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Abstract—Extreme weather is known to cause failure 

bunching in the electrical transmission system.  However, 

protection systems can also contribute to the worsening of the 

system state through spontaneous, missing or unwanted 

operation of the protection system.  The latter two types of 

failures only occur when an initial failure has happened, and 

thus is more likely to happen when the probability of failure of 

transmission lines is high, such as in an extreme weather 

scenario.  This causes an exacerbation of failure bunching 

effects, increasing the risk of blackouts, or High Impact Low 

Probability (HILP) events.  This paper describes a method to 

model transmission line failure rates, considering both 

protection system reliability and extreme weather exposure.  A 

sample case study is presented using the 6 bus RBTS test-system.  

The case study, using both an approximate method as well as a 

time-series approach to calculate reliability indices, 

demonstrates both a compact generalization of including 

protection system failures in reliability analysis, as well as the 

interaction between weather exposure and protection system 

failures and its impact on power system reliability indices. The 

results show that the inclusion of protection system failures can 

have a large impact on the estimated occurrence of higher order 

contingencies for adjacent lines, especially in periods of high 

weather exposure. 
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I. INTRODUCTION  

Society is dependent on a reliable supply of electricity for 
its normal operation, and thus power outages can have severe 
consequences.  Environmental factors have shown to be one 
of the main causes to major blackouts [1]–[5]. The increased 
probability of one or more component failures in a short 
period of time due to extreme weather has been termed failure 
bunching, and models have been developed to capture such 
effects in power system reliability studies both using 
analytical techniques and Monte Carlo approaches [6]–[8]. 
Large blackouts are often a consequence of complex series of 
events, such as cascading failures [9].  A distinction in the 
structure of cascading blackouts is made in [10] between a 
triggering event, which can be simple component failure(s), 
and generations of propagating events, caused by preceding 
events and a change in the power system state. One of the 
causes of propagating events is the malfunction of protection 
systems [4], [9], [11]. In previous works it has been shown 
that protection system reliability can have a notable impact on 
reliability of supply [12].  

The combination of failure bunching effects and 
protection system failures may cause the system to end up in 
a less desired state than what was initially expected. The 
contribution of this paper is to formulate general and compact 

equations to incorporate protection system failures in 
reliability analysis, based on [12]. The novelties in this paper 
are 1) Based on graph theory, finding paths of possible 
propagation of failures between transmission lines. 2) These 
equations are then developed to be applicable to time-series of 
failure probability of transmission lines, which can be used to 
capture the interaction between protection system failures and 
failure bunching effects due to weather.  The aim of the paper 
is not to fully capture the complex chains of events which can 
be found in a power system cascade, but rather to incorporate 
the early steps of such events combining the two phenomena. 

The paper is structured as follows: In Section II, previous 
work on failure bunching effects and protection system 
reliability is presented, as well as a short review of graph 
theory and its use in this study of power systems reliability.  In 
Section III, a general and compact method for calculating 
reliability indices including protection system failure and 
maloperation is presented.  Section IV presents a case study 
where the method is applied, before the paper is concluded in 
section V. 

II. FAILURE BUNCHING AND PROTECTION FAILURES 

Harsh weather has long been known to cause common 
cause failures within short periods of time, often termed 
failure bunching. One way of incorporating such effects is to 
use multi-state Markov models or similar approximate 
methods when calculating reliability, another is to utilize 
Monte Carlo simulation techniques [3], [13], [14]. In [13],  the 
effect of failure bunching due to wind exposure is captured 
using historical failure data and a Bayesian updating scheme 
to estimate annual wind dependent failure rates of 
transmission lines. The annual failure rate is then spread out 
in time by combining fragility curve modeling and a dataset 
of historical wind speeds for the lines in question. This results 
in hourly time-series of wind dependent failure probability for 
the lines. The time-series of historical failure probability in 
[13] is further used together with a Monte Carlo-based tool to 
calculate system consequences in terms of interrupted power 
and interruption costs in [15].  

In [8] an analytical technique is used to calculate time-
series of expected unavailability of transmission lines due to 
wind rather than using a Monte Carlo approach. For each hour, 
the probability of failure is paired with a distribution of outage 
duration for the relevant type of failure.  An iterative algorithm 
then appends the probability of the component being 
unavailable due to a failure at a specific time for a given 
number of hours ahead in time.  A contingency enumeration 
approach, defining outage combinations as cutset structures 
[16], [17] is then used together with the time-series of 
expected unavailability of transmission lines to calculate the 
reliability index annual energy not supplied (ENS) for the 
system.  

Protection systems are expected to be both dependable 
and secure [12].  Missing operation of the protection system 
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occurs if it fails to react appropriately to a situation it is 
designed to respond to and would be a shortfall of the 
dependability of the system.  Similarly would an unwanted 
operation occur if the protection system reacts to conditions 
it is not designed to react to, and is a shortfall of the security 
of the system [12]. These two elements of reliability were the 
basis in [12] to construct different scenarios in which 
protection system reliability can cause a transmission line to 
be isolated from the network. This gave rise to four fault types 
[12]:  Fault type 1 (FT1) is the failure rate of the transmission 
line in focus.  Fault type 2 (FT2) represents failures due to the 
spontaneous unwanted operation of a line’s own protection 
system.  Fault type 3 (FT 3) is explained by a situation where 
a failure occurs on a neighboring line but is not correctly 
cleared due to missing operation of the neighboring line’s 
protection system, and thus causes the line in focus to be 
isolated from the system.  Fault Type 4 (FT4) is a result of a 
fault on the neighboring line that is correctly cleared by the 
neighboring line’s protection system but causes an unwanted 
non-selective tripping of the line in focus. An equivalent 
failure rate for each line is then constructed as a summation of 
these four failure type contributions. The method is a 
contingency enumeration approach, where an approximate 
system reliability evaluation [18] is used to obtain reliability 
indices for predefined minimal cutsets. A more detailed 
presentation of the approach can be found in [12].  

The role of protection systems makes it necessary to 
systematically consider the adjacency between transmission 
lines. Much of the literature on cascades employs complex 
network theory and graph-theoretic approaches to identify 
important generators, transformers, substations and lines, to 
mention a few, in the power system [19]–[21].  The power 
system lends itself to a graph-based representation, where 
vertices (𝑉)  are considered as buses and edges (𝐸)  are 
considered as undirected edges between the buses.  A graph 
(𝐺) is an object consisting of an ordered vertex set and an edge 
set joining the vertices, as seen in (1)–(3), where 𝑛  is the 
number of vertices in the graph and 𝑚 is the number of edges 
in the graph, see e.g. [22], [23].  

𝐺 = (𝑉, 𝐸) (1) 

𝑉 = {𝑐1, 𝑐2 … 𝑐𝑛} (2) 

𝐸 = {{𝑢1, 𝑣1}, {𝑢2, 𝑣2} … {𝑢𝑚, 𝑣𝑚}} (3) 

In the following, the graph-based representation of 
relationships is a useful tool to incorporate protection system 
failures into power system reliability analysis.  

III. METHOD 

The aim of the method described in this paper is to create 
compact and general equations to calculate the impact of 
protection system failures on power systems reliability 
evaluation, based on [12]. The method is formulated using 
both an approximate systems reliability approach [17], [18] in 
Sec. III.A, and a time-series approach [8] in Sec. III.B.  The 
idea behind the method in this paper is to see vertices as 
transmission lines and edges as dependencies between 
transmission lines, rather than buses and transmission lines, 
respectively. This structure can then be utilized to calculate 
the contribution to failure rates at a given transmission line, 
given failures at adjacent lines. 

When including protection system failures into the system, 
we consider two different types of lines in each case: the target 

line 𝑖, for which we wish to calculate the failure rates, and the 
source line 𝑗,  which is adjacent to the target line and 
contributes to the failure rate of the target line through 
propagation of protection system faults.  The target- and 
source lines are adjacent lines if they are connected to a 
common bus, as seen in Fig. 1.  The subscript 𝑙 is used when 
it is not specific if the line is a target or a source line. 

Target line – i Source line – j

λi

Connecting bus – c

λj
a

iP
b

iP a

jP b

jP

 

Fig. 1.  Two adjacent transmission lines, i, j. 

A line is associated with a protection system on each end 
of the line. These are referred to as the 𝑎 - and 𝑏 -side 
protection systems, represented as the set 𝑠 = {𝑎, 𝑏}  for 
simplicity.  For a line we consider the failure rate of the line 
𝜆𝑙, and the two protection systems, 𝑃𝑙

𝑠. The protection systems 
have three parameters,  1) a specific annual failure rate, 𝜆𝑙

𝑠,   2) 

a conditional probability of missing operation, 𝑃𝑙
𝑠,𝑚

, if the line 

experience a failure, and 3)  upon a correctly cleared failure at 
an adjacent line, a conditional probability of unwanted non-
selective tripping at the target line, 𝑃𝑙

𝑠,𝑢
.  The restoration time, 

𝑟 , is denoted with a subscript indicating which line is 
considered, and a superscript indicating which fault type it is 
applicable to.  All line- and protection system specific 
information is represented as ordered column vectors.  

We are primarily concerned with how maloperation of the 
protection system of one transmission line can cause an 
adjacent line to be isolated from the system.  The system can 
initially be considered a graph 𝐺, where each edge 𝑒 = {𝑢, 𝑣} 
represents a transmission line, and the buses are represented 
by vertices, which are unique observations of 𝑢 and 𝑣.  We let 
𝑢   represent the a-side connecting bus of a line, and 𝑣  to 
represent the b-side connecting bus. An adjacency matrix 
indicates connections between vertices, and we wish to 
represent our system in a form where vertices are transmission 
lines and edges are directed paths of fault propagation between 
the lines.  An adjacency matrix is constructed for each side of 
the source line, 𝑨𝑠 in (4), to take into account which side of 
the source line is connected to the target line. The adjacency 
matrix is an ordered 𝑙 ∗ 𝑙-matrix, where rows represent a target 
line 𝑖  and columns represent a source line 𝑗 .  If line 𝑗  is 
connected to line 𝑖 through its s-side, it is marked with a digit 
1 in the appropriate element, 0 otherwise.  Matrices and 
vectors are typeset in bold, while specific elements of a matrix 
or vector, or scalar values are denoted with regular fonts. 

𝑨𝑠 = [𝑎𝑖,𝑗
𝑠 ] =  [

𝑎1,1
𝑠 ⋯ 𝑎1,𝑗

𝑠

⋮ ⋱ ⋮
𝑎𝑖,1

𝑠 ⋯ 𝑎𝑖,𝑗
𝑠

] (4) 

 

𝑤ℎ𝑒𝑟𝑒 𝑠 = {𝑎, 𝑏}  

𝑎𝑖,𝑗
𝑎 = {

1 𝑢𝑗 ∈ {𝑢𝑖 , 𝑣𝑖}

0 Otherwise
 

𝑎𝑖,𝑗
𝑏 = {

1 𝑣𝑗 ∈ {𝑢𝑖 , 𝑣𝑖}

0 Otherwise
 

The adjacency matrix can then be further modified to 
incorporate the probability that a failure on a source line will 
propagate to a target line. From the initial equations in [12], 



we know that only FT3 and FT4 stem from adjacent lines and 
as such these fault types will receive the primary focus.  

FT3 is related to a failure on an adjacent line, which is not 
correctly cleared by the adjacent line’s protection system.  The 
probability of missing operation of the protection system on 
the 𝑠 side for a given line is represented by the column vector 
𝑷𝒍

𝒔,𝒎
.  Adjacency matrices can then be modified to incorporate 

the probability of a failure propagating through the FT3 
mechanism in (5). 

𝑷𝑻𝟑 = [𝑝𝑡3𝑖,𝑗] = ∑ [[

𝑎1,1
𝑠 ⋯ 𝑎1,𝑗

𝑠

⋮ ⋱ ⋮
𝑎𝑖,1

𝑠 ⋯ 𝑎𝑖,𝑗
𝑠

] ∙ [
𝑝1

𝑠,𝑚

⋮
𝑝𝑙

𝑠,𝑚
]]

𝑠∈{𝑎,𝑏}

 

= ∑ [𝑨𝑠 ∙ 𝑷𝒍
𝒔,𝒎]

𝑠∈{𝑎,𝑏}

 (5) 

PT3 only takes into consideration the properties of line 𝑗’s 
protection systems.  The same probability matrix for FT4, a 
failure on the source line causing an unwanted non-selective 
tripping of the protection systems at the target line, PT4, must 
consider protection system properties of both the target and 
the source line.  The probability of line 𝑗 successfully clearing 
a failure on its own line is calculated in the inner bracket in 
(6).  The matrix is then transposed to calculate the probability 
of an unwanted non-selective tripping of line 𝑖  before the 
matrix is transposed back into its original direction. Note that 
the probability of unwanted spontaneous operation is 
represented by a single column vector since the target line 

response is side-independent, where 𝒑𝒍
𝒖 = 𝑃(𝑝𝑙

𝑎,𝑢 ∪ 𝑝𝑙
𝑏,𝑢). 

𝑷𝑻𝟒 = [𝑝𝑡4𝑖,𝑗] =  ∑ [[𝑨𝒔 ∙ (1 − 𝑷𝒍
𝒔,𝒎)]

𝑇
∙ 𝑷𝒍

𝒖]
𝑇

𝑠∈{𝑎,𝑏}

(6) 

Matrices representing the probability of different fault 
types propagating from a source line to a target line have now 
been established. This can be applied to calculate systems 
reliability indices for cutsets. Two methods are presented here.  
First, an approximate method of systems reliability using 
annual failure rates including protection system failures. 
Secondly, a method to calculate time series of probability of 
failure due to different fault types, which can be used together 
with [8] to calculate unavailability of cutsets.   

A. Approximate method 

  This approach starts by calculating the equivalent failure 
rate of each line, and do this by considering each line a target 
line.  The equivalent failure rate is calculated based on the 
failure rate of the line itself (FT1) and its protection systems 
(FT2), and the fault types FT3 and FT4 propagating from 
adjacent lines. FT1 and FT2 are only dependent on 
information of the line itself and is repeated for reference here 
(7)-(8).  FT3 and FT4 is calculated by using the associated 
probability matrices (9)-(10).  For FT3 and FT4 we summarize 
values along the 𝑗 -axis of the matrix resulting from 
multiplication of the probability matrix with the adjacent line 
failure rates.  This gives us a vector of all FT3 and FT4 failure 
rate contributions from all source lines at the target line.  

𝑭𝑻𝟏𝒊 = 𝝀𝒍  (7) 

𝑭𝑻𝟐𝒊 = ∑ 𝝀𝒍
𝒔 

𝑠

(8) 

𝑭𝑻𝟑𝒊 = ∑[𝑷𝑻𝟑 ∙ 𝝀𝒍]

𝑗

(9) 

𝑭𝑻𝟒𝒊 = ∑[𝑷𝑻𝟒 ∙ 𝝀𝒍]

𝑗

(10) 

Equivalent failure rates, incorporating protection system 

failures is then calculated as 𝝀𝒍
′ in (11).  

𝝀𝒍
′ = 𝑭𝑻𝟏𝒊 + 𝑭𝑻𝟐𝒊 + ∑[[𝑷𝑻𝟑 + 𝑷𝑻𝟒] ∙ 𝝀𝒍]

𝑗

 (11) 

From this, we can obtain equivalent unavailability and 
repair rates for all target lines in (12)-(13), where elementwise 
Hadamard operations are performed when calculating 
unavailability for FT1, FT2 and equivalent repair rates. Note 
that the unavailability due to FT4 is dependent on the 
switching time of the line’s own protection system, hence the 
double transpose.  

𝑼𝒍
′ = 𝑭𝑻𝟏𝒍 ∘ 𝒓𝒍

𝑭𝑻𝟏 + 𝑭𝑻𝟐𝒍 ∘ 𝒓𝒍
𝑭𝑻𝟐 

+ ∑ [[𝑷𝑻𝟑 ⋅ 𝒓𝒍
𝑭𝑻𝟑 + [𝑷𝑻𝟒𝑻 ⋅ 𝒓𝒍

𝑭𝑻𝟒]
𝑻

] ∙ 𝝀𝒍]

𝑗

  (12) 

𝒓𝒍
′ = 𝑼𝒍

′ ⊘ 𝝀𝒍
′ (13) 

We have now established vectors containing reliability 
indices for single lines.  We can then calculate second order 
cutsets involving two lines 𝑥  and 𝑦  in a general form, 
avoiding a distinction in equations between adjacent and non-
adjacent lines by utilizing the matrix of adjacency adjusted 
probabilities.  If two lines in a cutset are adjacent and they 
experience a FT3 or a FT4 where the source line is the other 
line in the cutset, they will both surely be unavailable. This 
means that these dependent failures should be deducted from 
the multiplicative part of the equations for failure rates and 
repair times, creating adjustments for failure rates and 
unavailability for individual lines in the cutset (14)-(15) 
before calculating the expected restoration time of the cutset 
after adjustments in (16).   

𝜆𝑥,𝑦
𝑎 = (𝑝𝑡3𝑥,𝑦 + 𝑝𝑡4𝑥,𝑦) ∙ 𝐹𝑇1𝑦 (14) 

𝑈𝑥,𝑦
𝑎 = (𝑝𝑡3𝑥,𝑦 ∙ 𝑟𝑦

𝐹𝑇3 + 𝑝𝑡4𝑥,𝑦 ∙ 𝑟𝑥
𝐹𝑇4) ∙ 𝐹𝑇1𝑦 (15) 

𝑟𝑥,𝑦
𝑛 =

𝑈𝑥
′ − 𝑈𝑥,𝑦

𝑎

𝜆𝑥
′ − 𝜆𝑥,𝑦

𝑎
(16) 

However, to account for both lines in the cutset failing 
simultaneously due to the occurrence of FT3 and/or FT4 of an 
adjacent line also in the cutset, we must create an added 
dependency mode failure rate, given in (17).  The expected 
restoration time of a dependency mode failure is given in (18).  
See [12] for further reference on these adjustments. If the lines 
are not adjacent, the elements {𝑥, 𝑦}  and {𝑦, 𝑥}  in the 
probability matrices will be zero, and hence all adjustments 
and the dependency mode failure rate will be zero.  The 
equivalent annual failure rate, expected annual unavailability 
and expected restoration time for the cutset is then calculated 
in (19)-(21). 

𝜆𝑥,𝑦
𝐷 = 𝜆𝑥,𝑦

𝑎 +  𝜆𝑦,𝑥
𝑎  (17) 

𝑟𝑥,𝑦
𝐷 =  {

(𝑈𝑥,𝑦
𝑎 + 𝑈𝑦,𝑥

𝑎 )/𝜆𝑥,𝑦
𝐷 if 𝜆𝑥,𝑦

𝑑 > 0

0 Otherwise
(18) 



𝜆𝑥,𝑦
′ =

(𝜆𝑥
′ − 𝜆𝑥,𝑦

𝑎 )(𝜆𝑦
′ − 𝜆𝑦,𝑥

𝑎 )[𝑟𝑥,𝑦
𝑛 + 𝑟𝑦,𝑥

𝑛 ]

8760
+  𝜆𝑥,𝑦

𝐷  (19) 

𝑈𝑥,𝑦
′ =

(𝜆𝑥
′ − 𝜆𝑥,𝑦

𝑎 )(𝜆𝑦
′ − 𝜆𝑦,𝑥

𝑎 )[𝑟𝑥,𝑦
𝑛  ∙ 𝑟𝑦,𝑥

𝑛 ]

8760
+ 𝜆𝑥,𝑦

𝐷 ∙ 𝑟𝑥,𝑦
𝐷  (20) 

𝑟𝑥,𝑦
′ =

𝑈𝑥,𝑦
′

𝜆𝑥,𝑦
′

 (21) 

B. Time series method 

Time series of failure probability can be used to 
incorporate varying failure probabilities due to exposure to 
external threats, e.g. wind, lightning, icing etc., leading to 
failure bunching effects. For time series, unavailability and 
associated reliability indices for transmission lines are 
calculated using the time series of different fault types, 
dependent on adjacency.  We therefore do not wish to 
calculate equivalent failure rates, repair rates or unavailability 
in the previously presented approximate manner, however, 
we wish to establish time-series of failure probabilities.  We 
rely on the algorithmic method outlined in [8] to calculate 
resulting unavailability and further reliability indices. 

The addition of a time dimension to failure rates makes it 
necessary to make alterations to the equations above.  
However, since the probability of a failure propagating is 
assumed not time dependent, we can continue using the same 
probability matrices already established in Section III.  
Rather than annual failure rates for transmission lines, we 
now consider time-series of hourly failure probabilities as 
presented in (22).  When referring to the time-series of failure 
probability for a single line, we denote this column vector 𝝀:,𝒍.  

The fault types for a single line is given in (23)-(26). 

𝝀𝒕,𝒍 = [

𝜆1,1 ⋯ 𝜆1,𝑙

⋮ ⋱ ⋮
𝜆𝑡,1 ⋯ 𝜆𝑡,𝑙

] (22) 

𝑭𝑻𝟏:,𝒊 = 𝝀:,𝒍 (23) 

𝑭𝑻𝟐:,𝒊 = [𝑓𝑡2𝑡,𝑖],  where 𝑓𝑡2𝑡,𝑖 =   
∑ 𝝀𝒍

𝒔 𝑠

8760
 (24) 

𝑭𝑻𝟑:,𝒊 = ∑[𝝀:,𝒋 ∙ 𝑝𝑡3𝑖,𝑗]

𝑗

(25) 

𝑭𝑻𝟒:,𝒊 = ∑[𝝀:,𝒋 ∙ 𝑝𝑡4𝑖,𝑗]

𝑗

(26) 

When calculating second order cutsets we need to adjust 
FT3 and FT4 to account for adjacency as we did for annual 
indices, for both lines 𝑥 and 𝑦, as seen in (27)-(28).  We also 
need to calculate a time series of dependency mode failure 
probability for the two lines in conjunction (29).  Again, the 
adjustments are equal to zero if the lines are not adjacent.  For 
the cutset itself, we calculate the unavailability of individual 
lines with updated fault type values separately using the 
method outlined in [8] before multiplying the results and 
adding the dependency mode unavailability.  

𝑭𝑻𝟑:,𝒙
𝒂 = 𝑭𝑻𝟏:,𝒚 ∙ 𝑝𝑡3𝑥,𝑦 (27) 

𝑭𝑻𝟒:,𝒙
𝒂 = 𝑭𝑻𝟏:,𝒚 ∙ 𝑝𝑡4𝑥,𝑦 (28) 

𝝀𝒙,𝒚
𝒅 = 𝑭𝑻𝟏:,𝒚 ∙ 𝑝𝑡3𝑥,𝑦 + 𝑭𝑻𝟏:,𝒚 ∙ 𝑝𝑡4𝑥,𝑦 

= + 𝑭𝑻𝟏:,𝒙 ∙ 𝑝𝑡3𝑦,𝑥 + 𝑭𝑻𝟏:,𝒙 ∙ 𝑝𝑡4𝑦,𝑥  (29) 

IV. CASE STUDY 

A test case is constructed to exemplify the impact on 
power systems reliability by taking the combined effect of 
failure bunching due to weather and protection system failures 
into account. The test case is based on the topology from the 
Roy Billinton Test System (RBTS) [24] with added protection 
systems, as shown in Fig. 2.  A contingency enumeration 
approach [17] is employed to evaluate the reliability of the 
system. A consequence analysis of the contingencies was 
performed in [25] using a DC OPF algorithm, yielding 
interrupted power at load points for the different cutsets.  This 
is used together with the unavailability of the cutsets to 
calculate their respective contributions to annual ENS of the 
system.   

Unavailability of the different cutsets are calculated in four 
ways: 1) A base case using an approximate method of 
reliability evaluation not including protection system failures 
[18].  2) An approximate method including protection systems 
failures, as outlined in Section III.A.  3) A time-series method 
including wind-dependent failure rates, as outlined in [8].  4) 
A time-series method including wind-dependent failure rates 
[8] adjusted for protection system faults, as outlined in Section 
III.B.  A simplification is done compared to the original 
approach in [8], and restoration times are assumed to be 
constant values, rather than distributions. 
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Fig. 2. RBTS [24] with added protection systems. 
 

Topology, failure rates and dependent failure 
probabilities of lines are given in Table 1. Average annual 
failure rates for transmission lines are kept the same as 
Permanent Outage Rates (POR) in [24] for both methods, and 
all line failures have a 10 hour outage duration, to keep 
consistent with the original RBTS line data. Time series of 
hourly probability of failure due to wind is calculated 
according to the method outlined in [13], covering 25 years 
of hourly estimated failure probabilities due to wind for 
actual lines in the Norwegian transmission system. For the 
time-series of failure probabilities, 75 percent of the failure 
probability is assumed to be constant, while 25 percent is 
scaled wind dependent failure probability varying at an 
hourly interval.  Repair of protection system units, relevant to 
FT2, are assumed to take 2 hours.  FT3 and FT4 is associated 
with a 0.5 hour switching time. 



TABLE 1: TRANSMISSION LINE INFORMATION 

 Bus connection      

𝑙 
A-side 

(u) 

B-side 

(v) 
𝜆𝑙 𝜆𝑙

𝑠 𝑃𝑙
𝑠,𝑚

 𝑃𝑙
𝑠,𝑢

 

1 1 3 1.5 0.025 0.0205 0.007 

2 2 4 5.0 0.025 0.0205 0.007 

3 1 2 4.0 0.025 0.0205 0.007 

4 3 4 1.0 0.025 0.0205 0.007 

5 3 5 1.0 0.025 0.0205 0.007 

6 1 3 1.5 0.025 0.0205 0.007 

7 2 4 5.0 0.025 0.0205 0.007 

8 4 5 1.0 0.025 0.0205 0.007 

9 5 6 1.0 0.025 0.0205 0.007 

 

 

Fig. 3. Propagation graph for RBTS. 

Adjacency matrices are created and weighted according 
to dependent probabilities and failure rates according to the 
procedure in Section III to incorporate protection system 
reliability into the analysis.  The results can be illustrated as 
in Fig. 3, where vertices are transmission lines and the 
directed edges show the adjacency between the lines.  The 
color of the edges indicates the source line protection system 
side (A-side is red, B-side is blue). The width of the edges 
corresponds to the contribution of failures to the target line, 
found at the arrowhead. To accumulate results, all edges 
leading into a vertex is summed up to see the contribution of 
FT3 and FT4 from the adjacent lines, as illustrated for line 6 
in Fig. 4.  Note the double connection between line 1 and 6 
appearing, causing line 1 to contribute to FT3 and FT4 at line 
6 through two separate paths.   

The calculated fault types for each line are shown in Table 
2, as well as the proportion of the incoming failures from 
neighboring lines in FT3 and FT4 as a share of the line’s own 
fault type, FT1.  Note the relatively large increase of annual 
failures on line 4, which is connected to four other lines, two 
of which, lines 2 and 7, have relatively high failure rates 
compared to the target line. This shows the potentially large 
impact on annual failure rates of a line from the number of 
incident lines and proximity to high-failure rate lines. 

TABLE 2: FAULTS PER YEAR, FAULT TYPES 

   Incoming faults 

𝑙 FT1 FT2 FT3 FT4 
FT3 + FT4 

% of FT1 

1 1.5 0.05 0.18 0.12 20 % 

2 5.0 0.05 0.33 0.22 11 % 

3 4.0 0.05 0.27 0.18 11 % 

4 1.0 0.05 0.31 0.20 51 % 

5 1.0 0.05 0.12 0.08 20 % 

6 1.5 0.05 0.18 0.12 20 % 

7 5.0 0.05 0.33 0.22 11 % 

8 1.0 0.05 0.27 0.18 44 % 

9 1.0 0.05 0.04 0.03 7 % 

 

 

Fig. 4: Contributions to FT3 and FT4 from adjacent lines for target line 6. 

Annual values. 

Table 3 shows the percentage change in annual ENS due 
to the different cutsets when different methods are employed, 
compared to the base case.  Including protection system 
failures in the approximate method cause a large increase in 
annual ENS due to the cutset when the cutset contains two 
adjacent lines, with a 402 and 304 percent increase for cutsets 
{1,6} and {5,8}, respectively. The impact of including 
protection system failures on cutsets including single lines or 
two non-adjacent lines is limited due to short restoration times 
and low failure rates of protection systems compared to the 
line’s own failure rate, and no dependency mode failure rate.   

Employing the time series method including wind-
dependent failure rates have no impact on the contribution to 
annual ENS from single line cutsets, as it merely moves the 
probability of when failures occur to different times of the 
year while the average annual unavailability for the line 
remains the same. However, overlapping periods of harsh 
weather for two lines cause the probability of the associated 
second order cutset to occur to be larger, leading to an increase 
in annual ENS of up to 119 percent in our test case compared 
to when failure bunching effects are not considered.  

The effect of including both wind dependent failure rates 
and protection system failures leads to an increase of annual 
ENS up to 480 percent for second order cutsets containing 
adjacent lines, compared to the base case. Protection system 
failures are more likely to occur in periods of harsh weather, 
and the dependency mode failure rate shared between adjacent 
lines can have a large impact on expected unavailability of the 
cutset in certain time-periods.  This is illustrated in Fig 5, 
where a 150-hour time window of hourly expected 
unavailability for the cutset {1,6} is presented with and 
without inclusion of protection system faults.  



TABLE 3: PERCENTAGE CHANGE IN ANNUAL ENS [MWH/Y] 

DUE TO CUTSETS, FROM BASE CASEa. 

Cutset A-PSb T-Wc T-W+PSd 

6,7 2 % 63 % 65 % 

2,6 2 % 63 % 65 % 

1,7 2 % 53 % 54 % 

1,6 402 % 78 % 480 % 

1,2 2 % 52 % 54 % 

5,8 304 % 119 % 422 % 

9 1 % 0 % 1 % 
a. Approximate method, not including protection system failures. 

b. Approximate method, including protection system failures. 

c. Time-series method, including wind-dependent failure rates. 

d. Time-series method, including protection system failures and wind dependent failure rates. 

 

 

Fig 5: Cutset {1,6}. 150-hour window of hourly expected unavailability 

with and without including protection system (PS) faults. 

V. CONCLUSION 

In this paper we have shown a compact and generalized 
method of including protection system failures in power 
system reliability analysis, based on a graph-theoretical 
approach.  The method was extended further to account for 
time-series of failure probability in the analysis, allowing for 
inclusion of time-varying failure probabilities throughout the 
year due to e.g. weather exposure.   

A case study was presented to show the effect on reliability 
of supply when weather exposure and protection system 
maloperation were implemented into the analysis. The case 
study shows that taking protection system reliability and the 
adjacency of transmission lines into account can have a large 
impact on the contribution to annual ENS from certain cutsets 
due to the propagation of protection system failures. Since 
protection system maloperation follows an initial failure, 
propagating failures cluster around periods of high failure 
probability from other causes, and further increase risks 
associated with failure bunching effects.  Thus, taking a time-
series approach to capture time-varying failure rates including 
protection system failures can more accurately identify time-
periods and sets of transmission lines which potentially have 
a high impact on the reliability of supply. Such an approach 
would be especially relevant when considering multiple 
operating states throughout the year.  The method presented 
can be used to prioritize preventive and corrective measures 
aiming to reduce risks associated with unwanted events in the 
power system.   
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