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(1) – Introduction and motivation

I The CO2-Upslope project studies how CO2 migration in slop-
ing open aquifers is limited by factors that may immobilize
the plume over the long term (physical and chemical trap-
ping mechanisms) [1, 5].

I A case study is carried out on the Gassum Formation - a
sloping open aquifer (Skagerak, south of Norway), for which
data from several 2D seismic surveys are available.

I The work presented below aims to assess the potential for
structural trapping and plume retardation from caprock to-
pographical features that we try to infer from available data.

I Ultimately, the Gassum aquifer crops out on the sea floor,
and sufficient plume retardation is essential to avoid leakage.

Seismic cross-section of the
Gassum Formation (image
from GEUS)

(2) – Input data

I Domain under study: 1900 km2

I CO2 migration is strongly
affected by caprock
topography. To simulate
migration, we must establish
top surfaces that are consistent
with available data.

I 13 seismic lines from 3 surveys
(IKU88, SKAGRE96 and
FSB88) cross the domain (red,
green and blue on figure)

I Each line intersected by a large
number of faults.

I Most identified faults are
minor and can only be
identified on a single line
(unregistered faults)[2].

(3) – Constructing base surface and small-scale detail

I We use thin-plate splines to
construct a base surface
representing general caprock
shape

I Small-scale variations are
important when simulating
CO2 migration, but only
available along seismic lines.

I We measure the difference
between seismic lines and base
surface, and use these residuals
to derive variograms.

I We generate corresponding
Gaussian fields, which allow us
to extend small-scale features
from seismic lines to the whole
surface in a stochastic manner.

(4) – Fault modeling

Conceptual fault model. (a) fault
surface frontal view; (b) side view;
(c) top view; and (c) oblique view.
The blue surface (which intersects
the fault) represents the horizon of
study.
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I We use a conceptual fault
model from [3].

I Fault surface is modeled as an
ellipse, and vertical
displacement δ as a function
from the center of the ellipse.

I Important ratios are δ to fault
length L, fault height H to L,
extent of displacement zone D
to L, fault orientation θ and
throw ψ.

Stochastic generation of 6900 minor faults, with
orientation, size distribution and total number
estimated from unregistered faults in available
line data

(5) – Final top surface

By combining the base surface with randomly generated small-scale detail (cf. box 3) and
faults (cf. box 4), we create top surface representations that are statistically compatible
with the 2D seismic line and fault data. (a) base surface; (b) base surface and small-scale
detail; (c) base surface, small-scale detail and faults.
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(6) – Global trapping analysis

Identified structural traps in (a) base surface; (b)
base surface with small-scale detail; (c) base
surface, small-scale detail and faults

I Structural trapping
capacity significantly
impacted by small-scale
features and faults

I We use MRST-co2lab

to compute structural
traps for base surface
and 310 realizations of
added detail and faults

I Results suggest a
significant additional
structural capacity, but
also with large variation
between realizations.

Total trapping capacity
for 310 of top surface
with stochastic
variations, broken down
into contribution from
base surface, small-scale
variation and faults.

(7) – Simulated injections

I To assess impact of top surface structure on CO2 migration,
we run flow simulations. The vertical-equilibrium simulator
in MRST-co2lab[4] lets us to run many simulations quickly.

I We consider 3 alternative injectors and 3 megatons of CO2

per year for 30 years, followed by 470 years of migration.

I We compare base surface (left plot), base with small-scale
detail (middle plot) and base with small scale detail and
faults (right plot), and three different realizations for each.

Well position 1 (west)
base surface base + detail base + detail + faults

Well position 2 (middle)
base surface base + detail base + detail + faults

(7) – Simulated injections (cont.)

Well position 3 (east)
base surface base + detail base + detail + faults

(8) – Fault parameter sensitivity

I Our fault model ratios δ/L, D/L and θ are highly uncertain.

I To assess the sensitivity of migration to these parameters,
we vary each of them in turn, and run flow simulations on
an ensemble of 10 realizations for each combination.

I We plot the mean and standard deviation in outcomes for
each scenario.

Impact of variations in δ/L ratio

Impact of variations in D/L ratio

Impact of variations in fault orientation

(9) – Conclusion and references

I Small-scale topographical features amount to a significant
share of total structural trapping capacity, although variation
is high between realizations.

I The presence of faults and small-scale detail appears to slow
down overall plume migration with about 10-35 percent.

I Choice of ratios in the fault model seem to have limited
impact on plume migration speed

I General orientation of small-scale fault may have non-
negligible impact on overall migration direction.
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