
 

Team Autonomy in Large-Scale Agile  
 

Nils Brede Moe 
SINTEF 

 nils.b.moe@sintef.no    

Bjørn Dahl 
NTNU 

bjornhd@stud.ntnu.no  

Viktoria Stray 
University of Oslo, SINTEF 

 stray@ifi.uio.no   

Lina Sund Karlsen 
NTNU 

linaska@stud.ntnu.no 

Stine Schjødt-Osmo 
NTNU 

stinsc@stud.ntnu.no 

 
  

 
Abstract 

 
Large-scale software development is increasingly 
making use of agile practices. In large-scale projects, a 
team needs to align with other teams and the rest of the 
organization. This has been shown to threaten team 
autonomy, which, in turn, reduces responsiveness and 
flexibility. Hence, agile teams face challenges in 
adapting to larger-scale development. We conduct a 
multiple case study of three large-scale projects to 
investigate barriers to team autonomy in large-scale 
agile. Two barriers are identified: overall direction and 
external dependencies. We found that goals are often set 
by management without involving the teams, that they 
are often equal to deliverables and deadlines, and that 
team members often do not know what the goals are. 
Consequently, teams struggle with setting and 
communicating goals as well as establishing a shared 
direction. Organizational dependencies lead to teams 
having to deal with additional tasks, resulting in specific 
members shielding the teams from external noise.  
 
 
1. Introduction  

 
Large software development projects are 

increasingly adopting agile development practices. 
Teams in large-scale projects need to reach agreement 
on many decisions with experts, managers, stakeholders 
and other teams [28]. Further, quality concerns and the 
need for frequent and coordinated releases forces 
companies to govern, control, and standardize multi-
team development efforts. Therefore, the agile team 
working in a large-scale environment needs to be 
aligned with other teams and the rest of the organization. 
If the team breaks the quality or functionality or is late, 
it will affect other teams and deliverables. However, the 
need for aligning the work, processes, and technology 
and for coordinating externally is a threat to team 
autonomy, which is the key to agility. 

The notion of autonomy and self- management is not 
new; research in this area has been around since Trist 
and Bamforth’s study of self-regulated coal miners in 
the 1950s [34]. We use the label “self-managing teams” 
as a synonym for “autonomous teams,” and for 
“empowered teams.” Guzzo and Dickson [11] describe 
such teams as  

 
employees that typically perform highly related or 
interdependent jobs, who are identified and 
identifiable as a social unit in an organization, and 
who are given significant authority and 
responsibility for many aspects of their work, such 
as planning, scheduling and assigning tasks to 
members, and making decisions with economic 
consequence.  

 
While autonomous agile teams promise to increase 
employee motivation and job satisfaction significantly 
[15], as well as boost creativity and productivity [9], 
implementing such teams in a large-scale context is 
challenging. When many agile teams are working 
toward the same goal, a lot of coordination and 
management effort is required [7], and the team cannot 
have full authority over all aspects of the work as a 
single one-project team. Further, in large innovative 
projects, the degree of complexity and uncertainty is 
high, as the work executed in teams is influenced by the 
work and inputs from other teams. While there is a need 
for alignment and coordinated decision-making, Tata 
and Prasad [33] claim that team members need to affect 
managerial decisions genuinely in order to benefit from 
self-management. Otherwise, they will experience only 
symbolic self-management, and if the managerial 
decisions are only affected by symbolic input, the team 
members might hesitate to embrace self-management. 
Furthermore, for autonomous agile teams to work 
together in a large-scale project, there is a need for 
organizational control and alignment, for the teams to be 
able to collaborate toward achieving the desired 
objective. Therefore, a single team cannot be entirely 
autonomous in a large-scale environment.  

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60136
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 6997



 

 

A question is, then, how to align teams without 
reducing team autonomy? What team external 
dependencies and managerial decision hinders team 
autonomy in large-scale agile? What reduces team 
authority in large-scale agile projects? 

Motivated by the importance of team autonomy in 
agile software development and the need for alignment, 
the main goal of this paper is to understand the enablers 
and barriers of autonomy, and to explore the conflict 
between autonomy on a team level and the need for 
organizational control in large-scale agile software 
development. Our research question is:  

 
What are the barriers to team autonomy in large-

scale agile?  
 
In this paper, we examine team autonomy in the 

context of large-scale agile software development. We 
understand large-scale development as a development 
effort with many teams—from 3 to 20 teams [21].  

The remainder of the paper is organized as follows: 
In Section 2, we present background information on 
autonomous agile teams and large-scale agile. In section 
3, we describe our research method in detail. In Section 
4, we present results from an inductive multiple case 
study of three distinct large-scale projects across three 
cases. We discuss our findings in Section 5. Section 6 
concludes and presents key findings from the study. 

 
2. Autonomy in large-scale agile 

 
In this section, we present background information 

on autonomous agile teams and challenges in 
implementing them. Second, we describe how agile 
teams are coordinated in large-scale agile.  

 
2.1. Autonomous agile teams and their barriers 
 

Agile teams usually consist of many—not 
necessarily rigid—roles [32]. Back and Anders describe 
the roles typically found in an agile software 
development team [1]: developer/programmer, tester, 
architect, interaction designer, and project 
manager/product owner. To make all of these roles work 
together in a team, autonomous agile teams often make 
use of certain team practices or ceremonies. Stand-up 
meetings, which are short, daily meetings in which team 
members share their work progress and possible 
impediments, are used to keep track of the progress of 
the software [30]. Retrospectives are another popular 
practice. These are meetings in which the team members 
reflect on past work processes: what we did well, what 
we want to keep doing, and what we want to do more of 
[18]. During a retrospective, the team members discuss 

possible measures that can ultimately improve the 
sustainability of the team. Furthermore, doing 
retrospectives frequently is associated with the business 
value in the long run (ibid).  

According to Moe, Dingsøyr, and Dybå [22], 
autonomous agile teams should be responsible for 
planning and scheduling their work, as letting the 
individuals participate in these activities will increase 
their commitment to the team plan. Scrum and Kanban 
are examples of bottom-up self-determined work 
designs that Parker and Wall [25] consider a defining 
feature of autonomous teams. Stand-up meetings and 
retrospectives are also practices well within the aspect 
of control and management in the definition given of an 
autonomous team by Goodman, Devadas, and Hughson 
[10]. In other words, as Moe et al. [22] allude to, the 
research itself is not new, it has just found a new area of 
application.    

Understanding how to enable autonomous software 
development teams requires more than just examining 
the team’s inner workings. We must also understand the 
barriers at the team and organizational levels. In an 
international workshop on autonomous agile teams, 
Stray et al. [29] revealed the top barriers to be not having 
clear and common goals, lack of trust, too many 
dependencies to others, lack of coaching and 
organizational support, and diversity in team norms. 
Further, Moe et al. [22] identify several team-level 
challenges in a case study of a single agile team: 
individual commitment, failure to learn, and individual 
leadership. Individual commitment is linked to a lack of 
commitment to the team goals; they found that team 
members tended to pursue their own individual goals 
instead of the team goals. Failure to learn concerns 
process improvement; even though the team members 
frequently discussed potential changes, they did not 
implement them. One reason was that the management 
did not set aside time for process improvement. Moe et 
al. (ibid) claim that if a team is not given the possibility 
to improve, it will experience only symbolic self-
management, as explained by Tata and Prasad [33].  

Additionally, Stray, Moe, and Dingsøyr [31] found 
that even though agile methods were implemented, 
critical decisions were, in some cases, made by the 
project managers without involving the developers. 
These findings are supported by Moe et al. [22] who 
found that even though the concept of shared leadership 
was introduced to the teams in their study, team 
members did not change their decision-making 
processes. This behavior led to difficulties in aligning 
decisions when team members did not know what others 
were doing. Important decisions were also made without 
informing the rest of the team, which led to a low level 
of trust. For autonomous agile teams to be successful, 
Moe, Aurum, and Dybå [20] argue that team members 

Page 6998



 

 

need to identify important decisions they should make 
together to be able to make the shared decisions they are 
supposed to.  

Implementation of autonomous teams is difficult if 
there are barriers on the organizational level. One of 
these barriers is organizational control. Moe et al. [22] 
found that certain forms of detailed control by the 
management inhibit autonomy because the whole point 
is that the teams should control themselves. Boehm and 
Turner [2] argue that this is where the project manager 
comes in; one of the project manager’s primary roles is 
to be the barrier between the organization and the team, 
preventing unnecessary interruptions.  

 The two other challenges on the organizational level 
are shared resources and specialist culture [22]. Shared 
resources entail that projects fighting for resources and 
the most skilled employees rarely build redundancy. In 
other words, sharing resources across several projects 
threatens the autonomy. Specialist culture is a result of 
organizations supporting and incentivizing being the 
best at what one does rather than creating generalists 
who can fill each other’s functions (ibid).  
 
2.2. Teams in Large-scale agile 

 
Coordinating externally is an issue for autonomous 

agile teams in large-scale agile. No team possesses all 
the knowledge needed to solve complex tasks. 
Therefore, teams need to coordinate work with other 
teams and experts. Further, as teams learn, products 
become more mature, and the development process 
changes, coordination mechanisms in large-scale agile 
change [21]. According to Boehm and Ross [4], the 
primary problem with project coordination is that 
stakeholders such as users, customers, the development 
team, and the management have to be simultaneously 
satisfied. This view is supported by Pikkarainen, 
Haikara, Salo, Abrahamsson, and Still [26], who claim 
that agile practices do not provide communication 
mechanisms in situations where many teams are 
involved in the same development process. Scrum and 
Kanban are for single teams, and not meant for cross-
team communication. As a consequence, according to 
Pikkarainen et al. (ibid), they are not tools for 
coordinating multiple teams or projects at the same time. 
Nyrud and Stray [24] identified 11 coordination 
mechanisms in a large-scale agile project and concluded 
that ad hoc conversations were the most important.  

 In a large-scale setting, the most common strategy 
for coordination across several teams is Scrum of 
Scrum. Scrum of Scrum is a scheduled meeting at which 
one team member acts as “ambassador” to participate in 
a daily meeting with ambassadors from other teams. 
However, Scrum of Scrum has been found to be 
inefficient in larger projects. 

Because of challenges coordinating work in large-
scale agile, agile consultants have created several 
frameworks for scaling agile, such as the Large-Scale 
Scrum (LeSS) [16] and Scaled Agile Framework 
(SAFe) [17]. The LeSS framework offers less structure 
and gives suggestions, tools, and tips for practices that 
can be used for coordination, such as communities of 
practice and scheduled multi-team meetings. In the 
LeSS, any team or team member should be able and 
expected to reach out to another team if there is an issue 
to be solved (both through scheduled and unscheduled 
meetings). The LeSS can be understood as a bottom-up 
approach to coordination and gives the autonomous 
agile team authority to adjust practices. The SAFe seems 
to create a structure with more organizational control, 
which might leave less flexibility for meetings to 
emerge and for teams to take the initiative for 
coordination.  

 
3. Research design and method 

 
The goal of this research is to understand barriers to 

team autonomy in large-scale agile development. 
Hence, studying how multiple teams collaborate is 
important. We designed a holistic multiple case study 
[35] of 14 teams in three projects in three companies 
(Table 1). According to Yin, case studies are the 
preferred research strategy when a “question is being 
asked about a contemporary set of events over which the 
investigator has little or no control” (ibid, p. 9).  

 We collected data through semi-structured 
interviews and retrospectives in three distinct large-
scale projects across three case companies. The 
companies were chosen because they participate in a 
research program on autonomous teams. All teams in 
the study were working according to the Kanban method 
using some Scrum ceremonies such as the daily stand-
up meeting. While Scrum divides work into a series of 
fixed-length iterations (sprints; whatever is scheduled 
for a sprint is the team’s top priority), Kanban benefits 
from flexible planning because whatever is on the board 
is the top priority. Kanban focused on continuous 
delivery with changing priorities. Information about the 
companies, the projects, the teams, and the data 
collected is listed in Table 1. Sand and Grass are banks, 
while Necker is a Software Service Provider. All 
interviewed teams are situated in Norway, and all 
projects have been running for more than 18 months.   

In all companies, we interviewed the managers 
working closely with the teams, and all team-members 
that were available in the interview period. In Sand, we 
chose the team that had been working together the 
longest, in Grass both teams that were involved in the 
project, in Necker one team that was chosen by the 
management. Interviewees were split into two 

Page 6999



 

 

categories: those with assigned leadership 
responsibilities and those without. Interview guides can 
be found in Appendices A and B. The interviews lasted 
40-50 minutes.  Data were collected in two rounds. After 
transcribing and coding a few of the first interviews, the 
interview guide was revised based on the feedback. A 
second round was initiated with a revised interview 
guide. This round also included some follow-up 
interviews that explored particularly interesting subjects 
that were uncovered during the first round. 

Retrospectives lasted approximately two hours. The 
retrospectives were sessions facilitated by the 
researchers where the development teams or the 
leadership team of the project reflected on their 
processes: what the teams thought was working well, 
what wasn’t working well, and what they wanted to 
change. Afterward, the teams agreed on what measures 
to take. We took notes during the retrospectives. 

Subsequently, we conducted a thematic analysis of 
our data as we wanted as few restrictions as possible for 
our inductive study [5]. Interviews were passed around 
for transcription and coding, ensuring that every 
researcher had insight into every interview. Researchers 
also participated in collective sessions where the 
empirical material was discussed. The analysis resulted 
in two themes (overall direction and external 
coordination) with several subthemes.  

There is a risk that our findings can be explained by 
factors that evaded our attention. One reason is that we 
did not conduct a retrospective with all teams, and we 
did not interview all team members, and therefore, 
probably missed some subthemes. However, giving 
feedback to the observed teams and discussing our 
interpretation of what was going on with the case 
companies helped with validating our conclusions.  
 
4. Challenges of autonomy in large-scale 
agile  
 

Two themes emerged from the data analysis 
describing the challenges for autonomous development 

teams in large-scale agile, and how they relate to 
autonomy: overall direction and external coordination. 
Overall direction is about creating a shared direction 
among team member and how goals for the teams are 
set, what they entail, and how they are communicated to 
the team. External coordination entails how teams 
coordinate with their environment. This includes how a 
team relates to other teams and components, how a team 
deals with additional tasks (that is, tasks that, for 
example, are not in the backlog), how teams 
communicate, and how teams coordinate with an 
external customer. 

First, we will briefly present a general bewilderment 
regarding the term autonomy as a backdrop for the 
empirical analysis. A developer from Necker 
exemplified how the meaning of the term is not well 
known nor easy to understand, as he had to google it 
before he came to the interview. However, he was not 
sure if he captured the essence of it. Several developers 
from Grass stressed the necessary knowledge and 
resources to implement their activities as the most 
important features of autonomy. A team lead from 
Necker added to this, reflecting on how everyone talks 
about autonomy without a common definition of it. 
Further light was shed on this confusion by a product 
owner from Sand who questioned whether higher-level 
managers know what autonomy is really about. At the 
same time, the informants spoke warmly of autonomy. 
A business representative from Grass considered 
himself a supporter of autonomous teams, and a line 
manager in the same company talked passionately about 
this way of working. A developer from Necker agreed, 
highlighting the freedom in how to develop the solution 
and working closely together, as features he appreciates. 
Furthermore, on the question of whether the informants 
see their teams as autonomous, the general answers were 
“yes” or “almost.” The highlighted differences in 
interpretations among the informants, as well as the 
view on their teams being autonomous to certain 
degrees, illustrates the difficulty of autonomy. 
 

Company Industry Project Description No. of 
teams 

Data Collection 

Sand Finance/ 
banking 

Change program for 
internal IT services and 
routines 

5 9 interviews, including product owners, a project manager, a 
business representative and a domain architect. 
Retrospective on one team and on the project level  

Grass Finance/ 
banking 

Web program for 
external end-users  

2 8 interviews, including tech leads, developers, a business 
representative and a line manager. 
Retrospectives with two teams  

Necker ICT Software development 
program for a large, 
public customer  

7 6 interviews, including team leads and a project manager. 
Retrospectives on one team and the project level  

Table 1: companies, the projects, the teams and the data collected 

Page 7000



 

 

4.1. Overall direction  
 
4.1.1. The Importance of a Shared Direction  

Several informants emphasized the importance of 
creating a shared direction for the teams in their large-
scale project. A business representative from Sand 
emphasized that finding common ground and clarity of 
goals is necessities when implementing autonomous 
teams:  
 

We as a team needed to try to establish what we had 
to accomplish. We had to lay that fundament and 
make team members familiar with the goals and 
vision. (…) We spent many sessions on finding a 
common ground. 

 
We found that finding common ground is also about 

understanding the tasks the team needs to do and the 
order in which the tasks should be developed. A domain 
architect from A explained:  

 
Before, we didn’t have a plan (…) but now we are in 
the process of making one (…) the overall goal is 
clear, but it doesn’t say anything about the order of 
the tasks. The question is whether we should split 
them, or if we should do them as one. 
 
Further, to understand the tasks and goals of the 

team, the team has to understand the needs of the end-
user of the system under development. However, in 
large-scale agile projects, the team is seldom in direct 
contact with the end-user like in a single-team project. 
We found team members discussed end-user needs and 
problems without having the same end-user type in 
mind, which resulted in misunderstandings in the team. 
One team decided to create a set of personas (description 
of different end-user types and their behavior), to be 
able to better discuss and understand customer needs in 
the team.    

Having the right competence, network and 
experience in the team is an enabler for a shared 
direction. We found that experienced team members 
with an overview of the work can help other team 
members and pull the team in the right direction. A team 
lead from Necker stated that a team needs someone who 
possesses an overview of the team’s assignment. A 
developer from Grass argues in line with the team lead, 
expressing that experienced developers are important 
not only because they understand the direction of the 
work but also understand how to do the work and who 
knows what in the large-scale project.  

While understanding the direction for the team is 
important, we found that it is likewise important to 
understand the direction of the large-scale project which 
the team is a part of. A project manager from Necker 

explained that if the team is missing the larger picture, 
it is difficult to relate the team’s tasks to it. 

We found that within a specific large-scale project, 
the project consisted of the same roles. However, often 
members within the same large-scale project did not 
have an identical understanding of the roles. One 
example was the team lead role in Sand. We found that 
team leads, the manager of the program, and team 
members all had different understanding of the role. 
Some team leads did not even know they were really 
responsible for leading and developing the teams. As a 
consequence, it became difficult to pull the teams and 
the project in the same direction within the large-scale 
project. Some teams had members from different 
departments, and in one team, the members did not 
understand or accept their leader’s authority. A team 
lead from Sand described: “I have no control over what 
they do all the time. It is not like I need that, but I have 
no power to get things I see as important through in the 
team.” 

A tech lead from the same company explains how 
the tech lead role was formed during the reorganization 
of the company. The informant explained how he got a 
description of his new role but did not remember all of 
the defined responsibilities. The complexity of the tech 
lead role is supported by a project manager from 
Necker, who said that it takes a lot of time to understand 
the nature of the tech lead role.  

 
4.1.2. Setting and Communicating Goals  
As explained in the previous section—shared goals are 
important for a shared direction. In the investigated 
large-scale projects, we found that goals are often set by 
management without involving the teams, the goals are 
often equal to deliverables and deadlines, and team 
members are not always sure what the goals are.   

For several teams, goals appeared to be equivalent to 
delivery deadlines. A developer from Grass explained: 
“Lately, our only goal is related to deliveries. It is about 
finishing something at a given time.”  

When questioning whether the team has any goals 
other than specific deadlines, most answered that, if 
additional goals existed, they were not known to the 
team. A developer from Grass explained that the 
departments recently set some new ones, but he was not 
exactly sure what the new goals were. While the goals 
were unclear seen from the team members, the business 
and management side working with the team had a 
different opinion. A business representative from Grass 
explained how the goals are communicated orally, and 
that his impression is that the developers have a holistic 
picture of what they are doing. However, he 
acknowledged that there is no arena for creating a shared 
goal between the teams working on the large-scale 
project. However, this is something they are aiming for, 

Page 7001



 

 

as the goals of the departments involved in the large-
scale project are not aligned today. 

One explanation for why goals were perceived as 
unclear to the teams might be that they were often 
identified by someone outside the team, not involving 
the team members. A developer from Grass explained 
that goal-setting is done mainly by the business 
department in the large-scale project. A tech lead 
supported this, adding that, after the goals are set, they 
are given to the team. When the team sees such goals as 
unrealistic, they do not commit to them. One developer 
from Grass explained:  

 
I think they [the management] set the deadline with 
the intention of giving us something to work towards. 
And then we just have to see if we reach the deadline, 
or if we have to postpone the date or reduce the 
scope of our work. In my opinion, the deadlines do 
not always make sense.   
 
While teams were often not involved in defining the 

goals, a line manager from the same company expressed 
that taking part in identifying goals is an essential 
feature of autonomous teams. While involvement was 
desired, team members acknowledged that they could 
not be a part of all goal-related processes in the large-
scale project. A tech lead from Sand explained: “There 
are things you have no influence over as a team, because 
they happen on a higher level in the organization, or 
during a release process in which other teams are 
involved.” 
 
4.2. External Coordination  
 
4.2.1. Organizational Dependencies  
In a large-scale setting, the teams are dependent on other 
teams, projects, departments, and/or systems within the 
organization, and vice versa. This is exemplified by a 
domain architect from Sand, “We do not live in our own 
world (...) one has to coordinate with other teams who 
share components with your team.” 

The domain architect explained that co-locating with 
teams who share the same system components is helpful 
when dealing with this matter. The challenge of 
depending on others is also present at Grass. A 
developer stated that the team frequently needs to clarify 
different issues with the business department. 
Discussing unclear specifications and the need for 
confirming decisions are examples of when a team 
needs to make contact before moving on. Further, a tech 
lead from the same company stated that since the 
workflow in the project was not synchronized, his team 
needed to clarify issues frequently with other 
departments. Problems with the synchronization also 
resulted in teams needing to wait for other resources and 

other teams to finish their part of the job. A team lead 
from Necker explained how they were unable to move 
on even if they had finished their own work.  
 

We have external dependencies. We had some cases 
when integrating with systems made by external 
teams, and they were either not ready or it was not 
documented well enough, or we could not even 
access it (...) And you always have a lot of cases 
going on that you cannot finish because you have to 
wait for others. 

 
Because of the dependencies, the teams were also 

approached by others. When describing how the 
business department at Grass communicates directly 
with individuals in the team, a tech lead said, “They talk 
directly to those having the task at hand. Sometimes this 
is fine, but ideally, they should involve the whole team, 
so that everyone knows what is going on.” 

Depending on others to do part of the job reduced 
the team autonomy because decision making is limited, 
the team cannot fully control how tasks are conducted, 
and they need to adjust their processes to other teams 
and actors.  

 
4.2.2. Dealing with Additional Tasks 

Several informants state that additional tasks (tasks 
not prioritized in the spring backlog or prioritized by the 
team) delay the teams in doing their initial work. One of 
the interviewees (head of development) from Grass said 
that the team receives a stream of such additional tasks. 
A team lead in Necker stated that these unrelated tasks 
might even postpone entire sprints (the team was using 
Scrum). The team lead. Therefore. paid attention to 
external actors trying to get the team to do such 
additional tasks. A domain architect from Sand stated 
that even though tasks are seemingly unrelated, one can 
argue that they align with the goals of the team, as the 
goals are often very general. A developer in the same 
company stated that such tasks can be, for example, 
errors in previously developed products that need to be 
fixed right away. Another reason for such tasks 
emerging is the scale of the development effort. Because 
of the size and complexity of the large-scale project, it 
seems impossible to plan everything that needs to be 
done. Because of all the dependencies, sometimes a 
team needs to stop what it is doing and solve new tasks 
for other teams before being able to move on.  

To reduce the challenge of having to deal with too 
many additional tasks, most of the teams have one team 
member responsible for communicating with the rest of 
the project and organization. In most teams, we found it 
to be the team lead or the tech lead. According to several 
informants across the companies, there was one 
particular reason why this was often the team or the tech 

Page 7002



 

 

lead’s responsibility: Individuals may find it difficult to 
know what to prioritize, and when they are approached, 
they are interrupted. A tech lead at Grass described his 
role as a link between the team and the rest of the 
organization. If anyone wants to talk to the team, they 
often approach him. A developer from Grass stated that 
being interrupted when writing code makes his tasks 
much more time consuming because his work requires 
deep concentration.  

Several team and tech leads stated that they try their 
best to shield their team from externalities, filtering out 
what they consider as unnecessary for their team to 
know or take part in. Another team lead stated that the 
shielding responsibility is the single most important task 
he has.   

 
5. Discussion 
 

In the previous section, we described two themes 
that emerged from the data analysis describing the 
challenges for autonomous development teams in large-
scale agile, and how they relate to autonomy: Overall 
direction and external coordination. We now discuss our 
research question: What are the barriers to team 
autonomy in large-scale agile? 

According to Guzzo and Dickson [11], the 
autonomous team is given “significant authority and 
responsibility for many aspects of their work, such as 
planning, scheduling and assigning tasks to members, 
and making decisions with economic consequence.” 

When discussing the barriers, we will focus on those 
that reduce the responsibility or authority of the 
autonomous team in the large-scale project.  
 
5.1 Shared Goals and Direction - to Where? 

 
For a team in a large-scale agile context, we found 

that there is a need to understand the shared direction. 
There is also a need to have a shared understanding of 
the work processes, the tasks, and the roles and 
responsibilities. Having experts in the team, as well as 
setting goals and implementing them in the 
organization, are key activities for achieving a shared 
direction. 

Also, we presented how higher-level managers set 
goals for large-scale projects, how such goals are not 
always seen as relevant, and how they are not always 
successfully communicated to the team. We also found 
that goals are often the same as deadlines or deliverables 
and that they are not aligned with other teams or the rest 
of the organization. In this section, we will discuss 
committing to shared goals and direction.  

 
 

5.1.1. Commitment to Goals.  
The empirical analysis shows that team members in the 
large-scale agile projects are often or always excluded 
from goal-setting processes. Instead, the goals are set by 
higher-level managers and are given to the teams. This 
contrasts Manz and Sims’ [19] view that external 
leaders should allow the teams to set their own goals to 
facilitate autonomy. Participation in goal-setting is also 
associated with an increase in motivation [13] and 
increased meaningfulness for those who are trying to 
achieve them [12] since the goals are less trivial. Despite 
the benefits of letting the teams participate, this is 
evidently not the approach in the teams we have studied.  

Further, a business representative states that the 
goals are communicated well, and his impression is that 
the team members understand where the team is headed. 
However, the empirical analysis shows that this is not 
always the case. Even though both business 
representatives and developers regard goals and 
direction as important, there is not necessarily a shared 
understanding of them. This is illustrated by informants 
having different views on goals. One view is that goals 
are closely related to deliveries, for example, finishing 
something on time. One explanation of why deliverables 
are so important in the large-scale agile project is the 
dependencies between the teams. If one team is delayed, 
it might affect other teams. A second view is that goals 
are set so that teams have something to strive for, not 
necessarily something to achieve in a certain time. A 
third view is that higher-level goals are not 
communicated in such a way that they reach the team 
level. This is apparent from an informant not knowing 
what the higher-level goals are.  

In other words, there is an incongruence; while the 
impression among leaders is that goals are 
communicated and understood by the team, statements 
from team members indicate that this is not the case. 
There seems to be a lack of shared understanding of the 
goals set by the management and what direction to take. 
According to Moe et al. [22], a challenge that follows 
from this is individual commitment; team members will 
pursue their own goals if they have no reason to commit 
to the shared ones. Hence, if higher-level managers do 
not let team members partake in setting goals, the team 
members might create and pursue their own goals 
instead. 

Therefore, not letting the team partake in goal setting 
is a barrier to team autonomy in large-scale because it 
will likely impact the team’s autonomy in two ways. 
First, if not participating in the goal-setting causes the 
team members to set their own goals, the individual 
autonomy will increase because individuals are working 
independently toward their own objectives [15]. 
Second, according to Hoegl and Parboteeah [14], the 
external autonomy will decrease because the team does 

Page 7003



 

 

not have the authority to decide its own goals. The goals 
are set by higher-level managers deciding what is 
important for the team. Finally, if the team is involved, 
it might be more likely that the goals are not equal to 
deliverables and deadlines because such goals do not 
motivate the team.  

Team goals not being aligned with the rest of the 
organization or the large-scale project goals not being 
aligned with the team reduces the understanding of the 
shared direction and where the team and the project are 
heading.  

Hence, the lack of a shared understanding of goals 
and direction makes it hard for the team to schedule, 
assign tasks, and make decisions that are aligned with 
the rest of the large-scale project.  

 
5.2 Shielding the Team 

 
The teams in our study are all part of larger-scale 

agile settings, and we have described how the teams 
need to coordinate and communicate with their external 
surroundings because of all their dependencies. This 
section explores this topic further.   

 
5.2.1 External Dependencies  
The empirical analysis shows that the teams in large-
scale agile communicate and coordinate 
interdependently with other teams and departments 
within their companies or with a customer and other 
external teams. This seems necessary for two reasons. 
The first is that the specifications of the product, such as 
new features, are subject to change over time and, 
therefore, need to be communicated to the team. The 
features are also seldom understood before the team 
starts developing, and therefore, there is a need for 
constant dialogue with the business side. Secondly, 
resources often have to be synchronized between 
multiple development teams as the product or service 
can depend on components from many of them.  

However, Pikkarainen et al. [26] state that agile 
practices do not provide the communication 
mechanisms in situations where many teams are 
involved in the same development process. In practice, 
a common solution seems to be that higher-level 
managers assign the responsibility of the external 
coordination to a leadership role within the team. From 
this way of dealing with the external environment, we 
draw a parallel to what Boehm and Turner [3] refer to as 
a project manager, a role operating as a barrier between 
the organization and the team. Even though the case 
companies have different titles for the role responsible 
for the external coordination, all of them seem to have 
one aspect in common; they assign the responsibility to 
one designated team member with leadership 
responsibilities. Depending on the case company, this 

responsibility is assigned to either the team lead, tech 
lead, or product owner. 

According to informants, the person responsible for 
the external coordination is tasked with shielding the 
team. This involves protecting the team from 
unnecessary interruptions and deciding which pieces of 
information are important enough to put forward to the 
team. Empirically, those who have such a role consider 
themselves as links between the team and other 
departments of the organization. In cases where the team 
relates to an external customer, they take care of the 
communication and information flow between the 
customer and the team. The general need for 
coordination is addressed by Nerur, Cannon, 
Balijepally, and Bond [23] who state that software 
development teams need to interact with an ever more 
diverse set of stakeholders who have different 
expectations and needs than the team. In other words, 
shielding the team is a complex task. When the most 
experienced developer (tech lead) is the only interface 
to the rest of the project, he or she might become a 
bottleneck. Further, the team loses a key resource that 
could contribute to the development work and thereby 
support the rest of the team. Since this person is the one 
who is most suited for setting a shared direction for the 
team, he or she needs to balance the work of handling 
external dependencies and setting the direction for the 
team.  

Furthermore, the empirical analysis also shows that 
teams frequently receive additional tasks from their 
external surroundings. These tasks are often outside the 
scope of what the team is assigned to do, such as tasks 
concerning errors in previously delivered products or 
tasks that emerge because of the complexity and the 
number of dependencies in the large-scale project. Agile 
teams are supposed to be flexible and respond rapidly to 
complex and ever-changing problems [6, 8]. However, 
the empirical analysis reveals how the additional tasks 
delay the teams in their work since they are forced away 
from what they initially were doing. In that sense, the 
adaptability and flexibility may itself impede the team’s 
progress, as considerable capacity is used to solve 
unrelated tasks.  

Hence, having someone shielding the team from 
external surroundings seems to be important. The 
empirical analysis reveals that developers find the 
shielding role relieving, since getting interrupted while 
focusing on the work makes tasks more time-consuming 
than they need to be. However, the empirical analysis 
shows that even though the teams have someone to 
shield them, the information and distribution of 
additional tasks coming from the surroundings do not 
always go through this contact point. Sometimes, 
representatives from various organizational departments 
and customers approach developers in the teams 

Page 7004



 

 

directly. This is similar to what Moe, Dingsøyr, and 
Dybå [22] explain as stealing resources: external 
stakeholders, such as customers, approach and occupy 
developers with unrelated tasks. In other words, external 
stakeholders approach team members directly, despite 
members expressing that it disrupts the work they are 
originally assigned to do. 

Based on the analysis, we see two possible reasons 
why the contact point is bypassed. The first reason is 
that the contact point might be a bottleneck of 
information. One of the holders of the shielding role 
stated that he spends most of his time in meetings and 
on administrative tasks. He might not be available or 
simply be overloaded with information. By having only 
a single point of external information in the team, the 
contact point may be exposed to what Schick, Gordon, 
and Haka [27] describe as information overload, too 
much information to handle. This means that relevant 
messages might disappear in the overflow of 
information. As a result, external stakeholders might see 
it as more reliant to approach the team members 
directly. The second reason is delivery-focus. As the 
empirical analysis shows, the teams have tight deadlines 
and many intervals of work. They are, therefore, time-
sensitive, and external stakeholders who have their own 
deadlines might not be willing to wait for a response 
when they can just approach the team members directly 
to get what they want.  

Thus, the discussion reveals contradictory interests; 
the external stakeholders want to make use of the team’s 
resources and make ongoing clarifications while team 
members prefer being shielded from external noise as it 
interrupts their work. If the shielding role is bypassed, 
the team’s control over their work is limited by the 
involvement from the external surroundings. According 
to Hoegl and Parboteeah [14], the autonomy is, 
therefore, reduced. Also, if individuals are assigned 
tasks directly by the external environment, their 
freedom and control in carrying out their own tasks are 
impeded. Therefore, the individual autonomy is reduced 
[15].  

 
6. Conclusion  

 
This paper presented data from a multiple case study 

of three large-scale projects. We have focused the 
description of the projects on the barriers that reduce the 
responsibility or authority of the autonomous team in 
the large-scale project. From the described large-scale 
project, we identified two main barriers: overall 
direction and external dependencies. We found that 
goals are often set by management without involving the 
teams, that they are often equal to deliverables and 
deadlines, and that team members often do not know 
what the goals are. Consequently, teams struggle with 

setting and communicating goals as well as establishing 
a shared direction. Organizational dependencies lead to 
teams having to deal with additional tasks, resulting in 
specific members shielding the teams from external 
noise.  

For practitioners, we think this paper illustrates the 
importance of working on a shared understanding of 
goals and the difficulties of balancing the need for 
flexibility and the need to shield the team in large-scale 
agile. This is an issue which is not well-described in the 
agile literature and is the most important contribution of 
this paper.  

Further work in this direction should focus on 
investigating other barriers with autonomous teams in 
large-scale agile, for example, related to reducing 
dependencies between teams.  
 
7. Acknowledgments  
 

This work was supported by the Research Council of 
Norway (grant 267704) and the companies Kantega, 
Knowit, Sbanken and Storebrand through the research 
project Autonomous teams.  
 
8. References  
 
[1] Beck, K. and Anders, C., Extreme Programming 
Explained: Embrace Change. Addison-Wesley, 2004. 
 
[2] Boehm, B. and Turner, R., Balancing Agility and 
Discipline: A Guide for the Perplexed. Addison-Wesley 2003. 
 
[3] Boehm, B. and Turner, R., "Management Challenges to 
Implementing Agile Processes in Traditional Development 
Organizations," IEEE Software, vol. 22, no. 5, pp. 30-39, 
2005. 
 
[4] Boehm, B. W. and Ross, R., "Theory-W software project 
management principles and examples," IEEE Transactions on 
Software Engineering, vol. 15, no. 7, pp. 902-916, 1989. 
 
[5] Braun, V. and Clarke, V., Successful qualitative research: 
A practical guide for beginners. sage, 2013. 
 
[6] Cockburn, A. and Highsmith, J., "Agile software 
development: The people factor," Computer, vol. 34, no. 11, 
pp. 131-133, 2001. 
 
[7] Dikert, K., Paasivaara, M., and Lassenius, C., "Challenges 
and success factors for large-scale agile transformations: A 
systematic literature review," Journal of Systems and 
Software, vol. 119, pp. 87-108, 2016/09/01/ 2016. 
 
[8] Dybå, T., "Improvisation in Small Software 
Organizations," IEEE Software, vol. 17, no. 5, pp. 82-87, 
September/October 2000. 
 

Page 7005



 

 

[9] Fenton-O'Creevy, M., "Employee involvement and the 
middle manager: evidence from a survey of organizations," 
Journal of Organizational Behavior, vol. 19, no. 1, pp. 67-84, 
Jan 1998. 
 
[10] Goodman, P. S., Devadas, R., and Griffith Hughson, T. 
L., "Groups and productivity; analyzing the effectiveness of 
self-managing teams," 1988. 
 
[11] Guzzo, R. A. and Dickson, M. W., "Teams in 
organizations: Recent research on performance and 
effectiveness," Annual Review of Psychology, vol. 47, pp. 
307-338, 1996. 
 
[12] Hackman, J. R., "The design of Work Teams," in 
Handbook of organizational behavior, J. Lorsch, Ed. 
Englewood Cliffs, N. J.  : Prentice-Hall, 1987. 
 
[13] Hackman, J. R. and Oldham, G. R., "Work redesign," 
1980. 
 
[14] Hoegl, M. and Parboteeah, P., "Autonomy and teamwork 
in innovative projects," Human resource management, vol. 45, 
no. 1, p. 67, 2006. 
 
[15] Langfred, C. W., "The paradox of self-management: 
Individual and group autonomy in work groups," Journal of 
Organizational Behavior, vol. 21, no. 5, pp. 563-585, Aug 
2000. 
 
[16] Larman, C. and Vodde, B., Large-scale scrum: More with 
LeSS. Addison-Wesley Professional, 2016. 
 
[17] Leffingwell, D., SAFe® 4.0 Reference Guide: Scaled 
Agile Framework® for Lean Software and Systems 
Engineering. Addison-Wesley Professional, 2016. 
 
[18] Linders, B., Getting Value out of Agile Retrospectives-A 
Toolbox of Retrospective Exercises. Lulu. com, 2014. 
 
[19] Manz, C. C. and Sims Jr, H. P., "Leading workers to lead 
themselves: The external leadership of self-managing work 
teams," Administrative science quarterly, pp. 106-129, 1987. 
 
[20] Moe, N. B., Aurum, A., and Dybå, T., "Challenges of 
Shared Decision-Making: A Multiple Case Study of Agile 
Software Development," Information and Software 
Technology, Microsoft Word Document pp. 1-38, 2012. 
 
[21] Moe, N. B. and Dingsøyr, T., "Emerging Research 
Themes and updated Research Agenda for Large-Scale Agile 
Development: A Summary of the 5th International Workshop 
at XP2017," in Proceedings of the Scientific Workshop 
Proceedings of XP2017, 2017: ACM. 
 
[22] Moe, N. B., Dingsøyr, T., and Dybå, T., "Overcoming 
Barriers to Self-Management in Software Teams," IEEE 
Software, vol. 26, no. 6, pp. 20-26, 2009. 
 
[23] Nerur, S., Cannon, A., Balijepally, V., and Bond, P., 
"Towards an understanding of the conceptual underpinnings 

of agile development methodologies," in Agile Software 
Development: Springer, 2010, pp. 15-29. 
 
[24] Nyrud, H. and Stray, V., "Inter-Team Coordination 
Mechanisms in Large-Scale Agile," in Proceedings of the 
Scientific Workshop Proceedings of XP2017, 2017: ACM. 
 
[25] Parker, S. K., Parker, S., and Wall, T. D., Job and work 
design: Organizing work to promote well-being and 
effectiveness. Sage, 1998. 
 
[26] Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., 
and Still, J., "The impact of agile practices on communication 
in software development," in Empirical Software Engineering 
vol. 13, ed, 2008, pp. 303-337. 
 
[27] Schick, A. G., Gordon, L. A., and Haka, S., "Information 
overload: A temporal approach," Accounting, Organizations 
and Society, vol. 15, no. 3, pp. 199-220, 1990. 
 
[28] Šmite, D., Moe, N. B., Šāblis, A., and Wohlin, C., 
"Software teams and their knowledge networks in large-scale 
software development," Information and Software 
Technology, vol. 86, pp. 71-86, 2017. 
 
[29] Stray, V., Moe, N. B., and Hoda, R., "Autonomous agile 
teams: Challenges and future directions for research," 
presented at the Proceedings of XP’18 Companion, Porto, 
Portugal, 2018.  
 
[30] Stray, V., Moe, N. B., and Sjøberg, D. I. K., “, "The Daily 
Stand-Up Meeting: Start Breaking the Rules,," IEEE 
Software, 2018 (in press). 
 
[31] Stray, V. G., Moe, N. B., and Dingsoyr, T., "Challenges 
to Teamwork: A Multiple Case Study of Two Agile Teams," 
in Agile Processes in Software Engineering and Extreme 
Programming, vol. 77, A. Sillitti, O. Hazzan, E. Bache, and X. 
Albaladejo, Eds. (Lecture Notes in Business Information 
Processing, 2011, pp. 146-161. 
 
[32] Susman, G. I., Autonomy at work: A sociotechnical 
analysis of participative management. praeger Publishers, 
1976. 
 
[33] Tata, J. and Prasad, S., "Team Self-management, 
Organizational Structure, and Judgments of Team 
Effectiveness," Journal of Managerial Issues, vol. Vol. 16 no. 
Issue 2, pp. p248 - 265, 2004. 
 
[34] Trist, E. and Bamforth, K. W., "Some Social and 
Psychological Consequences of the Longwall Method of Coal-
Getting," Human Relations, vol. 4, no. 1, pp. 3-38, February 
1, 1951 1951. 
 
[35] Yin, R. K., Case study research: design and methods. 
Thousand Oaks, Calif.: Sage, 2002, pp. xiv,219 s. 
 
Appendix 
Appendix A and B are available here: 
https://figshare.com/s/37ad61b642581e890c58 

Page 7006


