
  
Abstract—There is a need to cope with the expected growth in 

air traffic while simultaneously meeting demands for increased 
safety, predictability, and efficiency in air traffic management 
(ATM) systems. This paper explores the potential effects of a 
holistic optimization approach on performance of air traffic 
management systems. We developed and evaluated a tool for 
optimizing the decision-making process of airport ATM based on 
holistic optimization, i.e., optimization where each decision is 
based on all possible airplane movements at the airport. This 
paper describes the results of a case study investigating the 
usefulness of this optimization approach. Our results indicate that 
active operational use of holistic decisions based on optimization 
tools might reduce taxi time and improve punctuality. Such tools 
can improve decision making in air traffic control (ATC) towers 
and contribute to the improvement of the overall ATC process. 
 

Index Terms—Air Traffic Control, Optimization  

I. INTRODUCTION 
IR transportation is an important factor in the economic 

growth of the European Union; however, the current 
system is already approaching its capacity and cost limits, 

and therefore needs to be reformed to meet the demands of 
further sustainable development [1]. According to the European 
Commission, airspace congestion and the delays caused by it 
cost airlines between €1.3 and €1.9 billion a year [2]. Several 
research initiatives have been launched to address air traffic 
management (ATM) challenges. The Single European Sky 
ATM Research (SESAR) program—a joint effort of the 
European Commission, EUROCONTROL, air navigation 
service providers, and the manufacturing industry—aims to 
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define, develop, and deploy what is needed to increase ATM 
performance and build Europe’s intelligent air transport system. 

Similarly, in the United States, the Next Generation Air 
Transportation System (NextGen) is the Federal Aviation 
Administration–led modernization of United States’ air 
transportation system to make flying even safer, more efficient, 
and more predictable. 

Reducing gridlock, both in the sky and at airports, is one way 
in which to improve the efficiency of the air transport system. 
However, according to Anderson and Milutinovic, [3, 4] recent 
improvements to en-route capabilities have caused a shift in air 
transport systems, meaning bottlenecks at the airport are now 
the primary concern. 
As such, research on mathematical optimization methods to 
support decisions near and at the airport is of great interest. 
Marίn and Salmerόn  [5, 6] were the first to demonstrate a taxi 
planning optimization tool, which minimized the overall taxi 
time at the Madrid–Barajas airport based on a space-time 
multi-commodity network with capacity constraints. Stiverson 
and Rathinam [7], Rathinam et al.  [8] and Wood et al. [9] 
addressed the runway-queue management problem of the 
Dallas/Fort Worth using fast search heuristics based on k-
exchange neighborhoods whereas Avella at al. [10] describe 
an effective exact MIP for the same problem.  

 Erzberger et al. [11, 12] proposed an arrival-sequencing 
algorithm integrated with separation management and weather 
avoidance within the wider advanced airspace concept. 
Anderson and Milutinovic [4] applied mixed-integer linear 
programs to taxi scheduling, taking uncertainty into account. 
Ravidas et al. [13] addressed the two-runway scheduling 
problem using generalized dynamic programming. 
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However, none of these publications considers the entirety of 
the problem of air traffic control (ATC) decisions at the airport. 
Marίn and Salmerόn [5] and Anderson and Milutinovic [4] 
focused on the surface routing of airport traffic, while Stiverson 
and Rathinam [7] and Ravidas et al. [13] focused mainly on the 
scheduling of runway operations. Erzberger et al. [11] and 
Avella et al. [10] did not take surface routing and departure 
management into account. Mathematical optimization methods 
have yet to be applied to the whole airport. The contribution of 
this paper is therefore the application of our optimization 
algorithm to the whole airport decision problem. An additional 
contribution of our research is a comparison of the results of our 
algorithm with the performance of human air traffic controllers 
(ATCOs) using the same data; such an analysis has not yet been 
performed in the context of the cited literature. 

The objective of this paper is to investigate the usefulness of 
a holistic optimization approach for ATM at an airport using a 
realistic case study. Holistic here has multiple meanings. First, 
we address the entire traffic control problem, which includes 1) 
routing, sequencing, and scheduling airplanes on the surface, 
and 2) sequencing and scheduling airplanes on the runway. 
Second, our approach goes beyond the natural decomposition 
process performed by ATCOs, by considering the entire 
problem in space and time. Indeed, each controller takes care of 
only a small part of the airport (i.e., his/her area of 
responsibility) and controls a few airplanes at a time (i.e., the 
next ones in his/her area/sector). In our case study, we focus on 
the second point by comparing the performance of our 
methodology with that of human operators.  

To this end, we developed and evaluated a software tool for 
optimizing the decision-making process at an airport in a 
holistic way and applied it to the whole airport decision 
problem at Hamburg airport. In previous work, [14-16] we 
proposed a productivity improvement process, called Zero 
Failure Management at Maximum Productivity in Safety 
Critical Control Rooms (ZeFMaP), to increase the performance 
within control rooms. Our results showed that ZeFMaP could 
indeed help improve productivity in the context of tower control 
rooms. In [12] we describe in full detail the mathematical 
background for the optimization algorithm applied in our case 
study, and briefly report the major computational results. In this 
paper, we focus on the impact of such holistic optimization on 
the overall decision process and performance of air traffic 
control at the airport. To better understand how the algorithm 
can support ATCOs in their work, we analyzed the ATCOs self 
reported descriptions of the current decision-making process.  

II. HOLISTIC OPTIMIZATION ALGORITHM 
Our holistic optimization algorithm does not look at each 

airplane trajectory separately but rather at all possible airplane 
trajectories together, to determine the globally optimal decision 
at each point in time for each airplane. Note that trajectories are 
not only defined through airplane (i.e., spatial) movements on 
the surface at the airport and on the runway but also through the 
timing associated with these movements (i.e., temporal). A 
solution for all considered airplanes is called a plan. 

We are defining airplane movements based on the airport 
graph, which provides a schematic representation of the airport. 
Constraints decide whether a plan or a combination of 

trajectories is feasible. In addition to single business trajectory 
constraints (turning restrictions on the taxiway and speed 
limitations), there are constraints relating to pairs of trajectories 
(separation constraints). Our model obeys the same safety rules 
(runway separations, airplane turning restrictions, etc.) as those 
that ATCOs are instructed to follow during training. The 
objective used by the algorithm is to choose the best possible 
plan. Possible defined goals include minimizing total taxi time 
and maximizing punctuality. 

Note that in our exercise, ATCOs received in advance a list 
of arrival times and desired departure times. In the simulations, 
airplanes landed precisely at the communicated arrival times, 
and no deviations occurred. Accordingly, our model received 
deterministic arrival times as the input. In contrast, the 
departure times were determined by ATCOs’ decisions and thus 
were the output of our algorithm. As mentioned, one of the 
goals was to minimize deviations from the desired departure 
times (i.e., to maximize punctuality). 

Following is a schematic representation of our algorithm (for 
all details, see [17]): 

1. For every arrival flight on the planning horizon, find 
the shortest route from a (feasible) runway exit to the 
assigned parking position. 

2. For every departure flight on the planning horizon, 
find the shortest route from the parking position to a 
feasible runway entry. 

3. For each flight f, compute the minimum taxi time by 
assuming that f runs the assigned route without stops.  

4. For each departure flight, compute the minimum 
show-up time (i.e., when the flight can start rolling on 
the runway). This depends on the minimum taxi time 
and on the minimum off-block time. 

5. Considering the input landing times for arrivals and 
the minimum show-up times for departures, compute 
an optimal sequencing of arrivals and departures on 
the runway (if necessary, dropping a minimum 
number of departures). 

6. According to the sequencing determined in point 5, 
compute a conflict-free schedule for all flights taxiing 
to and from the runway.  

Point 1 and 2 are solved using a specialized version of the 
shortest path algorithm on a transition graph, derived from the 
airport graph to represent only feasible movements. Point 3 and 
4 are computed by simple arithmetic. Point 5 is solved by 
integer programming. We associated a time-indexed 
formulation and solved the model using a commercial solver 
(Cplex). Point 6 is carried out by 1) constructing a discrete event 
simulation graph, 2) solving potential conflicts by establishing 
suitable precedence constraints and adding corresponding arcs, 
and 3) computing a longest path tree on the resulting acyclic 
directed graph. In addition, a graphical user interface was 
implemented to allow for visual inspection of the produced 
trajectories to ensure that no unsafe or impossible airplane 
movements were calculated by the algorithm [17]. 

III. CASE STUDY 
The data we needed for evaluating the effects of the holistic 

optimization on the main indicators of the SESAR key 
performance areas (KPAs) were collected in a set of real-time 



simulation exercises. During these exercises, ATCOs were 
subjected to realistic work scenarios using an air traffic 
simulator. In this section, we briefly describe these simulation 
exercises and clarify which types of data were collected. The 
details can be found in [18]. The airport is typically divided into 
multiple areas of responsibility. Each ATCO oversees a single 
area. One of the main reasons for this division is to organize the 
work in such way that each controller can cope with the 
workload arising from controlling airplanes. Activities making 
up this workload include communicating with pilots and other 
ATCOs, scanning the radar and the outside window view to 
check that everything is going as planned, and deciding when 
and how to guide the airplane safely. A disadvantage of this 
division of responsibility is that it makes it inherently difficult 
for ATCOs to coordinate their local decisions with other 
ATCOs. Our hypothesis is that this leads to higher taxi-times 
and lower punctuality than necessary. Therefore, this case 
study’s goal is to assess the potential benefits of an 
optimization-based decision support system that does not take 
divisions of responsibility into account while evaluating 
possible decisions and providing more coordinated decisions. 

To test this hypothesis as fairly as possible, ATCOs and the 
algorithm were given the same input. Moreover, before our 
simulations, the ATCOs were told that there would be no 
external disturbances (i.e., ideal weather, flights ready as 
planned at the gate and landing as planned, no sudden stopping 
of airplanes at the airport, etc.). The only disturbances that 
would be in the system were the ones introduced by other 
ATCOs (e.g., late transfer of responsibility requests from one 
controller to another or not giving a clearance). ATCOs were 
also told that they could take advantage of the absence of 
external disturbances and of the fact that pilots would react 
(almost) immediately (and without the need for voice 
communication) to what they put into the system. Having the 
simulation set up this way allowed for a controlled measuring 
of the difference between local, less coordinated decision 
making and more holistic, coordinated decision making. In 
addition, the possible hindsight advantage of the algorithm over 
the ATCOs of knowing all disturbances is in this way removed. 

A. Participants 
The simulation exercises involved five ATCOs from 

Eurocontrol and Frequentis. Four of them had much experience 
working as ATCOs, whereas the last one (who was working in 
the least demanding position) and had solid experience in using 
and testing the systems we used in the study. Three of the five 
participants had earlier experience with the simulator and the 
simulated environment, as they had participated in a similar 
two-day study conducted several months prior to this one. To 
ensure that the participants were familiar with the working 
procedures at the airport used in the study and with the 
simulator, its environment, and the experimental procedure 
itself, we provided extensive training for all the participants. 
Several weeks prior to the simulation, the participants were 
asked to familiarize themselves with the training material 
describing the working procedures that were to be followed 
during the simulation. One week before the simulation, a 
telephone session was held that included a walkthrough of all 
the procedures. The participants had an opportunity to ask any 
questions they had regarding the material, and all unclear issues 

were discussed. In addition, the first day of the study was 
devoted to training, including a walkthrough session, two 
training runs, and discussions. During these training runs, the 
participants had the opportunity not only to become completely 
familiar with the tasks and the environment but also to improve 
their performance as a team. They discussed situations with the 
potential for performance improvement and, together, found 
better detailed procedures to be followed during the study. 

B. Materials 
The participants were subjected to realistic work scenarios 

using the NAVSIM air traffic simulator [19]. The simulator was 
set up to replicate the tower environment at Hamburg airport in 
terms of runway configuration, traffic scenarios, and controller 
equipment. The traffic scenarios were based on real traffic data 
from Hamburg airport, taken from the peak hours on a specified 
set of dates. This traffic data was adapted to some extent, in 
order to provide the required traffic loads. Each of the five 
ATCOs had a working position configured for his or her 
particular role, equipped with a radar screen, an electronic flight 
strip tool, and an auxiliary screen used for arrival/departure 
management (see Figure 1). The simulation did not involve 
simulated pilots or participating pilots; hence, the ATCOs did 
not have to handle voice communication with pilots. Instead, 
the simulation was held as if there were a controller–pilot data 
link connection to the aircraft facilitated by means of the 
electronic flight strip tool. Instrument meteorological 
conditions were used, with a wind component of 10 kts from 
270°. The participants followed a tower working procedure. 
Training materials were produced to familiarize the participants 
with these working procedures.  

 
Figure 1. The controller working positions included a radar screen, a flight 
strip tool, and an arrival/departure manager. The radar screen was a modified 
version of the Navsim air traffic simulator, stripped down to the graphical user 
interface for the display of the simulated radar image. The electronic flight 
strips tool “SmartStrips” was supplied by Frequentis AG; this was used to 
display the state of the simulated aircraft and for communication with the 
simulated pilots. The auxiliary screen was a generic implementation of an 
arrival/departure management tool, providing the controller with increased 
time awareness. 

C. Procedures 
As described previously, we organized training before the 

simulation. The simulation session spanned two days. It 
consisted of two training runs and three measured runs that 
were used for analysis, each lasting approximately one hour. At 
the beginning of each run, it was explained to the participants 



how much traffic they would need to handle during the run, and 
they were reminded that they should follow the following 
priorities during the simulation: 

• Priority 1 – Safety: Minimize the number of safety 
violations during the simulation. 

• Priority 2 – Punctuality: Make flights depart the 
runway as close to the calculated takeoff time as 
possible. 

• Priority 3 – Efficiency: Minimize taxi time and taxi 
distance. 

The participants were then seated at their respective positions 
in the simulation room (Figure 2), and the simulation was 
initiated. 

The traffic scenarios used during the simulation runs differed 
in terms of traffic load. The first training run involved a scenario 
with a traffic load of 30 aircraft, while the second training run 
made use of a scenario with a traffic load of 60 aircraft. The 
measured runs had the following characteristics: 

• Measured run 1: A traffic load of 45 aircraft, running 
at normal speed  

• Measured run 2: A traffic load of 60 aircraft, running 
at normal speed  

• Measured run 3: A traffic load of 45 aircraft, running 
at approximately 1.5 times normal speed 

After the last run, the participants were interviewed 
individually and asked to fill in a post-run questionnaire. At the 
end of the simulation session, the participants were encouraged 
to reflect on their own individual experience, performance, and 
decision-making during the simulation runs.  

 
 
 

 
Figure 2. Control room of the Hamburg airport human-in-the-loop simulation 
exercise. Each controller workstation is labeled with the controller’s function 
in the experiment. 

D. Measures 
The necessary input data were mainly collected by means of 

the logging functionality of the simulator. The logging focused 
on the actions performed by the ATCOs during the simulation 
runs and on the movements of aircraft (taxiway segments), 
including their timestamps. The complete list of logged 
variables is given below:  

• Commands with timestamps  

• Total number of aircraft handled per exercise 
• Taxi time from gate to runway (departures), including 

details on all taxiway segments 
• Taxi time from runway to gate (arrivals), including 

details on all taxiway segments 
• Taxi distance from gate to runway (departure) 
• Taxi distance from runway to gate (arrivals) 
• Punctuality for departing flights 

To supplement these objective measures, a number of 
subjective data collection methods were utilized, including 
interviews, questionnaires, and note-taking. Video and audio 
recording, along with screen-capture recording, were also used 
to document each run. These data sources were used to verify 
and explain the findings from the log files. 

IV. RESULTS AND DISCUSSION 
We first analyzed all the decisions made by the ATCOs 

during the measured runs and compared them with the decisions 
suggested by the optimization tool. We then calculated the 
effects of the optimization on the relevant KPAs. Based on the 
optimal trajectories, the global optimal taxi time and 
punctuality could be calculated and compared with the 
outcomes of the ATCOs’ manual decisions.  

During each scenario, the ATCOs were obliged to follow all 
safety rules at the airport that was simulated and to prioritize 
safety, punctuality, and efficiency (in that order). Following the 
experiment, the optimization algorithm was subjected to the 
same work scenarios as the ATCOs were presented with, and 
given the same set of safety rules and priorities. Because the 
safety rules were known to the algorithm and treated as hard 
constraints, the proposed trajectories are at least as safe as the 
manual solutions provided by the ATCOs. A visual check was 
conducted to ensure that the optimization algorithm adhered 
with the predefined safety rules. 

Based on the data collected in the experiment, we evaluated 
the decision quality of ATCOs in terms of punctuality and taxi 
time and compared this with the decision quality achieved when 
using optimization technology. The comparison was conducted 
through a pair-wise one-tail t-test where both average taxi time 
and average punctuality was compared for each of the three 
scenarios. Our hypothesis was that the decisions made by the 
optimization technology would result in a significantly 
improved (i.e., lower) average taxi time and a significantly 
improved average punctuality when compared with the 
decisions made by ATCOs. 

 
TABLE 1: T-TEST COMPARISON OF ATCOS VS. ALGORITHM. 

 
 
The results of the comparison show that the optimization 
technology performed significantly better than did the ATCOs 
both with respect to taxi time and punctuality. The decrease in 
average taxi time was between 33% and 36%, while punctuality 

Run 1 paired t-test (p-value)  controllers (s)  algorithm (s) ∆(%) 
Avg. taxi time 0.000001 283.02 183.516 -35.2 
Avg. punctuality 0.010514 243.32 80.59 -66.9 
Run 2 
Avg. taxi time 0.000000 299.15 199.32 -33.4 
Avg. punctuality 0.000290 190.17 80.44 -57.7 
Run 3     
Avg. taxi time 0.00001 298.93 199.79 -33.2 
Avg. punctuality 0.00506 144.30 59.74 -58.6 

 



improved by 57% to 67%. The p-values calculated from the 
runs were all significantly lower than 0.05, meaning that the 
results are significant. The results for each run are presented in 
Table 1.  

Moreover, seven calculated time of takeoff (CTOT) windows 
were broken by the ATCOs, while this was not necessary, as 
proven by the algorithm. In addition, 89% of all flights (over all 
scenarios) were scheduled by the algorithm within an interval 
(-3; +3) around the CTOT, despite some very late target off-
block times. In contrast, the ATCOs scheduled just 63% within 
this CTOT window, illustrating the human challenge of 
managing time and space simultaneously.  
Each of the simulations included three to four flights scheduled 
to depart after 17:00, which is a target takeoff time after the end 
of the simulation. During the experiment, the ATCOs allowed 
the airplanes to take off before 17:00 out of necessity. In 
contrast to this, the algorithm planned these airplanes to take off 
at their exact target takeoff times. This led to a large difference 
in punctuality for these flights, which could affect the 
significance of the above results in terms of punctuality. 
Because the ATCOs did not have the option to schedule flights 
after 17:00, we decided to remove these flights from the 
analysis. 

Because there were no other disturbances or external 
influences, other than those from the ATCOs or algorithm 
themselves, the difference in optimization can be explained by 
how coordinated the different decisions were. The results show 
that the algorithm improved the overall result in terms of both 
punctuality and taxi time by integrating both departure and 
surface routing management, giving rise to a more holistic 
evaluation of local decisions.  

An important byproduct of this optimization is that it leads to 
a reduction in the number of airplanes simultaneously moving 
on the runway and taxiways, which, in turn, decreases the risk 
of collisions. For example, in Scenario 2, the ATCOs needed to 
guide up to 11 airplanes at the same time. In contrast, the 
algorithm almost halved the maximum workload, only guiding 
up to six airplanes at once (see Figure 3). Similar to the airspace 
sector workload indicators, the number of moving aircraft being 
actively monitored by the ATCOs can be seen as an adequate 
workload indicator. A reduction in the number of airplanes 
moving simultaneously means that less communication with 
pilots is necessary. This allows more time for monitoring the 
safety of the airport. Similar observations can be made for the 
other two scenarios. Given these results, it is expected that this 
difference will expand even more when the number of flights 
handled by the airport increases.  

An increased integration of arrival scheduling with departure 
and surface routing is expected to yield even better overall 
results. Further investigation showed that the algorithm 
currently performs better for departures that it does for arrivals. 
From a practical standpoint, arrivals are less controlled by the 
receiving airport than they are by the departing airport and 
actual flight operations. This is especially true in the conducted 
case study, in which the arrivals landed exactly at their 
scheduled times. Because of this, the algorithm is configured to 
prioritize departing flights over arriving flights. 
 

 
Figure 3. Number of moving airplanes over time in Scenario 2. 

If ATCOs could have access to solution proposals generated by 
the holistic optimization algorithm and the associated tool, it 
could be an important enabler for airports to reach a higher 
safety level, due to the following reasons: First, the algorithm 
works on a mathematical model that inherently adheres to all 
safety rules (e.g., separation). In contrast, ATCOs, as a group 
of decision makers, lack the ability to jointly consider time and 
space with mathematical precision. This is a drawback because 
ATCOs need to resolve safety issues during execution, when 
the issues are about to occur. Second, the results have shown 
that the number of airplanes moving simultaneously can be 
reduced substantially through the use of optimization 
technology. Such a reduction might also lead to a decreased risk 
of collisions. 

The average duration of a complete optimization run, without 
a “warm” start and for which all flights from each scenario are 
considered, is 15 s on a laptop with an Intel i7 central processing 
unit (CPU), four cores, and 4 GB of random-access memory 
(RAM). This was the first implementation of the algorithm. 
From previous experiences, we learned that further 
implementation and design efforts of the algorithm will 
probably lead to shorter running times and improved decision 
quality.  

We also analyzed the interviews we conducted to understand 
what the participants themselves thought about their own 
performance and the realism of the study. It should be noted 
that four of the ATCOs have extensive experience not only as 
ATCOs but also as ATCO instructors and advisors; as such, 
they were able to recall and explain in detail their decisions and 
the cognitive processes behind them. Their general impression 
was that they performed well. They gave several examples of 
instances in which they improved their performance as a team 
by changing sequencing after discussing it during the training 
sessions. When asked about the realism of the study, the 
participants said that they were working as they would in a real 
working situation, both individually and as a team; that they 
were familiar with the traffic, the airport, and the used tools; 
and that they experienced no difficulties during the exercise. 

One of the simplifications made in the study was the lack of 
pseudo-pilots. The participants reported that this improved their 
performance, as they spent no time on communicating with 
pilots. Furthermore, it reduced their cognitive workload, as they 
had no need to postpone communications with one pilot while 
talking with another pilot.  

Another simplification that improved their performance 



compared to real-life circumstances was that speed of the 
arriving aircrafts, was much more predictable. Normally, the 
variations in arrival speed and the behavior of the pilots during 
the last four minutes before landing are quite large, increasing 
the ATCOs’ workload. One controller mentioned that they 
missed the possibility of looking out the window, as normally, 
the ATCOs know that there is a small delay on the radar and 
instead look out the window. If a controller sees that an aircraft 
has passed the crossing of the runway, he/she would 
immediately launch the takeoff clearance. However, in this 
study, as there were no delays in the simulator, this was not 
needed. 

A controller working at the tower (TWR) position described 
situations in which the performance of the ATCOs could be 
improved in some control centers. If a landing aircraft is within 
three nautical miles of the airport, one should not depart the next 
one. This rule should always be followed and will sometimes 
decrease efficiency. When one has a slow aircraft on approach 
and has a quick departing flight, some ATCOs take speed into 
account and stretch the rule (as one did in this experiment), thus 
improving performance. Others, however, always take a 
conservative approach and follow the given rule. 

ATCOs are trained (although one interviewee called it “an 
instinct”) not to hold up aircraft lined up on the runway just 
because it is too early to depart. Instead, one should get rid of 
the aircraft that are on runway because holding traffic on the 
runway is always a risk. Descriptions of the decision-making 
process reported in interviews indicate that ATCOs both used 
simplifications made in the experiment and stretched the given 
rules to improve their performance.  

V. LIMITATIONS OF THIS CASE STUDY 
A main threat to the validity of a study is the effect of having 

a subject population that is not representative of the population 
to which the study aims to be applied. It can be expected that 
the ATCOs from the Hamburg airport would perform better 
than the participants in the study due to their local working 
experience.  

To minimize this threat, care was taken to recruit participants 
that had many years ATC working and/or training experience 
and to provide them with extensive training, as described in 
Section III. A. In the interviews that followed the study, all the 
participants reported that they had good knowledge of the 
Hamburg airport infrastructure and working process after the 
training. They also described that they used the training 
sessions to improve their performance as a team. They 
discussed situations that needed better coordination and agreed 
on improvements. 

Another threat to validity is related to the ability to generalize 
from the tasks the participants conducted. In our study, we used 
a real-time simulation in which ATCOs were situated in a 
realistic tower environment, performing ATC tasks in realistic 
traffic scenarios. The process applied to solve the tasks 
replicates the process used at the Hamburg tower. To reflect the 
Hamburg tower setting as closely as possible and to ensure that 
the setting was representative of today’s practices, the 
environment was set up to make use of electronic strips for 
coordinating the work of the different controller roles. 
However, there were some simplifications. There were no pilot 

(i.e., pseudo-pilot) positions in the exercise. The participants 
reported that this improved their performance, as they spent no 
time on communicating with pilots, the pilots (simulated by the 
system) always followed their orders immediately, and the 
speed of the arriving aircrafts was much more predictable. 
However, the controller missed the possibility to look through 
the window.  

A potential shortcoming of this set up could be that the 
algorithm had a hindsight advantage by knowing the actual 
disturbances that happened in the simulation and taking this into 
account in its calculations. To remedy this threat, the ATCOs 
were instructed that there would be no external disturbances and 
that they could take advantage of this. In the interviews, all 
ATCOs described that knowing this improved their 
performance on taxi time and punctuality. 

Finally, due to data limitations, the algorithm used a constant 
speed conservatively set at 7.5 m/s, whereas it is often 10.0 m/s. 
Thus, the taxi times of the algorithm were somewhat higher 
than they would be in a real-world setting 

VI. CONCLUSIONS AND FUTURE WORK 
The holistic optimization tool we proposed makes decisions 

based on its global view of the airport, while each individual 
controller makes decisions for his/her limited area of 
responsibility, with little coordination with other ATCOs. 
Therefore, the tool performs better than ATCOs in terms of 
optimal taxi time and punctuality. This is primarily related to 
the optimization technology’s ability to calculate enormous 
numbers of variables that affect the decision space, outputting 
optimized decisions in a matter of seconds. Based on this, we 
regard holistic optimization technology as a promising aid to 
support decision making in ATC towers, and in turn the overall 
ATC process. 

Our results show that the holistic optimization algorithm can 
reduce taxi time and improve punctuality, while still 
maintaining the same level of safety. Identified improvements 
might also affect KPAs beyond the ones investigated this study. 
Improvements in average taxi time and punctuality can increase 
airport capacity. Further, reducing the taxi time contributes to 
fuel efficiency. 

Currently, the power of optimization technology is not used 
to its full extent. Future work includes making the optimization 
model even more complete with respect to detailed real-world 
constraints. Large-scale simulations are needed to support this. 
We need to incorporate the ability to maintain stable solutions 
in a dynamic environment. We also want to extend our model 
to fully include arrival management. Finally, this optimization 
technology can also be developed to become part of a learning 
tool for ATCOs, providing them with a comparison basis 
between their decisions and the optimal ones. 

Interaction between the optimization tools and ATCOs 
should also be investigated. By introducing heuristic 
optimization, we actually open up new ways of utilizing human 
performance. Additionally, some of the dedicated variables or 
parameters in the heuristic algorithm can be tuned by input from 
human experience, analysis, and judgment. And, in turn, a 
human operator can improve manual performance when using 
an automated decision support tool. Introducing optimization 
tools creates a need for new empirical studies on the interplay 



among tools, ATCOs, and organizations. 
For future work, we can also consider uncertainty in the input 

to the algorithm, such as taxi speeds, pilot reaction times, and 
arrival times, in two different ways: first, by exploiting robust 
and stochastic optimization models; and second, by exploiting 
our optimization algorithm to re-optimize in real time whenever 
large enough deviations from the current plan occur. In 
addition, our algorithm can be expanded to decide not only the 
departure times but also the arrival times. In this way, the arrival 
and departure sequence on the runway could be further 
optimized with regard to punctuality and taxi times.  
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