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(1) — Introduction and motivation

» The CO2-Upslope project studies how CO, migration in slop-
iIng open aquifers is limited by factors that may immobilize
the plume over the long term (physical and chemical trap-
ping mechanisms) [1, 5].
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» A case study is carried out on the Gassum Formation - a (a) . L o -
sloping open aquifer (Skagerak, south of Norway), for which | e 0T m 0T
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» The work presented below aims to assess the potential for Sy I e = S oo S
structural trapping and plume retardation from caprock to- . ;
pographical features that we try to infer from available data. (b) “ g
» Ultimately, the Gassum aquifer crops out on the sea floor, )
and sufficient plume retardation is essential to avoid leakage. T e T ey T e
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(8) — Fault parameter sensitivity

Seismic cross-section of the

Gassum Formation (image (c) » Our fault model ratios 6 /L, D/L and 6 are highly uncertain.

from GEUS) By combining the base surface with randomly generated small-scale detail (cf. box 3) and » To assess the sensitivity of migration to these parameters,
faults (cf. box 4), we create top surface representations that are statistically compatible we vary each of them in turn, and run flow simulations on
with the 2D seismic line and fault data. (a) base surface; (b) base surface and small-scale ble of 10 lizat f h b :
detail; (c) base surface, small-scale detail and faults. an €nsemble o realizations tor each combination.

» We plot the mean and standard deviation in outcomes for
each scenario.
Impact of variations in 0 /L ratio

(2) — Input data
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» Domain under study: 1900 km?
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» Structural trapping
capacity significantly
impacted by small-scale
features and faults

d/L = 1.6 - 10°2 (reference) d/L = 8.0- 1072 d/L = 5.0- 1073

» CO, migration is strongly
affected by caprock
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variations, broken down
into contribution from
base surface, small-scale
variation and faults.
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» We use thin-plate splines to
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construct a base surface . .« - i g |
_ (7) — Simulated injections 3
representing general caprock | T . = g
shape » To assess impact of top surface structure on CO, migration, d o] 2 * 7 e
L we run flow simulations. The vertical-equilibrium simulator o we o mo e w0 s % wo mo o @ se %0 w0 m w0 w0
» Small-scale variations are _ _ _ _ e (year e tyeas) e tyears
. an simulat in MRST-co21abl4] lets us to run many simulations quickly. : e — _ :
Important when simulating . L Impact of variations in fault orientation
S » We consider 3 alternative injectors and 3 megatons of CO,
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i » We use a conceptual fault J y o g 100 . o
— }h del £ 3 .l ; . ' 2. » Small-scale topographical features amount to a significant
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(b) ; P . i — : down overall plume migration with about 10-35 percent.
from the center of the ellipse. Well position 2 (middle) _ . ]
. » Choice of ratios in the fault model seem to have limited
> ImpOrta nt I’atIOS al’e 5 tO f&]Ult base surface base + detail base + detail + faults . . .
length L, fault height H to impact on plume migration speed
extent 01,‘ displacement zone D 130 » General orientation of small-scale fault may have non-
(c) to | fault orientation 8 and | negligible impact on overall migration direction.
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