

Challenges and Experiences with Applying
Microsoft Threat Modeling in Agile Development

Projects

Daniela S. Cruzes
SINTEF Digital

Trondheim, Norway
daniela.s.cruzes@sintef.no

Martin Gilje Jaatun
SINTEF Digital

Trondheim, Norway
martin.g.jaatun@sintef.no

Karin Bernsmed
SINTEF Digital

Trondheim, Norway
karin.bernsmed@sintef.no

Inger Anne Tøndel
NTNU

Trondheim, Norway
inger.anne.tondel@ntnu.no

Abstract— The goal of secure software engineering is to
create software that keeps performing as intended even when
exposed to attacks. Threat modeling is considered to be a key
activity, but can be challenging to perform for developers, and
even more so in agile software development. Hence, threat
modeling has not seen widespread use in agile software projects.
The goal of this paper is to investigate the challenges facing
adoption of threat modeling using the Microsoft approach with
STRIDE. We performed a case study in a company comprising
five agile development projects. We identified 21 challenges to
threat modeling that emerged from our observations. We then
mapped these challenges to challenges found in the literature.
Some challenges overlap the findings from the literature; the
extra challenges we have found in our exploratory study came
mostly from the activities of asset identification and also from
our observations on what happened after the threat modeling
meetings. This study shows that we still have to address many
challenges in order to get a proper adoption of threat modeling
in agile development projects.

Keywords—STRIDE, Agile Software Development, Threat
Modeling, Software Security, Secure Software Engineering

I. INTRODUCTION
The goal of secure software engineering is to create

software that keeps performing as intended even when
exposed to attacks. This is more than just resilience; "as
intended" also includes maintaining required levels of
confidentiality and integrity, not just availability. Threat
modeling is considered to be a key activity in achieving this
goal. The main purpose of threat modeling is to identify and
mitigate potential risks by means of eliciting or refining
security requirements. Threat modeling is a process by which
potential threats (such as structural vulnerabilities) can be
identified, enumerated, and prioritized, simulating an
attacker’s perspective. Such activities often take place in the
design phase, and are repeated later on during the product life-
cycle, if necessary.

The threat modeling activity is particularly important in
software security, since many security vulnerabilities are
caused due to architectural design flaws [1]. Furthermore,
fixing such vulnerabilities after implementation may be very
costly, requiring workarounds which sometimes increase the
attack surface. A well-defined threat model helps to identify
threats to different assets of a system by utilizing well-
grounded assumptions on the capabilities of any attacker
interested in exploiting such a system. It also enables the
development teams to identify critical areas of the design

which need to be protected, as well as mitigation strategies.
However, threat modeling can also be challenging to perform
for developers, and even more so in agile software
development.

Various threat modeling approaches and methodologies
have been developed over time and they have been used in the
process of designing secure applications, varying from
conceptual frameworks to practical methodologies [2]–[4]. In
a recent systematic review, Tuma et al. [2] highlight that the
existing threat modeling techniques have insufficient quality
assurance of the outcomes, use merely validation by
illustration to evaluate their proposed technique, and in
addition most approaches do not provide tool support.

In agile software development, adoption of security
practices poses different challenges, often because security
activities are not prioritized, or because the practitioners are
not able to see the relevance and importance of the activities
to the improvement of the security in the project [5]. The same
holds true for threat modeling; the practice is not widespread,
and the agile practitioners have few sources of
recommendations on how to proceed to adopt the practice in
their development process [6]–[9]. Researchers have not yet
gathered enough evidence on how to include threat modeling
in software development processes that do not rely on having
up-front design for their solutions. Studies in software security
usually focus on software security activities in general, and
there are few empirical studies focusing on specific practices
in agile software development.

This research aims to build evidence on the adoption of
threat modeling using the Microsoft Threat Modeling
Technique with STRIDE in agile projects; focusing on the
challenges and experiences of different projects in one
company where we have been facilitating the adoption of
threat modeling in agile software development. This study is
part of a research project which investigates how to
meaningfully integrate software security into agile software
development activities. The project started in October 2015
and will end in October 2020. The company of our case study
is a company with which we have had long-term collaboration
in multiple projects since 2013.

The remainder of this paper is structured as follows: In
Section II we discuss related work, and Section III covers the
methodology and context of our study. In section IV we
present the results with the mapping to the related work. In
section V we discuss our results by stating the implications to
research and practice. In Section VI we describe some

limitations of our study, and section VII contains the
conclusions and future work.

II. BACKGROUND
 Threat modeling is used to identify threats which may be

related to specific vulnerabilities. If it is not feasible to remove
the vulnerabilities, additional security controls that prevent
those vulnerabilities from being exploited must be added.

There are various research papers that explore threat
modeling in different domains [10]–[17]. Tuma et al. [2]
recently conducted a systematic literature review (SLR) of the
existing techniques for threat modeling. In their study they
analyzed 38 primary studies where a total of 26 techniques
were compared with respect to their applicability,
characteristics of the required input for analysis,
characteristics of analysis procedure, characteristics of
analysis outcomes, and ease of adoption. The most commonly
used techniques in the presented body of knowledge were
misuse cases, attack trees, problem frames and several
software-centric approaches that are well recognized in the
software engineering community, particularly in the industrial
space, such as STRIDE [18], [19], CORAS [20], and
P.A.S.T.A [21]. The most frequently used technique in
industry is STRIDE [22].

Traditionally, threat modeling activities are coupled to the
different phases of the waterfall workflow, starting with a
global view of the ultimate upfront design. In contrast, agile is
much more incremental, and service-oriented development
lacks centralized control. Several proposals have appeared
over the years on how to integrate security engineering
practices into agile methodologies like Scrum and XP [23],
built on the common premise that agile teams neglect security
because it is not an explicit part of common agile frameworks.
Poller et al. [24] suggest that Scrum works well as a
management model, and security development requires
iterations as in agile development, yet Scrum teams can fail to
address security needs due to their low visibility, competing
objectives, and Scrum’s division of labor.

Türpe and Poller [23] theorize about tensions between the
characteristics of security requirements and security work on
the one hand, and the way Scrum manages development work
on the other. Analyzing the definition of Scrum, the authors
find three different ways of managing security work: as bug
fixing on demand, continuously as a quality requirement
through the definition of “done,” or as prioritized and planned
development work through the product backlog. The authors
discuss the capabilities and limitations of these approaches
and find each of them inadequate. On-demand fixing rarely
leads to substantial security improvement. As a quality
requirement, security has a complex relationship with
development work and is difficult to verify. Security features
in the backlog would be a suitable approach to many security
concerns, but they compete with other requirements and may
also need special expertise to design and implement
effectively. Türpe and Poller also argue that research aiming
to reconcile security engineering with agile development
should consider not only the execution of security activities in
an agile process, but also the challenges of managing security
work in agile frameworks. Their analysis suggests four areas
of security tasks that are worth investigating and supporting:
the reflective discovery of security needs to create backlog
items, the valuation and prioritization of security work, agile
verification and feedback in the security dimension, and the

collaboration of Scrum teams with external security experts
and consultants.

Gálvez and Gürses [25] analyze which challenges and
opportunities the shifts in software engineering practice
introduce into traditional Threat Modeling activities; how they
relate to the different Privacy Goals; and which Agile
principles and Service properties have an impact on them. The
authors mention that the following principles from the agile
manifesto are relevant to the threat modeling process [25]:

1) The system design must be flexible enough to accom-
modate new requirements anytime. Software will be de-
veloped iteratively, implementing new requirements in
each sprint while maintaining existing functionality.

2) Working software should be delivered frequently. Cus-
tomer needs are assumed to evolve through the use of
systems. Frequent delivery allows developers to address
them in fixed-timed iterations where priorities are set
based on feedback from the customer.

3) To transfer knowledge and convey critical information,
developers should prioritize face-to-face meetings rather
than read-only documentation. This preference for oral
communications is expected to enhance the global
understanding of the system and diminish the need for
detailed diagrams and exhaustive reports.

4) Working software is the primary measure of progress, and
Test Driven Development enables developers to show
what is already done, and third parties to check that it is
done correctly. Together with face-to-face meetings,
working software has been shown to be a more effective
vehicle of communication than written documentation.

Gálvez and Gürses [25] presented a list of 21 challenges
and opportunities that the shifts in software engineering
practice introduce into traditional Threat Modeling activities
(as shown in Table 2); how they relate to the different Privacy
Goals; and what Agile principles and Service properties have
an impact on them.

Tuma et al. [2] provide insight into the obstacles for
adopting the existing approaches, and discuss the current state
of their adoption in software engineering trends (e.g. Agile,
DevOps). For them, there are four important aspects where
existing threat modeling techniques have yet to mature: (i)
traceability of analysis in the code base; (ii) composability of
analysis outcomes; (iii) threat impact analysis automation; and
(iv) definition of done [2]:

• T1 - There is a need for highly automated threat modeling
techniques due to short sprints. In the space of threat
approaches, tools have been used for three main purposes:
i) partially automating the analysis procedure, ii)
graphically representing threats to the system and (iii)
facilitating the analysis execution (i.e. helping the analyst
to follow the procedure).

• T2 - It is important that the information that was gained
from threat modeling is automatically propagated to
source code level (and vice-versa);

• T3 - The existing techniques would benefit from
guidelines of how to compose the analysis outcome, since
the software systems under analysis in practice are too
large and complex to be analyzed all at once; the analysis
performed for one subsystem is related to security
assumptions which may not be in line with the security
assumptions of another subsystem.

• T4 - Analysts are also faced with the challenge of deciding
how many identified threats (and at what level of
abstraction) are enough for a “good” analysis of a
particular subsystem.

Finally, as part of our previous work, Tøndel et al. [4] have
performed a case study in a university setting comprising
several agile development projects to learn more about
challenges facing adoption of the threat modeling game
Microsoft Elevation of Privilege (EoP). On the adoption of
EoP in Agile, the authors concluded that EoP has the potential
to improve security interest and awareness of the team
participants, and can be useful for training in threat modeling;
the system needs to be complex enough to have a ROI of the
effort; there is a need to make the game more fun and engaging
if it is to be used by agile teams; there is still an open question
on when and how often to play or model (once that playing
EoP in every sprint does not seem to be an option, as this
would take quite a lot of time from each sprint); and, there is
a need for an additional process to pick the key issues (risks,
bugs, improvements) to address in the project after playing
EoP. Additionally, a similar study was done on the risk
estimation game Protection Poker (PP) [26]. PP includes
activities on assets that are relevant for threat modeling, and it
was found that identifying and prioritizing assets was
considered useful by the teams, however challenges included
the time it took, how to know if the granularity of assets is
right, to know how to assess an asset's value and
understanding the difference between asset value and
exposure of a feature.

In this work we will base the analysis of our observations
in the conceptual framework established by the previous
literature [2], [25] and our previous work [4], [26] building
evidence for some of the theoretical propositions of the
previous work.

III. METHODOLOGY

A. Context
This study is part of a bigger project1 which investigates

how to meaningfully integrate software security into agile
software development activities. The project started in
October 2015 and will end in October 2020. The company of
our case study is one which we have had long-term
collaboration with since 2013. The method of choice for the
project is Action Research [27], which is an appropriate
research methodology for this investigation because of the
combination of scientific and practical objectives that aligns
with the basic tenet of action research, which is to merge
theory and practice in a way such that real-world problems are
solved by theoretically informed actions in collaboration
between researchers and practitioners [27]. Canonical Action
research is one of the many forms of action research [28], it is
iterative, rigorous and collaborative, involving focus on both
organizational development and the generation of knowledge.
We apply canonical action research in this project [29].

Our study is based on an agile software organization
spread over three different geographical locations. The
company is a small/medium size organization with less than
100 employees in Norway, Poland, and Finland. There are
mainly 5 product teams in this organization. They provide

1 http://www.sintef.no/sos-agile
2 https://www.owasp.org/index.php/Security_Champions

applications for fleet management, real time transport
information systems and travel planning and ticketing
systems. The solutions are complex in the sense that they
involve hardware and software integrated solutions, as well as
mobile and web applications.

Furthermore, action research involves intervention. As a
result of our collaboration, the company has introduced the
role of Security Champion 2 in each team, these are team
members that are more focused on security aspects than the
other team members. Security Champions facilitate and
sometimes coach the security activities in the team. The
Security Champion is not necessarily a security expert, but a
developer/architect with an above average interest and
aptitude for security. This role is similar to what McGraw
refers to as "the Satellite" in the BSIMM3. The company has
also a professional that is named Security Officer, and her
main responsibilities are to provide leadership and guidance
to the teams on the approach to adopt security activities in the
teams and to perform oversight on the activities that are
needed for assurance that the security is addressed properly in
the company. The introduction of the threat modelling as part
of the Software Development Life Cycle was also another
intervention, as described below.

B. Our Approach to Threat Modeling in the Intervention
At the companies where we are doing threat modeling, we

follow the strategy based on the Microsoft Threat Modeling
framework [18]. We have found that it provides a structured,
systematic approach to threat modeling, which may also
explain why it is the most frequently used approach in
Norwegian companies and elsewhere [22]. In our instantiation
of the approach, a threat model is a visual representation of
four main elements: Assets which are essential or critical for
the system; a description of how assets are stored, processed
or otherwise interact with the system (usually described as a
Data Flow Diagram); the attack surface of the system; threats
which will affect one or more of the identified assets.

Asset identification is the first step. An asset is something
that needs to be protected within the system. Usually, assets
are the information or services that are vital for the business
operation and success, however, the concept of “assets” can
also comprise other parts of the system, such as hardware,
network components, domains or even people. Asset
identification is often assumed to be done implicitly, but we
have formulated an explicit method [3] which we have since
evolved. Briefly, developers and the most important system
stakeholders perform a semi-structured brainstorming session,
to get all possible assets on the board. We then engage the
participants in an interactive classification session where we
aim to determine the assets’ relative importance or value.
Based on the developers’ knowledge of the system, we finally
ask the participants to determine the assets’ relative ease of
exploitation, and end up with a grid. After the meetings the
team members were asked to annotate the asset list with more
information about each asset.

The second step in the threat modeling exercise is to get
an overview over where the assets are stored, processed or
otherwise interact with the system. As part of this step, it is
also useful to define the interfaces of the system under
analysis and to identify potential attack surfaces. As a means

3 https://www.bsimm.com

to get an overview of the system, we recommend making a
Data Flow Diagram (DFD). A DFD is a graphical
representation of the most important actors, processes,
services, components and data stored in the system;
highlighting how information flows between each of them.
The most frequently used tool for drawing DFDs is the
Microsoft Threat Modeling Tool (TMT), which implicitly also
makes it the most popular threat modeling tool; TMT
encompasses all aspects of security to offer documentation as
a guide through the remaining process. The attack surface is
identified directly from the DFD by looking at the trust
boundaries between the system and external entities.

The last step in the threat modeling exercise is to identify
and analyze all relevant threats to the system. This can be done
in several ways, but we performed it using the STRIDE
framework [18].

STRIDE was used to identify threats by analyzing each of
the interfaces defined in the DFD and assessing whether any
of the attack types were relevant. Relevant attack types were
studied further to determine how they could be executed or
applied directly on the identified assets. STRIDE is based on
the first letter of each of the attack types [18]:

• Spoofing is forging a sender identity or attempting to
access a system by using a false identity.

• Tampering is the unauthorized modification of data.
• Repudiation is the ability of users (legitimate or otherwise)

to deny that they performed specific actions or
transactions.

• Information disclosure is the unwanted exposure of
private data.

• Denial of service is the process of making a system or
application unavailable.

• Elevation of privilege occurs when a user with limited
privileges exploits system weaknesses to gain privileged
access to an asset.

After the meetings we asked the Security Champions to
create a list of risks based on the threats that were identified in
the meeting.

C. Data Collection and data analysis
In the study presented in this paper, our aim was to

investigate how to apply threat modeling in agile projects, and
our focus was on the challenges the teams are facing. Our
research questions are:

• What are the main challenges to applying threat modeling
in agile software development?

• How can we adapt the approach to better suit agile
software development projects?

To answer our research questions, we observed eight
threat modeling sessions, each lasting typically 1-2 hours. The
data collection was the observations after each session, and
periodic discussion meetings. One of the authors conducted
systematic meetings with the security champions every other
week for 6 months, about different aspects of the job as
Security Champion. It should be noted that for these teams this
was the first time they were performing threat modeling, and
some teams had to run more than one session to cover all parts
of the DFD. Our observation template is reproduced in Fig.2.

4 https://www.maxqda.com/

We have also talked with the participants of the meetings
during informal talks and bi-weekly discussions with the
security champions of each team. Besides the observation
files, we have also the following artefacts as results of the
sessions:

• Updated data flow diagrams;
• Updated asset lists with prioritization;
• A list of threats based on STRIDE per covered asset;
• List of risks created from the sessions;

We coded the observations using the MaxQDA 4
qualitative data analysis tool, in an exploratory way so we
could see which theme would emerge from the observations
only. We first started generating the initial codes from the
participants' quotes with the support of MaxQDA. After that
we searched for themes among codes. Once themes were
identified and listed, we grouped them by phases (preparation,
execution and post-execution), having a total of 21 general
main challenges encountered. We then classified these issues
according to the challenges and, finally, the researchers
interpreted and discussed the findings together in order to
reach consensus.

We describe below the observations from each of the
phases of the process: asset identification, creating the DFD,
running the threat modeling meeting with STRIDE, and after
the meeting. We then make an comparison with the challenges
found by Gálvez and Gürses [25] to confirm or refute the
challenges they have elicited.

IV. RESULTS
Table 1 shows the 21 challenges to threat modeling that

emerged from our observations. In Table 1 we do a mapping
of the challenges from Gálvez and Gürses [25] and Tuma et
al.[2] to what we have observed, showing if we have raised
similar challenges or not, or if we have found contradictory
results. We do not aim to compare, but try to find a mapping
of the challenges (Table 2 and Table 3).

Fig. 1 - Observation Template

Step # Challenge Our Observations from Our case Study Mapping
to

[25],[2]
Asset
Identification

C1 Documentation of the
assets after the meeting was

not done.

We asked the teams to document the assets after the meetings, but most of the
teams did not do this. When asking the teams afterwards, they mentioned that
they did not see how this documentation would be useful. They thought that
having the list of assets only with names and the prioritization and the
discussion of the prioritization was good enough.

T1

C2 Many discussions on
threats and mitigations

strategies get lost

It was very good to have the graph so people could discuss the exploitability
of the assets, but at the same time at the meeting the team gets to discuss what
are the mechanisms that they have to protect the assets, but once that the focus
is on the assets, all this discussion gets lost.

T1

Data Flow
Diagrams
(DFDs)

C3 It is challenging to motivate
the teams to draw the

diagrams

Some security Champions did not feel motivated to write down the DFDs
because they felt it was overwhelming and hard to have a good drawing of the
design of the systems. Some teams spent a long time (more than 10 hours)
creating the DFD and they mentioned it felt like a they were taking time from
“development activities” that then impacted their productivity of “functionality
output”.

C4 It was hard to decide the
right level of abstraction to

the DFDs.

In some teams the DFD was too high level, which impacted the discussions,
sometimes we had to draw a deeper view of the DFD during the meeting,
leading to less effective meetings. We noticed that if the DFD is too
complex, then there is a need for many meetings to cover the DFD. If the
DFD is too simple, then the discussion gets unfocused and vague.

G2, T3

C5 It takes long time to draw
the diagrams

In most of the teams, the security champion was the one documenting the
diagrams, but they needed input from different people in the team. Some teams
spent many hours trying to draw a good DFD.

T1

C6 It was challenging to map
the interfaces with other

teams

Some teams had problems with drawing the interfaces with other internal
systems in the company because they are a company focused on product
development teams, but have projects that comprise many products. They were
also not sure how to deal with cross-cutting concerns. It was not easy to get all
teams in the same meeting, or to know who to invite from the different teams
to the discussion.

G3, T3

C7 The approach does not
make a link with the actual

code

The teams mentioned that they actually did not know how the system was
really implemented, and the DFDs did not give that confidence that the system
was actually implemented that way, especially where there was a lot of legacy
code.

G4, T2

C8 It is challenging to
maintain the DFDs.

Because of the lack of focus on documentation in agile teams, the teams did
not have a list of assets or a DFD of the system ready, and we had to ask them
to create these artefacts for the meeting, and they did not show motivation to
maintain or have set a strategy to update the DFD. The teams did not feel like
this was an activity that they would want to do frequently. The main impression
was that they would do it now, and then maybe in one year or something. It
was not easy for the teams to foresee how often they would need to perform a
new threat modeling for their systems. We as researchers also had problems to
state clearly how to decide.

G1

Modeling
Meeting

C9 The meeting needs to be
structured but it is not

always clear on how to run
the meeting.

We tried different approaches to perform the meeting: based on covering the
DFD; based on covering STRIDE; or ad-hoc based on where people thought
the focus of the meeting should be. Sometimes we changed the approach as we
saw it was not working well with a specific team. We still do not have clear
recommendations on how to choose an strategy for the meeting.

T1

C10 It is hard to decide which
other people should be

included in the meetings
besides the “core”
development team.

Specifically when trying to do the threat modeling across products, it was not
easy to identify who should be the representative from each product. We also
had some questions on whether or not we should include the Product Owners
in the meetings. One product owner was very helpful in the meeting, but at the
same time made the discussion very focused on his view of the system and the
other team members did not participate as much. We noticed that for STRIDE
types of discussions it was very beneficial to have the operations representative
in the meeting.

G3

C11 There are challenges on
cross-products modeling

We created a meeting that we named “Cross Products Threat Modeling” to try
to identify problems that one product could create for another product. We had
many challenges with that meeting: to structure, to define which model to use
for the analysis, to motivate people to be in the meeting and to decide who
should be in the meeting. This is one issue that we have not found a satisfactory
solution for.

G16, T3

Table 1 - Challenges identified in this Case Study

C12 There are challenges with
running meetings in
distributed settings.

Distributed teams are used to using video conferencing to replace or
complement physical meetings, but we have found that this is challenging
when doing threat modeling: there are still some technical challenges with the
videoconferencing equipment; it is generally not possible to see the people at
all location(s) and their whiteboard(s) at the same time, and often not even the
whole whiteboard at a resolution that allows everyone to read everything. We
have experimented with different configurations, but the major challenges
remain unresolved. We have tried making identical drawings at each
participating site, but consistency is hard. When doing asset analysis we have
tried writing notes and diagrams locally, letting remote participants provide
input verbally, and we tried doing it the other way around, but there seems to
be drawbacks with both solutions.

C13 It is hard to know when
enough analysis has been

done.

Because there always is the sense of “ongoing” project with agile, it is hard to
explicitly say, "now it is good enough for the time being". It is also hard to say
for how long this analysis is valid. One Product Owner mentioned that this is
"useful rehearsal which should be done regularly in all projects". Another
participant also mentioned that “It helps to document the mitigation strategies
that are in people's head, but at the same time, it is hard to know if we have
extracted all knowlegde needed.” As mentioned before, covering the whole
DFD will often take too long; in some cases people get bored of the meetings;
they feel like they have to follow up first the risks and threats elicited before
discussing more about threats in a new meeting; at the same time it is not so
straightforward to create a list of actionable items from the meetings.

G5, T4

C14 The meetings are not
effective

To agile teams, 1-2 hour meetings means a long time taken from the sprint
hours. Furthermore, when they saw that they did not cover the full DFDs, the
team members got somehow frustrated with the process. The coverage of the
DFDs per meeting was much lower than we expected. We could not run the
meetings with the teams indefinitely, so we decided to stop after two or three
sessions with each team.

G13, T1

C15 There is a need for a
Security Expert to run the
meeting; not every team

has this professional
available

Most agile teams nowadays do not have a “security expert” and this is a
challenge. In our case study, the second author was the one running the
meetings, and the other researchers doing observations. The security expert
helps to facilitate and to leverage the discussion. The security champion was
most of the times documenting the threats.

Contradict
G10

C16 It is not easy to have
everyone participating

In some meetings, if there is someone that is more “expert”, “more
experienced” or “more knowledgeable” in the project, he may take over the
discussion, and the participation of the others diminishes. There is also the
problem that not every one is expert in all parts of the DFDs, then in some
meetings some people are not able to participate.

STRIDE C17 STRIDE focuses too much
on the “communication

channels”

We noticed that many times that STRIDE was limiting the discussion to the
trust boundaries and the communication channels, thereby neglecting potential
threats relevant to other parts of the product.

G12

Outputs from
the Sessions

C18 The output of the sessions
are a list of concerns/
threats that are not

concrete

As a follow up, we asked the Security Champions from each team to formalize
the threats discussed in the meetings as risks. The Security Champions did not
feel completely confortable to write them down, and sometimes we needed to
ask them many times about it. The meeting also did not focus much on the
decision of impact and probability of the threats or on which mitigation actions
would be done, because it would take too long. This was a follow-up that the
Security Officer had to do with the security champions. We also asked the team
to contribute to the documentation of the threats, but most teams did not
prioritize this.

C19 Followup of the threats is
challenging

As mentioned in C18, we had a challenge to make the security champions
follow up and describe the threats more in detail after the meeting was done.

C20 The list of threats creates a
concern on time.

The team members were not sure when they would have time to prioritize
threats from the parts of the product that they thought had passed the
“definition of done”.

C21 Not finding threats gives a
false sense of security

When the team had a very good design upfront and all the security issues were
thought through in a good design it gives then a sense that the product is secure
enough, and that they thus do not need to worry about security.

V. DISCUSSION

A. Implications to Research
The study reported in this paper provides evidence on

challenges that agile teams face when conducting threat
modeling meetings in a software company with five different
teams. Coincidentally, both our study and the study by Gálvez
and Gürses identified 21 challenges each, with some overlap
(as seen in Table 2). We could observe 9 of their 21 challenges
(G1, G2, G3, G4, G5, G12, G13, G15, G16). The extra
challenges we have observed in our exploratory study came
mostly from the activities of asset identification and also from
our observations on what happened after the threat modeling
meetings.

It was surprising to us that Galvez and Gürses observed
that bringing experts into the development process slows it
down (G10), because in our case the security expert helped to
facilitate the process. It is important to note that the agile
teams we followed did not have a security expert prior to our
intervention. Also, the expert helped to drive the dicussions
where there was bigger probability of finding threats to the
systems. Further research is needed to study the effect of the
security expert on the threat modelling process.

For different reasons, we were not able to observe nine of
the challenges (G6, G7, G8, G11, G17, G18, G19, G20, G21):

• G6 (Threats can emerge, change or vanish as the system
evolves) and G17 (Strategic mitigations are difficult to
spot in an evolving system): we did not observe these
phenomena in the teams because we did not observe what
happens over a longer period;

• G7 (Requirements elicitation from customers is slow): in
our context the threat modeling was performed during
maintenance phase of the products;

• G8 (Customers may not possess enough privacy
knowledge), G11 (Business goals are difficult to translate
to privacy requirements) and G18 (Conflicting privacy
requirements for the same service): we did not focus on
privacy, and, in our meetings the customers were not
involved;

• G19 (No common infrastructure to enforce rules across
different services), G20 (Lack of information to automate
testing) and G21(Manual validation requires expertise
and documentation) were not the focus of our analysis.

Our study also confirms all the challenges found by Tuma
et al.. Some challenges we found overlap with some
challenges from the literature and some were new. Many of
the new challenges elicited in this study (C18-C21) were also
found in the study we did previously of EoP and of Protection
Poker in a capstone project, thus they are likely not specific
for the company we studied (see Table 5 for an overview of
findings from that study that are relevant to the challenges we
have identified in this study).

When mapping the challenges to the agile manifesto (Table
4), we can see that our study showed challenges mostly
influenced by the focus on “individuals and interactions over
processes and tools” and on “working software over
comprehensive documentation”. One of the reasons for this in
our study is that we focused on the meetings, and the
challenges we had on running the meetings.

Table 2 - Mapping of Challenges from Gálvezand Gürses [25].

Challenges from Gálvezand Gürses [25] Our
Study

G1: Up to date model Ö
G2: Vague requirements descriptions Ö
G3: Modular diagram Ö
G4: Reflect implementation details into the system

diagram
Ö

G5: Keep the threat list up to date Ö
G6: Threats can emerge, change or vanish as the system

evolves

G7: Requirements elicitation from customers is slow
G8: Customers may not possess enough privacy

knowledge

G9: The attacker perspective may not lead to realistic
threats

G10: Bringing experts into the development process
slows it down

X

G11: Business goals are difficult to translate to privacy
requirements

G12: Threat catalogs are limited Ö
G13: Deriving threats is slow Ö
G14: Analyzing scenarios requires a lot of creativity
G15: Performing risk assessment is slow Ö
G16: Finding cascade failures from combinations of

services is difficult
Ö

G17: Strategic mitigations are difficult to spot in an
evolving system

G18: Conflicting privacy requirements for the same
Service

G19: No common infrastructure to enforce rules across
different services

G20: Lack of information to automate testing
G21: Manual validation requires expertise and

documentation

Table 3 - Mapping of Challenges from Tuma et al. [2].
Challenges from Tuma et al. [2] Our

Study
T1: Automated Threat Analysis Ö
T2: Propagation to the Source Code Ö
T3: Need Guidelines for Composition Analysis. Ö
T4: Need Guidelines for Definition of Done Ö

Table 4 – Mapping the Agile Manifesto Principles to the Challenges.

Agile Manifesto Tuma et
al. [2]

Gálvezand
Gürses [25]

Our Study

Individuals and
interactions over
processes and tools

 G3 C9, C10,
C12, C14,
C16

Working software
over comprehensive
documentation

T2

G2,G3, G4,
G20, G21

C1, C3,
C4, C5,
C6, C7,C8,
C11, C19,
C20

Customer
collaboration over
contract negotiation

 G7, G8, G9,
G10, G11

Responding to
change over
following a plan

T1, T2,
T4

G1, G6, G5,
G15, G16,
G17, G18,
G19

C8, C13

Table 5 – Challenges also observed in our previous studies in a study
of Protection Poker [4] and Microsoft EoP [26] with University
Capstone Projects.

Selected challenges from Tøndel et al. [4], [26] Our
Study

Asset value was mixed up with exposure of feature in
the discussions

C2

Students did not use the details of the DFD in the
discussions.

C4

Students played EoP early in the project, and it was
unclear how the design and code would be.

C7

Students ended up having varying preferences on
whether to do threat modeling as a game or as a
checklist.

C9

Students did not play the full EoP card deck, but
students considered themselves finished anyway.

C13,
C14

The security expert was essential to understand the
threats (hints on the cards) and how they apply to the
system.

C15

No vibrant discussions due to limited security
knowledge. Some were more knowledgeable and
more active than others.

C16

Many of the existing cards were not considered
relevant.

C17

Score sheets ended up having few details. It was not
clear to the students what to do with the results
after the EoP session.The students wanted more
support on mitigations actions. No impact on
the design and implementation choices were
observed.

C18

Results from the sessions were not followed up C19
Some groups were instructed by customers to drop
the security considerations in order to prioritise
functionality.

C20

Playing parts of the deck and not finding much of
relevance made them reluctant to look at the
remaining threats.

C21

Individuals and interactions over processes and tools was

challenging specially because it was hard to get effective
meetings with clear and actionable outputs and because in
some teams they were in a distributed setting which made the
meetings even harder to run. We also see a need for better
guidelines on how to run the meetings. In our previous paper
on running EoP (Elevation of Privilege) with teams of
students, we have found that there are many problems with
running the threat modeling meetings using EoP [4].
Therefore more studies needs to be done in order to
understand what is the best process to run these meetings in
an agile context. We can see with the challenges that there are
needs for guidelines on what to document, which level of
details the diagrams need to have, how to structure the meeting
to be motivating and effective and how to document and
follow up the output of the meetings.

The focus on working software over comprehensive
documentation is a challenge for security work, as, it is many
times very much based on the documentation of the decisions,
risks and assets. We have yet not found very good arguments
to motivate the teams and show them the advantages of having
all this extra documentation done.

Gálvez and Gürses [25] have found six challenges on the
principle of customer collaboration, but we have not observed
these. In our case we did not experience these challenges
because the context of when we had the threat modelling was
during maintenance phase of the products, and the focus of the

threat modelling activity was on the product and not on the
specific projects. We have tried to have the Product Owners
in some meetings, and this was mostly beneficial rather than
challenging, especially because it created more awareness of
the threats, and also because they could understand more of
the impacts and exploitability of the threats. As future work
we will also have meetings in contexts of the projects and
involve the customers in the discussions.

On the principle of responding to change over following a
plan, we have found two challenges related to the maintenance
of the DFDs, and the question of deciding when enough
analysis has been done. Tuma et al. [2] have also identified this
problem and propose that a “definition of done” needs to be
further explored for activities in threat analysis.

 Further research should address the benefits of having
security documentation in agile projects. One way to address
this is to focus on the insights provided by Tuma et al. . [2] that
existing analysis techniques have yet to mature in traceability
of analysis in the code base, composability of analysis
outcomes and threat impact analysis automation;.

B. Implications to Practice of Threat Modelling with
Microsoft STRIDE and DFDs.
On the implications to the practice, we observed in this

study that there are many improvement points on the approach
for threat modelling using DFDs and STRIDE. Companies
must be aware of these and apply the technique accordingly.

One recommendation to the practitioners is to include a
security expert for facilitating the meeting, helping the
meeting to be more focused, and also more relevant to the
participants. As we mentioned before, this company has
adopted the role of Security Champions in each team, and they
were very important players in the whole process; they were
the ones driving the drawing of the DFDs, scheduling the
meetings, documenting the threats found and creating and
following up the risks identified in the meetings. Clearly, they
need to be “coached/trained” to build the skills needed to
perform these activities, and our role as researchers doing
action research with them, influenced this process and helped
them to get the needed skills.

The observations shown in this study also lead us to affirm
that that any extra activity that is performed to address
security concerns, will potentially slow down the process of
creating functionality, and if the developers are only
considering the features output, without being concerned
about the quality of these features we may be able to say that
performing threat modeling may slow down the development
process, still we would say that the company in this study see
the benefits of keeping the practice and will keep adding the
activity as part of the regular and systematic approach to
security.

There is also a need to be better on making clear to the
teams about the benefits of doing threat modeling for the
project, while acknowledging the possible impacts in time and
costs, not only for the meetings themselves, but also on the
time needed for preparation of the meetings and follow-up of
the outputs of the meetings. In addition, the side effects of the
activity should be highlighted, such as: better documentation
of the system, awareness of security issues for all team
members, better confidence on the way security is addressed
in the team, and better visibility of the threats to other
stakeholders such as Product Owners and possibly managers

and executives.

We also noticed a decrease of motivation from the asset
identification to the threat modeling meeting. One hypothesis
we have is that the first meeting on the assets created more
awareness, and they were excited to learn something new; the
threat anslysis meeting focused more on trying to document
the threats, and it was not as engaging.

VI. LIMITATIONS
In any action research study, the role of the participating

researchers may have a significant influence on the result. In
our case, we believe that since there was little software
security expertise present in the organization under study, it is
likely that it might not even have attempted to conduct any
threat modeling exercises without us. We will maintain our
collaboration with this organization in the years to come, in
order to learn whether the threat modeling activities that we
have initiated can become self-sustaining.

Our participation in the process may have also influenced
the results in the sense that it is possible that either we have
not found all challenges that other companies are facing, or we
have introduced challenges by our participation in the process.
The participant observer role of the researchers has been more
active than the usual case, since we facilitated the meetings
and also assisted the Security Champion in the role of a
security expert. However, we believe that in the long run, the
security champions at the studied company will acquire
enough security modeling expertise for performing this
activity with the team. Not every developer can be a security
expert, but every software development organization needs to
have enough expertise to conduct most of the software
security activities in the development lifecycle.

Common criticisms to a case study also apply to this study,
among them one may list: uniqueness, difficulty to generalize
the results, and the introduction of bias by participants and
researchers [30]. In our study, we generalized the findings
from empirical findings to theoretical statements, which
involved generalizing data from collected data and
perceptions by discussing them in accordance with the
literature. Observation data were our primary source of
information, and therefore they have the limitations of the
possible research bias.

Qualitative findings are highly context- and case-
dependent, and this is also true for our study. We sought to
mitigate this by analyzing activities in five product teams. All
the participants were professionals using typical development
technologies in a typical working environment, e.g., the
natural setting demanded by the case study approach. We
described the main characteristics of the case study, including
context and settings, data collection, and analysis process. We
believe that this makes the results easier to generalize.

As commonly done in in-depth qualitative studies, we also
had to do a trade-off between the number of participants, the
duration and the cost of this study. The number of projects and
variance in the context is not quantitatively significant, but
gives deeper insights on the issues investigated in this work.

VII. CONCLUSIONS AND FUTURE WORK
Introducing software security activities in an agile

development lifecycle does not come for free; by necessity,
extra activities require extra time and effort. The research

results presented in this paper contribute to the body of
knowledge in applying security activities in the agile context.
Challenges were described related to the different principles
of agile.

Some challenges overlap the findings from the literature
and the extra challenges we have found in our exploratory
study came mostly from the activities of asset identification
and also from our observations on what happened after the
threat modeling meetings.

We have also identified some lessons learned for
companies that wish to perform threat modelling using the
Microsoft Threat Modelling approach.

This study shows that we still have to address many
challenges in order to get a proper adoption of threat modeling
in agile development projects. Therefore, as future work, our
goal is to better understand the challenges here elicited, and
validate our findings in different contexts and organizations
we are collaborating with in the current project.

ACKNOWLEDGMENT
This work was supported by the SoS-Agile project:

Science of Security in Agile Software Development, funded
by the Research Council of Norway (grant number 247678).

REFERENCES
[1] G. Mcgraw, “Software security,” IEEE Secur. Priv. Mag., vol. 2, no. 2,

pp. 80–83, Mar. 2004.

[2] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software
systems: A systematic literature review,” J. Syst. Softw., vol. 144,
pp. 275–294, 2018.

[3] M. G. Jaatun and I. A. Tøndel, “Covering Your Assets in Software
Engineering,” in 2008 Third International Conference on
Availability, Reliability and Security (ARES), 2008, pp. 1172–1179.

[4] I. A. Tøndel, T. D. Oyetoyan, M. G. Jaatun, and D. S. Cruzes,
“Understanding challenges to adoption of the Microsoft Elevation
of Privilege game,” in HotSoS, 2018, p. 2:1-2:10.

[5] C. R. Camacho, S. Marczak, and D. S. Cruzes, “Agile team members
perceptions on non-functional testing influencing factors from an
empirical Study,” in Proceedings of the 11th International
Conference on Availability, Reliability and Security, ARES 2016,
2016, pp. 582–589.

[6] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun, “An empirical study on
the relationship between software security skills, usage and training
needs in agile settings,” in Proceedings of the 11th International
Conference on Availability, Reliability and Security, ARES 2016,
2016, pp. 548–555.

[7] M. G. Jaatun, D. S. Cruzes, K. Bernsmed, I. A. Tøndel, and L. Røstad,
“Software Security Maturity in Public Organisations,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2015,
pp. 120–138.

[8] G. McGraw, B. Chess, and S. Miques, “Building security In maturity
model (BSIMM 8),” http://bsimm.com. 2017.

[9] T. D. Oyetoyan, M. G. Jaatun, and D. S. Cruzes, “A Lightweight
Measurement of Software Security Skills, Usage and Training
Needs in Agile Teams,” Int. J. Secur. Softw. Eng. IJSSE, vol. 8, no.
1, pp. 1–27, 2017.

[10] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software
architecture security risk analysis using formalized signatures,” in
35th International Conference on Software Engineering (ICSE),
2013, pp. 662–671.

[11] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of
Microsoft’s threat modeling technique,” Requir. Eng., vol. 20, no.

2, pp. 163–180, 2015.

[12] M. Cagnazzo, M. Hertlein, T. Holz, and N. Pohlmann, “Threat modeling
for mobile health systems,” in IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), 2018, pp. 314–319.

[13] M. Abomhara, M. Gerdes, and G. M. . Køien, “A STRIDE-Based Threat
Model for Telehealth Systems,” in Norsk
informasjonssikkerhetskonferanse (NISK2015), 2015, no.
November.

[14] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “STRIDE-based
threat modeling for cyber-physical systems,” in IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe), 2017, pp. 1–6.

[15] M. G. Jaatun, I. A. Tondel, and M. Bartnes, “Threat Modeling of AMI,”
in CRITIS 2012, 2013, no. January, pp. 264–275.

[16] C. Mockel and A. E. Abdallah, “Threat modeling approaches and tools
for securing architectural designs of an e-banking application,” in
Sixth International Conference on Information Assurance and
Security, 2010, pp. 149–154.

[17] M. M. Aydin, “Engineering Threat Modeling Tools for Cloud
Computing,” University of York, 2016.

[18] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[19] P. Torr, “Demystifying the Threat-Modeling Process,” IEEE Secur. Priv.
Mag., vol. 3, no. 5, pp. 66–70, Sep. 2005.

[20] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[21] T. Ucedavélez and M. M. Morana, Risk Centric Threat Modeling.
Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015.

[22] N. R. Mead, F. Shull, K. Vemuru, and O. Villadsen, “A Hybrid Threat
Modeling Method,” Carnegie MellonUniversity - Software
Engineering Institute - Technical Report - CMU/SEI-2018-TN-002,
2018.

[23] S. Türpe and A. Poller, “Managing security work in scrum: Tensions and
Challenges,” in SecSE@ESORICS 2017, 2017, pp. 34–49.

[24] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can Security Become a Routine?,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and
Social Computing - CSCW ’17, 2017, pp. 2489–2503.

[25] R. Gálvezand S. Gürses, “The Odyssey: Modeling Privacy Threats in a
Brave New World,” in IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2018, pp. 87–94.

[26] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes, and T. D. Oyetoyan,
“Understanding challenges to adoption of the Protection Poker
software security game,” in SECPRE 2018, 2018.

[27] D. J. Greenwood and M. Levin, Introduction to Action Research: Social
Research for Social Change. SAGE Publishing, 2007.

[28] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical
action research,” Inf. Syst. J., vol. 14, no. 1, pp. 65–86, Jan. 2004.

[29] D. S. Cruzes, M. G. Jaatun, and T. D. Oyetoyan, “Challenges and
approaches of performing canonical action research in software
security,” in Proceedings of the 5th Annual Symposium and
Bootcamp on Hot Topics in the Science of Security - HoTSoS ’18,
2018, pp. 1–11.

[30] D. S. Cruzes and L. ben Othmane, “Threats to Validity in Empirical
Software Security Research,” in In: ben Othmane, L. (Ed.), Jaatun,
M. (Ed.), Weippl, E. (Ed.). (2017). Empirical Research for Software
Security. Boca Raton: CRC Press., .

