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Abstract 

A model for two-phase carbon dioxide transport with phase transfer in pipelines is presented. The stiffened-gas equation of state 
is used for calculating thermodynamical properties. The convergence and accuracy of two numerical methods – a centred multi-
stage (MUSTA) scheme and an upwind Roe scheme – are compared. Results for the depressurization of a pipe, causing phase 
change and cooling, are presented, showing the importance of an accurate numerical method. The effect of a discontinuous 
sound velocity on the depressurization is discussed. 
© 2010 Elsevier Ltd. All rights reserved 
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1. Introduction 

Carbon dioxide capture and storage (CCS) will potentially be an important contributor to reducing CO2 
emissions from stationary sources. According to the BLUE map of the International Energy Agency (IEA) [1], 
CCS will account for 19% of CO2 emission reductions in 2050, equivalent to 9 gigatonnes per year. An important 
part of a CCS system is the transport between the point of capture and point of storage, which potentially can be far 
apart. Possible transport alternatives are ships and pipelines, and this work concerns the latter. 

The carbon dioxide pipe transport will take place at high pressures, where the CO2 is in a supercritical (liquid-
like) state. Due to failure or planned maintenance, the pipe may be depressurized. The decreasing pressure will 
cause a phase change in the CO2, leading to a strong cooling of the pipe. If the temperature becomes low enough, 
the pipe steel turns brittle, which may cause a rupture and severe damage. Therefore, it is important to be able to 
estimate the temperature drop during such a depressurization. When simulating the behaviour of a CO2 pipe, we 
need fluid-mechanical and thermodynamic models to describe the flow, and numerical methods to properly solve 
these models. Therefore, we may experience errors with two seperate causes: 

1. Modelling errors, i.e. failure of the fluid-dynamical or thermodynamic models to accurately represent the 
actual physics; 
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2. Numerical errors, i.e. failure of the numerical method to solve the models with a satisfactory degree of 
accuracy. 

In this work, we will show that even with accurate mathematical models, numerical errors can greatly influence 
the simulation results for a CO2 pipe. 

The flow models of interest are typically formulated as systems of hyperbolic partial differential equations. It is 
well-known that artifical numerical diffusion, needed to stabilize the solution of such equations, may lead to severe 
loss of accuracy. To demonstrate how the choice of numerical method affects the solution, we compare an upwind 
high-resolution scheme with a centred first-order scheme, namely the MUSTA (multi-stage) scheme previously 
investigated for the current model [2]. The model is a drift-flux two-phase flow model, in which each chemical 
component is explicitly tracked. 

Our upwind scheme is based on the approximate Riemann solver of Roe [3], and high resolution is obtained by 
the wave-limiter approach of LeVeque [4], Chap. 15. The present Roe scheme has previously been employed in a 
case where phase transfer (evaporation) was not accounted for [5]. During the depressurization of a pipe, phase 
change will clearly take place. In this article, we therefore show that our Roe scheme is applicable to the case 
where more complex thermodynamical relations are employed for calculating phase equilibria in two-phase 
mixtures involving CO2. 

The paper is organized as follows: In Section 2, we present the model we use to describe the pipeline flow of 
CO2 with phase transfer, composed of a fluid-dynamical and a thermodynamical model. Section 3 describes the 
two numerical methods used to implement the model and perform simulations, while Section 4 shows simulation 
results for a pipe depressurization case, demonstrating convergence and accuracy of the two methods. Finally, 
Section 5 summarizes and concludes the results of our work. 

2. Models 

When we choose a model to represent the physics mathematically, simplifications are most often necessary. 
Such simplifications may ease the numerical implementation of the model or ease the analytical understanding of 
it. The choice of which simplifications to make is a compromise between which physical properties we want the 
model to capture, and how simple we wish the model to be. 

Our model describes a flow of a single component, e.g. CO2, which can appear in two phases, liquid and vapour. 
We choose to make certain equilibrium assumptions: 
� mechanical/pressure: pg = pl = p 
� thermal/temperature: Tg = Tl = T 
� chemical potential: �g = �l = � 

Here, the subscript g denotes gas and the subscript l denotes liquid. The last equilibrium condition imposes 
equal chemical potential (i.e. Gibbs free energy) in the two phases. This implies an instant phase transfer to reach 
equilibrium, similar to flash evaporation. A model with these three equilibrium assumptions is known as a 
homogeneous equilibrium model [6]. 

The complete model can be considered to be composed of two parts: fluid dynamics and thermodynamics. 

2.1. Fluid dynamics 

The fluid-dynamical model should capture the most important aspects of flow of CO2 in a pipeline. Since we are 
most interested in changes along the length of the pipe, we use a one-dimensional model. In addition, we assume 
that the velocity is equal in the two phases, i.e. a no-slip condition. The three equilibrium assumptions presented 
earlier make it possible to describe the two-phase flow using the Euler equations for a single fluid: 
  (1) 

  (2) 

  (3) 
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2where the total energy is written as E = �(e + ½ v ). These equations describe the conservation of mass, 
momentum and energy, respectively. The component is composed of two phases, so that the mixture density can be 
written as  
  (4) 
and the mixture internal energy as  
  (5) 

 is the volume fraction, e  the internal energy, and ��k k k the density, of phase k. The equilibrium assumptions, 
together with the thermodynamical model, are sufficient to calculate volume fractions and pressure from the 
conserved variables. 

2.2. Thermodynamics 

To close the fluid-dynamical model, we need a relation for the pressure, p, as a function of mixture internal 
energy, e, and mixture density, �, subject to the equilibrium restrictions presented earlier. 

We use the stiffened-gas equation of state (EOS), advocated by e.g. Menikoff [7, 8], as our thermodynamical 
model. The stiffened-gas EOS can be seen as a linearization of a more general EOS. It has the advantage of being 
simpler than most other EOSes, while still being relatively accurate in the vicinity of a chosen reference point. 

The pressure, internal energy and chemical potential (for a single phase) are given by 
  (6) 
  (7) 

  
(8) 

where �, c , p , e , Tv � � 0, �0 and s0 are parameters specific for each phase. These parameters can be fitted using 
experimental data for a given fluid. The parameters used in this paper are listed in Table 1. The equations (6)-(8) 
have to be solved for pressure as a function of mixture internal energy and density, which in turn is used in the 
fluid-dynamical model. From the third term of the chemical potential (8), we realize that solving for T involves 
solving a transcendental equation, which means that an analytical solution is out of reach. Therefore, the pressure 
was solved numerically using a Newton method. 

2.3. Sound velocity 

The sound velocity is an important parameter in a depressurization case, because it determines how fast the 
pressure drop will propagate through the pipe. This velocity is dependent on the choice of both the 
thermodynamical and the fluid-dynamical model. 

Saurel et al. [9] showed that the sound velocity ceq in the homogeneous equilibrium model is given by 
  

(9) 

where cg and cl are the sound velocities of pure gas and pure liquid, respectively. s  is the entropy and ck p,k the 
specific heat capacity at constant pressure, of phase k. The entropy derivatives are evaluated at the boiling curve. 

An important note to make is that the sound velocity is discontinuous at the transition between a pure phase 
(either gas or liquid) and a two-phase mixture. That is, ceq (�l = 1) � cl and ceq (�g = 1) � cg . This effect has not 
been observed experimentally, see e.g. Coste et al. [10] or Kieffer [11], hence it is probably not an actual physical 
effect. Figure 1 shows the sound velocities of three different models, with increasing degree of equilibrium in 
pressure, temperature and chemical equilibrium. In this figure we clearly see that the model with full equilibrium 
has a far lower sound velocity than models without chemical equilibrium. However, the advantage with the 
homogeneous equilibrium model is that no explicit modelling of phase transfer is required. 
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 Table 1: CO2 parameters for the stiffened-gas 

equation of state. 

 Gas Liquid 
� 1.044 1.157 
cv   (J/kg K) 3075 2955 
p�  (Pa) 1.140 · 106 1.046 · 108

e� (J/kg) -5.077· 105 5-7.451· 10
T0 (K) 288 288 
�0 (kg/m3) 159.9 822.5 
s0 (J/kg K) 1750 1134 

Figure 1: Sound velocity as a function of gas volume fraction 
for models with different equilibrium assumptions. 

 

3. Numerical method 

To solve the presented model numerically, we need a proper numerical method. First, we write the equation system 
(1)-(3) more compactly as 
  (10) 
where q is the vector of conserved variables, i.e. 
  (11) 
and f (q) is the flux function, 
  (12) 

An equation system in the form (10) can be solved with a finite-volume scheme, in which one divides the 
domain into control volumes. By integrating the equation over x, we get 
  (13) 

where Qi is the integral of q over volume i. Fi+1/2 is the flux between cell i and i+1. Using the Forward Euler 
method for integrating in time yields where the superscript m indicates a quantity evaluated at time t . m
  (14) 

The challenge in solving (14) lies in calculating the flux function F  at the cell interface, knowing only Qi+1/2 i 
and Qi+1, the integral of q in the neighbouring cells. Two classes of methods for solving such problems are centred 
schemes and upwind schemes. In the following, we present one scheme of each type: a centred MUSTA scheme 
and an upwind Roe scheme. 

3.1. Roe scheme 

The Roe method [3] is based on transforming the differential equations (10) to a quasi-linear system in the form 
  (15) 
which applies to the cell interface between cell i and i+1. The matrix Âi+1/2 is a function of q in these two cells, 
denoted q  (left) and qL R (right). The matrix is then used to find the flux Fi+1/2.  

A challenge in developing a Roe scheme lies in constructing the matrix Âi+1/2 , which has to have the following 
properties: 

(q1. Âi+1/2 L , qR) (qR – q ) = f(qL R) – f(q ) L
2. Â (qi+1/2 L , qR) is diagonalizable with real eigenvalues 
3. Â (qi+1/2 L , qR) � �f/�q  as qL R � q  L
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These criteria ensure that the scheme is conservative, hyperbolic, and consistent with the original equation 
system (10), respectively. The first criterion is typically the hardest to satisfy. Morin et al. [5] constructed a Roe 
scheme for a model with an arbitrary number of components with common pressure, velocity and temperature. 
This scheme can handle any thermodynamic model, thus it is suitable for our case. 

The eigenstructure of the Roe matrix is used to resolve and propagate the individual waves at each cell interface. 
This involves diagonalizing the matrix, which in our case is done numerically. To achieve a higher-order method, 
we employ the wave-limiter approach of LeVeque [4], Chap. 15. This yields a second-order method where the 
solution is smooth. We choose to use the Superbee limiter [12]. 

3.2. MUSTA scheme 

The multi-stage centred (MUSTA) scheme was proposed by Toro and coworkers [13, 14]. Centred schemes are 
simpler than upwind schemes, since centred schemes do not have to resolve the eigenstructure of the equation 
system. In other words, the flux function Fi+1/2 is calculated without considering the direction in which the waves 
are travelling. The MUSTA scheme uses the FORCE flux function [15], which is an average of the Lax-Friedrichs 
and Richtmyer fluxes. 

The MUSTA scheme is based on solving the problem (14) at each cell interface on a local grid, and then use the 
local solution in the global grid. When the number of grid cells and time steps in the local grid is increased, the 
accuracy approaches that of upwind schemes, while the scheme retains the simplicity of centred schemes. The 
MUSTA scheme we use is similar to the one used by Munkejord et al. [2], and all simulations will be run using 
two local time steps and two local grid cells. 

4. Depressurization results 

We will now show results from simulation of depressurization of a pipe of length L = 100 m with pure CO2. The 
initial conditions inside the pipe are a pressure at p0 = 60 bar, temperature at T0 = 288 K � 15 °C, and zero velocity. 
At these conditions, CO2 is in the liquid phase. The parameters for the stiffened-gas EOS are listed in Table 1. 

At time t = 0, the right end (x = 100 m) of the pipe is opened and exposed to an external pressure of pe = 30 bar. 
This causes a depressurization wave to propagate through the pipe, causing the fluid to flow towards the right end. 
The decreasing pressure will cause some of the liquid to evaporate, and hence a temperature drop. All simulation 
results are shown at time t = 0.2 s. The Courant-Friedrichs-Lewy (CFL) number used was 0.9. 

4.1. Convergence 

First, we show how the solution converges as the grid is refined. The number of grid cells is varied from 50 to 
6400 cells. For a proper numerical method, increasing the number of grid cells, i.e. decreasing the size of each cell, 
should not cause any oscillations. We choose to show the temperature and volume fraction for 85 m < x < 100 m, 
as the results in this region illustrate the convergence well. 

Figure 2 shows convergence test results for the Roe method with Superbee limiter, abbreviated Roe SB. We see 
that the solution converges nicely without any oscillations or other artifacts. Results for the same test for the 
MUSTA method are shown in Figure 3. Also this method converges nicely, although with slightly less sharp 
corners. This is to be expected, since centred methods are more diffusive than upwind methods. These results 
confirm that both methods will converge to the same solution. 

The convergence to the same solution is illustrated even more clearly in Figure 4, where the solutions for 
MUSTA and Roe SB with a very fine grid are shown. Even with 25600 cells, it is still possible to see how MUSTA 
smears the sharp corners of the depressurization wave. 

Figure 5 shows results for the two methods compared, in addition to the Roe method without any wave-limiting. 
We see that MUSTA and Roe without limiting have comparable results. The higher-order Roe SB is far closer to 
the converged solution. We can also see, especially from Fig. 3(a), that the MUSTA method underestimates the 
temperature drop to a much larger degree than Roe SB. This illustrates the importance of a higher-order method for 
obtaining sufficient accuracy in a depressurization calculation. 
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(a) Temperature (b) Gas volume fraction 
Figure 2: Convergence test for the Roe method with Superbee limiter (Roe SB). Note that only the right-most part 
of the domain is shown 

(a) Temperature (b) Gas volume fraction 
Figure 3: Convergence test for the MUSTA method. Note that only the right-most part of the domain is shown. 

(a) Temperature (b) Gas volume fraction 
Figure 4: Solution with very fine grid for MUSTA and Roe SB. 
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(a) Temperature (b) Gas volume fraction 
Figure 5: Comparison of convergence for the different methods. Note that only the right-most part of the domain is 
shown. 
 

Figure 6: Pressure during a depressurization. 

4.2. Effects of discontinuous sound velocity 

As seen in Figure 6, the depressurization (or rarefaction) wave caused by the low pressure at the end of the pipe 
is split into two parts. The first (left) part is a pressure drop from the initial pressure to the saturation pressure at     
p � 50 bar. The second (right) part is where the evaporation starts to occur. These two waves are split because of 
the discontinuous sound velocity, which causes the pressure wave in the two-phase mixture to propagate much 
slower as soon as evaporation begins, as noted in Section 2.3 and Fig. 1. The speed of sound is cl � 450 m/s in pure 
liquid, while the two-phase mixture has a speed as low as cmix � 25 m/s. This also means that the temperature drop 
due to phase change will take longer to reach into the pipe, than in a model without equilibrium in chemical 
potential. 

For a depressurization case, the velocity of pressure waves (i.e. sound velocity) is an important parameter, so the 
choice of model is an important one. Instead of the model presented in this paper, one could use a model with 
equilibrium in only temperature and pressure, with mass transfer as a source term in the mass equation. This model 
would not have a discontinuity in the sound velocity. However, a difficulty with mass transfer as a source term is 
the need to explicitly model it. 

 
 

2990 H. Lund et al. / Energy Procedia 4 (2011) 2984–2991



8 H. Lund et al./ Energy Procedia 00 (2010) 000–000 

5. Conclusion 

We have presented a model for two-phase flow of CO2 with equilibrium in both pressure, temperature and 
chemical potential (also known as the homogeneous equilibrium model). Simulation results for a depressurization 
of a pipe was presented, demonstrating the accuracy and convergence of a (centred) MUSTA scheme and a 
(upwind) Roe scheme. It was seen that the MUSTA scheme has difficulty resolving the sharp edges of the 
depressurization wave due to its diffusivity. We have shown how a higher-order method like the Roe method with 
wave-limiting significantly improves the resolution of a depressurization wave. 

Further work may model the phase transfer between the two phases using a mass-transfer term, yielding a sound 
velocity closer to experimental results. Such a model may be suitable for depressurization calculations. The Roe 
scheme used in this work and the work of Morin et al. [5] may also be used for such a model. 
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