocity, D is the diffusivity and R is the reaction term, where v and
D are in general functions of x and t, while R can in principle be a function of x, t, and c, as
well as the concentration of other substances. All numerical oil spill models essentially solve
this equation, in one way or another. If we ignore reactions (R = 0), and let D be a constant in
space (∇D = 0), the equation simplifies to

∂c

∂t
= D∇2c−∇ · (vc), (2)

which can be shown to be equivalent to an infinite ensemble of particles (each representing a
mass mi, such that

∑
mi =

∫
c dV ) with positions governed by the equation

xi+1 = xi + vδt+ ξi
√

2nDδt, (3)

for sufficiently small δt (Visser, 2008). Here, n is the number of spatial dimensions (in which
the diffusion takes place), and ξi is a random vector whose length is of zero mean and unity
variance, and whose direction is uniformly distributed.
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The topic of the current paper is to study the numerical calculation of advection by
gridded velocity fields. Hence, we will further simplify our system, by setting D = 0. In this
case, the trajectory of a particle being advected passively through a velocity field is defined by
the ordinary differential equation (ODE)

ẋ = f(x, t), (4)

where f(x, t) = v(x, t) is the velocity at time and position (x, t), along with an initial condi-
tion, x(t = t0) = x0.

2.2 Numerical Integration
Finding the solution of an initial value problem by numerical means is known as “nu-

merical integration” of the differential equation. A large body of literature exists on the topic
of numerical integration, and a range of different techniques exist, including many special pur-
pose methods (see e.g. Hairer and Wanner (1996); Hairer et al. (1993, 2006)).

In this paper, we will consider four different methods from the Runge-Kutta family
of methods, including the frequently used Forward Euler method, and 4th-order Runge-Kutta
(commonly known as the Runge-Kutta method). Common to all of these of methods is that we
deal with time as a discrete variable, with a fixed timestep, h. For convenience, we introduce
the notation

ti = t0 + ih, (5)

and we let xi denote the numerically obtained solution at time ti. Furthermore, we let x(ti) be
the true solution at time ti (although note that x(ti) is usually not known).

2.3 Error Estimates
Since numerical integration is most commonly used in situations where the exact so-

lution is unknown, it becomes necessary to estimate the error by purely numerical means. In
general, the idea is that a smaller timestep, h, gives a more accurate solution, and as h → 0,
the numerically obtained solution converges to the true solution. The rate of convergence de-
pends on the chosen integration method. There are two important measures of the error: The
local error and the global error. The local error is the error made in a single step. Assume there
is no error in the position at time tk−1, i.e., x(tk−1) = xk−1. Then, the local error in step k is
given by

e(h) = x(tk)− xk. (6)

The global error, on the other hand, is the error at the end of the computation, at time tN :

E(h) = x(tN)− xN . (7)

If the local error is, e.g., O(h2), then the global error will be O(h), since the number
of steps, N , is ∼ 1/h. In this case, when the global error is proportional to h, the method is
said to be first order, while a method where E(h) ∼ h2 is said to be second order, etc.

It can be shown that for a Runge-Kutta method of order p, and for an ODE given by
ẋ = f(x, t), where all partial derivatives of f(x, t) up to order p exist and are continuous, the
local error is bounded by

|x(t0 + h)− x1| ≤ Chp+1, (8)
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where C is some constant, which depends on the method, and on the partial derivatives of
f(x, t) (Hairer et al., 1993).

To obtain a numerical estimate of the local error for a given method and problem, it is
possible to use a technique first described by Richardson (1910) (see also Hairer et al. (1993)).
With a Runge-Kutta method of order p, numerically integrating the ODE ẋ = f(x, t), start-
ing from an initial value (x0, t0), we take first two steps, of size h, which gives the numerical
results x1 and x2. We then again start from the same initial value, taking one large step, of
length 2h, obtaining the numerical result w. Then it can be shown that the difference between
the true solution, x(t0 + 2h), and x2, is given by

x(t0 + 2h)− x2 =
x2 −w

2p − 1
+O(hp+2). (9)

An important point for our purposes is that these error estimates are only guaranteed
to hold if all partial derivatives up to order p of the velocity field, v(x, t), exist and are contin-
uous. This has implications for how we should treat the gridded velocity field used in a parti-
cle transport simulation. For example, if one chooses to use nearest-neighbour interpolation,
i.e., constant values in a grid cell, the first partial derivatives of the interpolated velocity field
are 0 almost everywhere, and discontinuous at cell boundaries. Using linear interpolation, the
first partial derivatives will be constant inside a cell, but again discontinuous at cell bound-
aries. Only by advancing to second order interpolation (for example quadratic splines) are we
guaranteed to have continuous first partial derivatives.

2.4 Runge-Kutta Methods
The simplest method from the Runge-Kutta family is commonly known as the For-

ward Euler method. Given a position at a time ti, xi, and the velocity v(xi, ti) at that time and
position, it calculates the position a time h later:

k1 = v(xi, ti)

xi+1 = xi + k1h.
(10)

This is clearly an approximation, as one in practice treats the velocity field as constant over the
time and distance of each step. The error can be reduced by making the timestep, h, smaller,
but since the number of steps increases when the timestep becomes shorter, this increases the
total amount of work done. This method has a local error that scales as e(h) ∼ O(h2), and a
global error E(h) ∼ O(h). Hence, this is said to be a first-order method.

More advanced methods generally use two or more evaluations of the velocity field,
calculating a weighted average, using this to calculate the next position. A common example
is the method known as the Improved Euler method, or Heun’s method, which is one of sev-
eral examples of a two-stage Runge-Kutta method of order 2.

k1 = v(xi, t)

k2 = v(xi + k1h, t+ h)

xi+1 = xi +

(
1

2
k1 +

1

2
k2

)
h.

(11)

Note that this 2nd-order Runge-Kutta method only evaluates the velocity field at times ti =
t0 + ih, where i is an integer. Moving on to order 3, we have chosen to consider a scheme
known as Kutta’s method, which uses three evaluations of v(x, t), including at half-timestep
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offsets.

k1 = v(xi, t)

k2 = v(xi + k1h/2, t+ h/2)

k3 = v(xi − k1h+ 2k2h, t+ h)

xi+1 = xi +

(
1

6
k1 +

4

6
k2 +

1

6
k3

)
h.

(12)

Finally, we consider perhaps the most common example of a higher order method, which is
the 4th-order Runge-Kutta method (commonly known simply as “the Runge-Kutta method”).
It uses four evaluations of the velocity field to calculate the next position, and again considers
half-timestep offsets.

k1 = v(xi, t)

k2 = v(xi + k1h/2, t+ h/2)

k3 = v(xi + k2h/2, t+ h/2)

k4 = v(xi + k3h, t+ h)

xi+1 = xi +

(
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4

)
h.

(13)

2.5 Interpolation
The ocean current velocity data we have chosen for this study are provided on reg-

ular grids of discrete points, (xi, yj, zk), as well as discrete times ti. For simplicity, we have
chosen to consider motion in the xy plane only, i.e., constant depth z. The available data then
represents a 2D vector field of two-component vectors, on a regular quadratic grid.

In order to calculate the trajectory of a particle that moves in the velocity field de-
fined by these data, we will have to evaluate the vector field at arbitrary locations, and possibly
(depending on the choice of timestep) arbitrary times. In order to evaluate the velocity at a lo-
cation (x, y), one possible option is to identify which cell that location is in, and use the vector
defined at the center of that cell. This is sometimes known as nearest-neighbour interpolation.
The advantages of this approach include simple implementation, and the fact that it makes a
certain intuitive sense, as a vector defines the average velocity inside a cell, over an interval in
time. The major disadvantage is that the vector field is then discontinuous at the boundaries
of cells, which is not realistic. Furthermore, we have seen that the error bounds of the numeri-
cal integration methods depend on the existence and continuity of the partial derivatives of the
velocity field. For nearest neighbour interpolation, the partial derivatives do not exist at cell
boundaries.

In this study, we have chosen to consider four different interpolation schemes, using
the same order of interpolation in both space and time:

• Zero-order: Nearest neighbour
• First-order: Linear interpolation
• Second-order: Quadratic spline interpolation
• Third-order: Cubic spline interpolation

For a description of how spline interpolation was implemented, see Section 3, and for further
details of the different kinds of interpolation, see e.g. Press et al. (2007).

Once an interpolation scheme has been chosen, one has effectively replaced the grid-
ded data by an analytical expression, by specifying a way in which to evaluate the velocity
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field at any point (x, t). Hence, under this assumption, there exists a true solution, and as
h→ 0, all numerical integration schemes should converge towards this solution.

Note that the purpose of interpolation is not to approximate the true velocity field at
sub-grid scales, but rather to provide a consistent recipe for evaluating, at arbitrary points, the
averaged velocity field represented by the data. Note also that interpolated velocity fields of
different order are not identical, and will not produce identical trajectories.

3 Method
To allow easy testing of different combinations of interpolators and integrators, a sim-

ple particle transport code was written in Python, making use of the SciPy stack. The library
netCDF4 was used to read gridded current data, spatial interpolation was done by applying
the class RectBivariateSpline from scipy.interpolate, and time interpola-
tion was done with interp1d, also from scipy.interpolate. Both of these methods
support linear interpolation, as well as quadratic and cubic splines. Nearest neighbour inter-
polation was handled as a special case, by finding the cell indices for the nearest grid point,
and looking up the value of that cell directly. Using numpy arrays, both interpolation and the
transport step can be done as operations carried out on arrays of particle positions, thereby
avoiding much of the overhead of interpreted Python code.

For computational efficiency, spatial interpolation was done on a subset of the veloc-
ity field (separately for the x and y components of the vectors), where the subset was selected
to cover all particles, plus a halo of 5 cells in both directions. Note that in order to determine
the weights of a higher order spline, more than two data points are needed. Hence, to evaluate
the velocity at position x and time t, first spatial interpolation was used to obtain v(x, Tn), for
several consecutive timesteps Tn of the available data. Then, interpolation in time was used
to obtain the value v(x, t). For the results reported here, 2 points in time were used for linear
interpolation, 6 points for quadratic splines, and 8 points for cubic splines, selected in such a
way that t was found in the middle interval.

The datasets used in this study are provided as NetCDF files with vectors defined in
the cell centers (de-staggered grids). The dimensions of the datasets are x, y, z and t, with the
xy plane defined in a polar stereographic projection. The current velocity field is provided as
vectors on the xy basis. In our simulations, we used the same xy coordinate system as the data
files, converting to longitude and latitude only at the end, for presentation purposes. All errors
are calculated from distances in the xy plane, measured in meters.

4 Results - Case 1: Double Gyre
We begin by studying a simplified test system, where the velocity field is known an-

alytically as a function of x and t. The chosen system is called a double gyre, and consists of
two counter-rotating vortices, where the line separating the vortices will oscillate left and right
as time passes. The velocity field represents the flow of an incompressible fluid, and satisfies
the conservation of mass (∇ · v = 0), but is otherwise not meant to be an actual solution of the
Navier-Stokes equations. The equations for the double gyre field are taken from Shadden et al.
(2005).

The velocity field is defined in the xy-plane, in the region x ∈ [0, 2], y ∈ [0, 1], and is
given by:

vx = −πA sin(πf(x, t)) cos(πy),

vy = πA cos(πf(x, t)) sin(πy)
∂f(x, t)

∂x
,

(14a)
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Figure 1 Distribution of particles in the double gyre velocity field (see Eq. (14)), shown
at t = 0 and t = 10 days.

where

f(x, t) = a(t)x2 + b(t)x,

a(t) = ε sin(ωt),

b(t) = 1− 2ε sin(ωt),

(14b)

where the parameters A, ε and ω are chosen to adjust the properties of the system. Here, the
values A = 0.1, ε = 0.25 and ω = 1 were used. In applying this field as a test case, we
have scaled the time variable and the velocity field by a factor 1

12·3600 , in order to obtain a more
meaningful comparison of timesteps with the ocean current case. Figure 1 shows the initial
distribution of particles used in this study, and their positions after 10 days.

4.1 Error Analysis
In Section 2.3, we introduced the concept of the global error of a trajectory, which is

the distance from the end position of the numerically calculated trajectory, to the exact solu-
tion. In the case of the double gyre, we do not know the exact solution, but since the velocity
field can be evaluated at arbitrary positions and times, we can calculate the trajectories at any
accuracy desired, limited only by the precision of the floating point calculations. Hence, we
expect the numerically calculated trajectory to converge to the exact answer when the timestep
becomes sufficiently short. The purpose of introducing the analytically known double gyre
field is thus to establish a baseline for the scaling of the numerical error with timestep. Later,
we will compare the results obtained for the double gyre, to those obtained from the gridded
current velocity fields.

To estimate the error for a given integrator, and at a timestep, h, we first calculate a
reference solution using the 4th-order Runge-Kutta integrator and a very short timestep, h0,
found by trial and error. Then, for a given timestep h, we estimate the global error in the tra-
jectory of particle i, Ei(h), as the distance from the end point of the trajectory, to the end point
of the reference trajectory calculated with the short timestep, h0:

Ei(h) =
∣∣xh0

i (tN)− xh
i (tN)

∣∣ (15)

where tN is the time at the end of trajectory.
Using Np = 10000 particles, with initial positions distributed as shown in Fig. 1

(left panel), we have calculated the trajectories using 42 different timesteps, spanning from
30 seconds to 28800 seconds (8 hours). Using trajectories calculated with h0 = 10 s and the
4th-order Runge-Kutta integrator as a reference, we can then calculate the global error for each
particle, for each different timestep. In Fig. 2, we show, on log-log scale, the average error

593

Nordam, T., U. Brönner,J. Skancke, R. Nepstad, P. Rønningen, and M.O. Alver, Numerical Integration and Interpolation in Marine 
Pollutant Transport Modelling, Proceedings of the Fortieth AMOP Technical Seminar, Environment and Climate Change Canada, 
Ottawa, ON, pp. 586-609, 2017. 



Figure 2 Scaling of error with timestep for the double gyre system, shown for Runge-
Kutta methods of order 1 to 4. The continuous lines show the average global error, taken
over 10000 trajectories, and the dashed line show the median global error. The thin lines
are added to indicate the slope.

(continuous line) and the median error (dashed line) for Runge-Kutta methods of orders 1 to
4. The individual dots show the error for each particle, and are included to give a sense of the
distribution. For each integrator, a thin, continuous line has been added to indicate the slope.
Note that the smallest obtainable local error using double precision floating point numbers is
in practice around 10−15, and the largest error is limited by the size of the domain, which is√

5 length units from corner to opposite corner.
The main purpose of presenting the results in Fig. 2 is, as mentioned above, to estab-

lish a baseline for comparison of the behaviour of the different integrators. Since the function
that describes the double gyre field is infinitely differentiable, we know from Eq. (8) that the
local error is bounded by e(h) ≤ Chp+1, where p is the order of the numerical integration
scheme, and consequently that the global error is ∼ hp. This is indeed what can be seen for
each of the integrators presented in Fig. 2. The flattening of the curve for the Forward Euler
integrator is caused by the fact that as the timestep becomes longer, more and more trajectories
have an error comparable to the size of the system, after which it cannot grow further.

5 Results - Case 2: Gridded Current Data
We have selected to use three different datasets, with horizontal resolutions of 800 m,

4 km and 20 km (Fig. 3). These are all publicly available, provided by the Norwegian Mete-
orological Institute∗, and are known as NorKyst800m, Nordic4km, and Arctic20km respec-
tively. In all three cases, the ROMS ocean model has been used as the simulation engine, and
the 4 km model has been forced with the 20 km model as boundary conditions, and similarly
the 800 m model has been forced with the 4 km model. All three datasets are provided at 1
hour temporal resolution.

For each of the three datasets, we have considered Np = 10000 particles, in each

∗see http://thredds.met.no/thredds/fou-hi/fou-hi.html

594

Nordam, T., U. Brönner,J. Skancke, R. Nepstad, P. Rønningen, and M.O. Alver, Numerical Integration and Interpolation in Marine 
Pollutant Transport Modelling, Proceedings of the Fortieth AMOP Technical Seminar, Environment and Climate Change Canada, 
Ottawa, ON, pp. 586-609, 2017. 



Figure 3 Geographical extent of the three different ocean current datasets used in this
work.

case starting out from the same initial conditions, at the same time t0 = February 1, 2017,
12:00 GMT, and being transported for a period of 10 days. The initial positions where selected
at random within a 40 km × 100 km rectangle, and the same initial positions were used for
all simulations. The initial positions, and the particle field after transport for each of the three
datasets, are shown in Fig. 4. Note that while the center of mass of the particle cloud appears
in approximately the same location of all three datasets, the particles moved with the higher
resolution datasets display more mixing due to eddies which are unresolved by the coarser
data.

The area chosen for the initial distribution of particles is outside the coast of Nor-
way in the northernmost part of the North Sea. The area is outside the influence of the north-
ward flowing Norwegian Coastal Current. The Norwegian Current, branching from the North
Atlantic Current, carries Atlantic water towards Norway and northward along the coast. The
main inflow of Atlantic water is to the north of the initial distribution area, and a branch of the
inflow turns southwards, flowing outside of the Coastal Current (see e.g. Sætre, R. (2005).)

Due to the choice of initial area, particles tend to have a slightly northward net move-
ment initially, while those particles closest to the Norwegian coast are eventually carried south-
ward by the branch of the Atlantic inflow. The eddy activity between the main currents leads
to increased dispersal of particles, and some may eventually start moving northwards along the
Coastal Current.

5.1 Error Analysis
A fundamental assumption in numerical integration of ODEs must be that the result

will converge when the timestep, h, is reduced. In a case such as ours, where the derivative is
only known with limited resolution, ignoring sub-grid scale fluctuations, the numerical solu-
tion will not converge to the “correct” answer, in the sense of “the true trajectory of a passive
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Figure 4 10000 particles, starting from the same initial positions (marked by grey dots)
at t0 = February 1, 2017, 12:00 GMT, transported for 10 days with current data of three
different horizontal resolutions.

tracer released into the ocean at the given time and location”. However, for the numerical ap-
proach to make sense, we must at least expect that the solution will settle towards some defi-
nite value when the timestep is reduced. At some point, no further useful information can be
extracted from the velocity field by reducing the timestep.

The situation is illustrated in Fig. 5. It shows five trajectories, calculated with the
same initial position, using the 800 m dataset, and timesteps of 900, 1800, 3600, 7200, and
14400 s (the timestep of the current data is 3600 s). The 4th-order Runge-Kutta integrator,
combined with quadratic spline interpolation, was used to calculate the trajectories. The trajec-
tories for h = 900 s and h = 1800 s are practically identical, while the trajectory for h = 3600 s
can be seen to deviate somewhat from the two others. For h = 7200 s and h = 14400 s, on the
other hand, the difference is much greater, and the endpoints of the trajectories (after being
transported for 10 days) are separated by several kilometers.

To investigate the scaling of the global error with timestep, for different combina-
tions of interpolation and integration methods, we will conduct the same type of analysis as
presented for the analytically known double gyre field. For each of the Np = 10000 initial
positions, and for each degree of interpolation, we calculate a reference trajectory, using the
4th-order Runge-Kutta integrator, and a very short timestep, h0 = 30 s. The value of h0 was
chosen partially out of practical considerations, as the simulation time for the higher order
methods was approaching 12 hours for a single ensemble of 10000 particles at h0 = 30 s.
However, the value of h0 also fulfills three other criteria: It is much, much shorter than the
temporal resolution of the data, the typical steplength at h0 (∼ 15 m) is much, much shorter
than the horizontal resolution of the datasets, and it evenly divides the temporal resolution of
the data, meaning all intervals in the data files are weighted equally.

For all longer timesteps, we then proceed to estimate the global error for each particle
trajectory to be the distance from the end of the trajectory, to the end of the reference trajec-
tory (Eq. (15)). Note that all trajectories are compared to a reference trajectory calculated with
the same level of interpolation. The reason for this is that a gridded dataset, interpolated with,
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Figure 5 Trajectories for the same initial position, calculated with 5 different timesteps.
The trajectories for h = 900 s and h = 1800 s are essentially identical at the scale shown
here (the dashed blue line lies on top of the continuous red line).

e.g., linear interpolation, is not identical to the same dataset interpolated with cubic splines,
and trajectories calculated at different levels of interpolation should not in general be expected
to be identical, even as h → 0. This is illustrated in Fig. 6, where trajectories from two initial
positions have been calculated with h = 2 s, and the 4th-order Runge-Kutta integrator, us-
ing interpolated current fields of different degrees. Both the initial conditions and the duration
(3 days) of these trajectories were chosen to illustrate the fact that different interpolation can
give different trajectories. The simulation was repeated using timesteps of 5 s, 10 s, and 30 s,
producing visually identical results (the changes in the end points of the trajectories by going
from h = 5 s to h = 2 s were in all cases less than 0.2 m).

In Fig. 7, the global error, as a function of timestep, for each particle Ei(h) is shown
as individual points, with the error calculated according to Eq. (15). The average error is shown
as a continuous line, and the median error is shown as a dashed line. The trajectories have
been calculated with the Forward Euler integrator, using the 800 m dataset, and four different
interpolation schemes: Nearest neighbour (upper left), linear (upper right), quadratic splines
(lower left), and cubic splines (lower right). The graphs are plotted on a log-log scale, and a
thin red line has been added to indicate the slope of the scaling of the error with timestep.

In Figures 8, 9, and 10, the same type of results are shown, for the 2nd-, 3rd-, and
4th-order Runge-Kutta methods, again for the 800 m dataset, and for the four different interpo-
lation schemes. For each combination of interpolator and integrator, the trajectories calculated
with the same interpolator and the 4th-order Runge-Kutta integrator, at timestep h0 = 30 s, has
been used as a reference when calculating the global error.

In Figures 11 - 14, the same type of results are shown, but for the 4 km dataset, and in
Figs 15 - 18, the same type of results are again shown, now for the 20 km dataset.

Finally, we have produced tables of the average and median global error for selected
timesteps, for each combination of dataset, interpolator and integrator. These were calculated
in the same way as the results shown in Figs. 7 to 18, using the results obtained with the 4th-
order Runge-Kutta integrator, at a timestep h0 = 30 s, as the reference. In Table 1, we show
the average, for timesteps 1800 s, 3600 s and 7200 s, and in Table 2, the median global error is
shown for the same timesteps. Note that the temporal resolution of all three datasets is 3600 s.
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Figure 6 Three-day trajectories for two initial positions, calculated with different levels
of interpolation, using h = 2 s, and the 4th-order Runge-Kutta integrator.

Table 1 Average global error (in meters) for combinations of interpolator and integra-
tor for timesteps 1800 s, 3600 s, and 7200 s.

800 m 4 km 20 km
Euler RK2 RK3 RK4 Euler RK2 RK3 RK4 Euler RK2 RK3 RK4

1800 Zero 784 829 344 340 382 352 138 137 229 265 102 97
Linear 821 62 7.61 5.81 326 7.90 0.28 0.20 387 2.63 0.10 0.05
Quad 887 58 4.09 2.76 329 7.33 0.19 0.01 399 3.43 0.08 0.01
Cubic 878 45 4.79 2.33 329 8.09 0.19 0.01 401 3.77 0.08 0.00

3600 Zero 1497 1437 618 614 742 688 270 268 456 524 203 192
Linear 1633 208 44 26 652 32 1.82 0.79 775 11 0.67 0.19
Quad 1706 225 42 33 654 29 1.46 0.16 794 15 0.65 0.03
Cubic 1709 222 45 35 654 32 1.47 0.12 798 16 0.61 0.02

7200 Zero 3270 2805 1745 1719 4033 4233 1171 1151 2746 4146 999 991
Linear 3467 2440 868 858 3504 3680 1254 1253 1988 3504 1183 1182
Quad 3533 2425 1019 988 3514 3679 1274 1272 1942 3508 1174 1173
Cubic 3533 2443 1013 984 3510 3676 1277 1276 1939 3506 1178 1177

Table 2 Median global error (in meters) for combinations of interpolator and integra-
tor for timesteps 1800 s, 3600 s, and 7200 s.

800 m 4 km 20 km
Euler RK2 RK3 RK4 Euler RK2 RK3 RK4 Euler RK2 RK3 RK4

1800 Zero 323 319 118 120 205 283 96 97 142 241 85 80
Linear 384 15 1.83 1.52 270 5.37 0.20 0.12 380 1.42 0.07 0.04
Quad 400 20 0.94 0.38 273 6.00 0.14 0.01 390 3.50 0.06 0.00
Cubic 399 19 0.84 0.14 274 6.57 0.14 0.00 391 3.97 0.06 0.00

3600 Zero 635 604 233 230 420 566 197 197 287 482 170 158
Linear 776 66 11 6.62 541 21 1.33 0.48 760 5.39 0.48 0.14
Quad 787 88 11 6.42 549 24 1.05 0.11 775 15 0.50 0.03
Cubic 790 83 11 6.19 550 27 1.07 0.08 781 17 0.46 0.02

7200 Zero 1929 1640 822 815 3165 3505 779 767 2262 3724 677 663
Linear 2024 1511 509 513 2595 2884 963 967 1844 3336 1109 1107
Quad 2048 1479 563 563 2556 2869 979 983 1800 3313 1100 1098
Cubic 2036 1480 560 560 2558 2867 985 986 1792 3318 1104 1101

598

Nordam, T., U. Brönner,J. Skancke, R. Nepstad, P. Rønningen, and M.O. Alver, Numerical Integration and Interpolation in Marine 
Pollutant Transport Modelling, Proceedings of the Fortieth AMOP Technical Seminar, Environment and Climate Change Canada, 
Ottawa, ON, pp. 586-609, 2017. 



Figure 7 Global error for 10000 particles (see Eq. (15)), after 10 days of transport,
for the Forward Euler integrator, using the 800 m dataset, and four different interpola-
tion schemes: Upper left: Nearest neighbour, upper right: linear, lower left: quadratic
splines, lower right: cubic splines. The red lines are included to indicate slope.

Figure 8 The same as for Fig. 7, but for the 2nd-order Runge-Kutta integrator.
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Figure 9 The same as for Fig. 7, but for the 3rd-order Runge-Kutta integrator.

Figure 10 The same as for Fig. 7, but for the 4th-order Runge-Kutta integrator.
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Figure 11 Global error for 10000 particles (Eq. (15)), after 10 days of transport, for
the Forward Euler integrator, using the 4 km dataset, and four different interpola-
tion schemes: Upper left: Nearest neighbour, upper right: linear, lower left: quadratic
splines, lower right: cubic splines. The red lines are included to indicate slope.

Figure 12 The same as for Fig. 11, but for the 2nd-order Runge-Kutta integrator.
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Figure 13 The same as for Fig. 11, but for the 3rd-order Runge-Kutta integrator.

Figure 14 The same as for Fig. 11, but for the 4th-order Runge-Kutta integrator.
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Figure 15 Global error for 10000 particles (Eq. (15)), after 10 days of transport, for
the Forward Euler integrator, using the 20 km dataset, and four different interpola-
tion schemes: Upper left: Nearest neighbour, upper right: linear, lower left: quadratic
splines, lower right: cubic splines. The red lines are included to indicate slope.

Figure 16 The same as for Fig. 15, but for the 2nd-order Runge-Kutta integrator.
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Figure 17 The same as for Fig. 15, but for the 3rd-order Runge-Kutta integrator.

Figure 18 The same as for Fig. 15, but for the 4th-order Runge-Kutta integrator.
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6 Discussion
From the error analysis of the double gyre system, shown in Section 4.1, one might

expect the different integrators to display the same type of behaviour for the ocean current
data. However, we see from the results of Section 5.1 that this is not the case. In this section,
we will discuss some of the observations one can make from the results presented above, as
well as the way these results apply to practical situations.

6.1 Error Analysis - 800 m Dataset
Considering first the results for the Forward Euler integrator, shown in Fig. 7, we see

that with nearest neighbour interpolation, the error does indeed scale approximately linearly,
but with considerable variation between timesteps. Once interpolation of first order or higher
is applied, however, the scaling becomes very smooth, and matches the line of slope h almost
perfectly.

Moving on to the 2nd-order Runge-Kutta method, we see that with nearest neighbour
interpolation, the error scales linearly, even for a second order method. With linear interpola-
tion, the error scales as h2, as expected for a second-order method, although again with consid-
erable variation among timesteps. When higher order interpolation is applied, the convergence
becomes smoother, but still no faster than h2.

Recall that for a cubic spline, the function itself, and its first and second derivatives
exist, and are continuous (while the third derivative is not in general continuous). Hence, for
cubic spline interpolation and a second order integrator, the criterion that the derivatives exist
and be continuous up to the order of the integrator is fulfilled. This explains why the error plot
for this case shows smoother and more idealised scaling, similar to the results for the double
gyre case (see Fig. 2).

For the 3rd-order Runge-Kutta method, the results are shown in Fig. 9. With no inter-
polation, the error scales as h, with linear interpolation, the error scales as h2. With quadratic
spline interpolation, the convergence of the median error approaches h3, however the average
error seems to flatten out at a much higher level as h → 0, indicating the presence of large
outliers inflating the mean. From the individual points shown in Fig 9, which shows the global
error for each trajectory, it can be confirmed that the distribution in errors becomes quite broad
at the lower timesteps.

Finally, for the 4th-order Runge-Kutta method, the picture is quite similar to that of
the 3rd-order method. The median error scales as h, h2, h3, and finally h4, for increasingly
high orders of interpolation, and again, as h → 0 the average error flattens out at a larger val-
ues than the median error for the two highest orders of interpolation.

Note that for the 3rd- and 4th-order methods, we begin to see the error reaching a
threshold at very large timesteps (h > 7200 s). This is caused by the fact that the largest errors
are limited by the typical speed of the ocean currents, placing limitations on how far it is pos-
sible for two trajectories to separate. We can see from the individual points in Figs. 9 and 10
that the largest errors are on the order of 50 km. For comparison, the average traveled distance
for a particle in these simulations is about 70 km (from start to end, not along the trajectory).
The same limitations are of course found also for the first and second order integrators, but the
effects are less visible in Figs. 7 and 8, due to the overall smaller slope of the error graphs in
those cases.

6.2 Error Analysis - 4 km and 20 km Datasets
For the two coarser resolution datasets, the overall picture is much the same as for

the 800 m data. The convergence of the integrator is limited by the order of the interpolation
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scheme used. For example, in order to achieve a global error that scales with h3 for the 3rd-
order Runge-Kutta integrator, it is necessary to apply quadratic spline interpolation, and even
then, the error varies quite strongly between timesteps.

The most noticeable differences from the 800 m case are first that for the 4 km case,
and even more so for the 20 km case, the average and the median error are much more similar,
indicating a narrower distribution of errors. Secondly, there is a very large difference in the
error between those timesteps that evenly divide 3600 s, such as h = 300 s and h = 360 s,
compared to those that do not, such as h = 270 s and h = 330 s. This is especially noticeable
in the case of the 4th-order integrator and quadratic spline interpolation, where the difference
is more than 3 orders of magnitude for the 4 km dataset, and more than 4 orders of magnitude
for the 20 km dataset.

6.3 Practical Considerations
From what we have seen so far, we can conclude that there is no benefit from apply-

ing a high-order integration scheme, without also applying at least linear interpolation. How-
ever, if linear interpolation is applied, then substantial reductions in error can be achieved by
switching from first to second order integration. For example, from Table 1, we see that for
the 800 m dataset, and a timestep of 1 hour, the average global error is reduced from 1497 m
to 208 meters by switching from Forward Euler with nearest neighbour, to 2nd-order Runge-
Kutta with linear interpolation. By switching to higher order integration methods, it is possible
to reduce the error further, whereas higher order interpolation does not appear to have a signif-
icant effect. Note, however, that the error is very sensitive to the choice of timestep when the
order of interpolation is lower than the order of integration. Choosing a timestep that does not
evenly divide 1 hour can lead to 1 - 4 orders of magnitude increase in the average error (see in
particular Figs. 10, 14, and 18).

From a practical perspective, it is also reasonable to ask what kind of accuracy should
be expected. For example, using a timestep of h = 1800 s, cubic spline interpolation and the
4th-order Runge-Kutta integrator, with the 4 km dataset, one can achieve an average global
error of 1 cm, after an average displacement of 70 km. However, there is absolutely no reason
to expect the current data to be accurate to this level.

6.4 Choosing an Optimal Combination of Interpolation Method, Integration Method,
and Timestep Based on Acceptable Error Thresholds
An ocean current model has inherent uncertainty in its calculation of the velocity

field. Therefore, one must be be willing to accept some uncertainty in particle transport based
on the ocean current model. Given that some error is accepted, the question becomes what
combination of interpolation method, integration method, and timestep requires the least com-
putational time while remaining within the acceptable error. To answer this, we focused on
simulations run for timesteps of 900 s, 1800 s, 3600 s, and 7200 s. These timesteps were se-
lected since they are likely candidates to be chosen in particle simulations for ocean current
data with a timestep of 3600 s. Further, we had observed that very low errors could be ob-
tained for all three model resolutions and all three interpolation methods (Figures 7-18). There-
fore, we further focused the analysis on an optimal method in terms of walltime, considering
the simulations with linear interpolation in space and time, using the 4 km dataset.

To quantify thresholds for acceptable error, we compared the errors in these simu-
lations with the average displacement of particles from the beginning to the end of the sim-
ulation. Displacement was calculated as the average distance between start position and end
position of all particles for the simulation with the shortest timestep. We set error thresholds at
5 %, 1 %, 0.1 % of the average displacement associated with the shortest timestep.
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Figure 19 Top-three methods, ranked by walltime of calculation, for error bounds of
0.1%, 1% and 5%. Results shown for linear interpolation in space and time, and the 4
km dataset.

For each threshold, we selected the 3 combinations of methods and timestep that had
the shortest simulation walltime while transporting particles within the error threshold (see
Fig. 19). For all thresholds, we found that a timestep of 3600 s, corresponding to the timestep
of the velocity field data, was the most cost-effective. When a 5 % error was acceptable the
Euler integrator was the most effective method, while the 2nd order Runge-Kutta method was
most effective when 1 % and 0.1 % error was acceptable.

In the simulations used to evaluate the optimal method, the walltime did not include
constructing the interpolator. Since the simulations here were relatively short, the walltime re-
quired for constructing of the interpolator would effectively cancel the difference in computa-
tion time for each method. Thus, for a generic particle tracking simulation, which generally in-
cludes time-demanding computational steps beyond particle transport, the choice between the
top 3 interpolators for each threshold in Figure 19 is relevant only as long as particle transport
is a significant computational cost in the simulation. Finally, it should be considered that the
integration and interpolation methods in this work were implemented in Python, while most
particle transport models may be expected to be written in Fortran or C++, in which numeri-
cal efficiency may be different between the methods. At the same time, the code used in this
work relies on the Scipy and Numpy libraries for array handling, integration, and interpola-
tion, which means that most of the computational time also in this work is spent in complied
Fortran or C code in the underlying libraries used by Scipy and Numpy.

7 Summary and Conclusion
In this study, we have performed an extensive comparison of timesteps and interpo-

lation schemes, used with Runge-Kutta integrators of order 1 to 4. In general, higher order
integration and interpolation methods decreased the error at a given timestep, but increased
the required computational time in our particle transport simulations. Therefore, the choice
of which method to use becomes a question of choosing a fast method that has an acceptable
error.

We evaluated the run-time efficiency within different error thresholds for 4 commonly
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used timesteps for a 3600 s ocean current field. For the case considered here, we found that the
2nd-order Runge-Kutta is the most effective integrator if an error of 1 % or 0.1 % is accept-
able, while the Euler integrator was most effective if a larger error of 5% is acceptable (Figure
19).

Since the optimal methods all had the same timestep of the integration as the tem-
poral resolution of the dataset, no interpolation in time would have been necessary at all for
the methods that only evaluate the velocity field at integer multiples of h, leading to further
potential savings in computational time. Note that spatial interpolation is always required, as
velocities must be evaluated at arbitrary positions.

These results further show that the 4th-order Runge-Kutta integrator, which is per-
haps the most commonly used integrator of the Runge-Kutta family, was not cost-effective
even when 0.1 % displacement error was required (see Fig. 19), demonstrating that the most
popular choice should not be taken for granted. If even higher accuracy is desired, the 4th-
order Runge-Kutta method may be required, but from a practical point of view, there is no rea-
son to expect the current data to be accurate to the level that this integrator can deliver.
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