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Abstract Privacy regulations for data can be regarded as a major driver for
data sovereignty measures. A specific example for this is the case of event data
that is recorded by information systems during the processing of entities in
domains such as e-commerce or health care. Since such data, typically available
in the form of event log files, contains personalized information on the specific
processed entities, it can expose sensitive information that may be traced back
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to individuals. In recent years, a plethora of methods have been developed to
analyse event logs under the umbrella of process mining. However, the impact
of privacy regulations on the technical design as well as the organizational
application of process mining has been largely neglected. This paper set out
to develop a protection model for event data privacy which applies the well-
established notion of differential privacy. Starting from common assumptions
about the event logs used in process mining, this paper presents potential
privacy leakages and means to protect against them. The paper also shows
at which stages of privacy leakages a protection model for event logs should
be used. Relying on this understanding, the notion of differential privacy for
process discovery methods is instantiated, i.e., algorithms that aim at the
construction of a process model from an event log. The general feasibility
of our approach is demonstrated by its application to two publicly available
real-life events logs.

Keywords Differential Privacy · Process Mining · Event Logs · Data
Protection · Data Sovereignty

1 Introduction

Event log files are used as input to every process mining algorithm and may
originate from all kinds of systems, like enterprise information systems or hos-
pital information systems. Often, the aim of these algorithms is to derive an
as-is model of the process that created these logs which can be used to fur-
ther analyze the actual process execution. To derive a process model from an
event log file, the event log must at least store the order of events, often es-
tablished by means of a timestamp, each event must belong to a case of the
process, and events must refer to activities of the process under considera-
tion [van der Aalst, 2016]. This minimal set of event log attributes already
makes it possible to infer information related to individual working of entities
through the analysis of the duration of activities. Thus, process mining allows
a considerable insight into data, which carries the inherent risk that what is
disclosed may be private. Privacy concerns informal self-determination, which
means the ability to decide who is permitted access to information about a
person [Bergeron, 2000]. It is considered to be a fundamental human right
and, thus, is included in the legislation of different countries. Due to Europe’s
General Data Protection Regulation (EU GDPR), organizations are obliged
to consider privacy throughout the complete development process (i.e., pri-
vacy by design) [D’Acquisto et al., 2015a], which also applies for the design of
process mining systems.

Currently, process mining and privacy are considered orthogonal. Process
mining algorithms aim to discover accurate process models from event logs at
the expense of disclosure of information that should be protected. For instance,
employee data is used in process mining for predictions of employee perfor-
mance. Such a trade-off between accuracy and privacy has already been illus-
trated and analyzed for data-mining-based approaches [Aldeen et al., 2015].
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For process mining, however, such trade-offs are largely unexplored. Notably
though, privacy considerations for process mining have recently been outlined
by Mannhardt et al. [Mannhardt et al., 2018], who point to two general chal-
lenges: technological privacy challenges and organizational privacy challenges.
Technology privacy challenges are related to the design of privacy-by-design or
privacy-by-default approaches, while organizational privacy challenges address
the understanding and audition of data use by enterprises. While Mannhardt
et al. discuss various relevant privacy challenges for process mining, they do
not provide any approach or solution for them.

The aim of this paper is, therefore, to fill this gap and to provide a privacy-
preserving technique for process mining which considers technological chal-
lenges. More precisely, we aim to define a protection model for event log privacy
with minimum loss of utility for process mining, i.e., process discovery remains
useful while the disclosure of sensitive data is reduced For this, however, the
following questions must be understood:

– RQ 1: At which stage of data paths is a protection model for event log
privacy required?

– RQ 2: How can event log privacy be ensured with a minimum loss of utility
for process mining?

Against this background, the remainder of this paper proceeds as follows.
The next section defines the terms used as input to define a privacy-preserving
technique for process mining and introduces our use case from a hospital that
will be used for illustration throughout the paper. Generally, application areas
of our approach are those with a demand for high privacy preservation. Section
3 investigates privacy issues of process mining for our use case with the purpose
to answer RQ 1. Section 4 uses this use case to construct the protection model
based on differential privacy which is instantiated for event logs in Section 5.
Section 6 presents evaluation results, which are related to RQ 2. Related work
is discussed in Section 7. The paper ends with a summary and an outlook on
future work.

2 Foundation

Below, we discuss terms related to the context of privacy and process min-
ing and apply them to the use case of healthcare processes in hospitals. Such
processes describe activities of medical treatments as well as their organiza-
tional support. This includes the tasks that were performed, their date and the
involved resources (medical staff, administrative staff and patients). Hospital
information systems have a high demand for privacy and security considera-
tions, since electronic health records need privacy protection. While we use a
hospital use case to illustrate our approach, there are many similar situations
in which organizations have centralized control over an event log and want to
protect the privacy of individuals for whom cases are processed.
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2.1 Privacy-related terms

As mentioned in the introduction, privacy concerns informal self-determination,
which means the ability to decide who is permitted access to information about
a person [Bergeron, 2000]. According to [Hoepman, 2014] eight privacy design
strategies exist which are compliant with GDPR and can be considered as
requirements for the design of privacy-preserving process mining systems:

– minimize: The amount of personal information that is processed should be
minimal.

– hide: Any personal information that is processed should be hidden from
plain view.

– separate: The processing of personal information should be done in a dis-
tributed way whenever possible.

– abstract : Personal information should be processed with the least possible
detail in which it is (still) useful through summarizing or grouping data.

– inform: Data subjects should be adequately informed whenever personal
information is processed.

– control : Data subjects should retain control over the processing of their
personal information.

– enforce: A privacy policy compatible with legal requirements should exist
and should be enforced.

– demonstrate: Be able to demonstrate compliance with the privacy policy
and any applicable legal requirements.

Figure 1 shows the application of these privacy design strategies for a
database as adopted from [Hoepman, 2018]. These privacy design strategies
can be applied analogously to event logs ensuring privacy while conducting
process mining.

Now, we discuss how privacy is related to security and data sovereignty. Se-
curity provides the foundations required to ensure data privacy and is defined
as “preservation of confidentiality, integrity and availability of information; in
addition, other properties such as authenticity, accountability, non-repudiation
and reliability can also be involved.” [27000, 2018]. Additional principles which
are introduced into regulations are (a) a priori consent, and explicit opt-in, (b)
data sovereignty and (c) extra personal protection [Yu, 2014], whereas others
also discuss the notion of (d) trust [Sicari et al., 2015]. While (a) and (c) are
clearly defined, there exists no clear definition for the terms data sovereignty
and trust [Sicari et al., 2015]. A fairly common understanding of the term trust
seems to be that people do not share all data with everyone, but do share cer-
tain parts of data with a person they trust because of several factors, e.g.,
past interactions, the type of relationships, similar personality attributes such
as interests, the sensitive nature of the data we are sharing at that moment
in time [Sacco et al., 2013]. In the cloud domain the term data sovereignty
is related to the geo-location of data (placing it within the borders of a par-
ticular nation) included in service level agreement (SLA) contracts [Peterson
et al., 2011]. Data protectionists discuss the term in connection with the per-
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Fig. 1: An illustration of eight privacy design strategies for a database [Hoep-
man, 2018]. The strategies can be transferred to event logs and, thus, serve as
requirements for the design of privacy-preserving process mining systems.

sonal rights of the people from whom these data originate [Mettler, 2016]. The
main concern with data sovereignty is to maintain privacy regulations such as
GDPR. This means that systems which do not comply with privacy regula-
tions can hardly maintain data sovereignty. In this way, this paper provides
an essential step towards data sovereignty.

2.2 Process Mining Concepts

Once processes conducted by an organization, e.g., the handling and treat-
ment of patients at a hospital, are supported by modern information systems,
the conduct of these processes is commonly reflected in event data. Here, an
event denotes a recorded change of some operational state, or the execution of
an activity that has led to the respective state change. In a hospital context,
for instance, an event may indicate that a particular treatment step has been
completed for a specific patient. An event log is a set of such events. However,
most process mining methods do not work directly on such a set of events,
but require the definition of a case notion. That is, the events of a log are
partitioned based on which events are jointly considered as a single instance
of a process. The definition of a case, therefore, depends on the analysis ques-
tions to answer by means of process mining. For instance, in a hospital, all
treatment events may be grouped per patient or per medical staff member.
The former then highlights how treatment is conducted from the perspective
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of each individual patient, whereas the latter highlights the flow of work as
conducted by staff members.

To formalize the above notion of event logs, we adopt a relational model
of events, which is a common model in data stream processing [Arasu et al.,
2016]. Events have a schema, which is modeled as a tuple of attributes A =
(A1, . . . , An). Each attribute Ai is of a primitive type with a finite domain,
the latter being denoted by dom(Ai). In our setting, we assume each event
schema to comprise at least two distinguished attributes: Attribute id captures
a unique identifier per event, while timestamp denotes the occurrence time of
the respective event. Both attributes can be assumed to have the domain N.
Given an event schema, an event is an instance of the schema, denoted by
e = (a1, . . . an), with ai being the value of the respective attribute Ai.

An event log E is a set of events, as defined above. A case is induced by
an attribute, or a combination thereof. That is, all events carrying the same
value for the attribute(s) form a single case. For the example of a treatment
process in a hospital, Table 1 illustrates an event schema and a log comprising
respective events that was adopted from [Mans et al., 2013]. This event log
describes the diagnosis, trajectory and the operation of a patient with acute
pancreas. Several doctors and departments are involved in the diagnosis, tra-
jectory and operation. Each line describes a service that has been delivered
to a patient. The second line shows that the hemoglobin was determined (col-
umn “description operation”) by the doctor Van (column “executing doctor”)
from the hematological lab (column “description department”) on October
13th 2017 (column “start operation”). Note, that for this event data only the
day is known on which the service has been delivered. In a hospital context,
for instance, an event may indicate that a particular treatment step has been
completed for a specific patient.

Here, in addition to id and timestamp, the schema comprises attributes
such as day of birth and # operations, being of domains date and integer,
respectively. Moreover, different notions of a case may be considered for this
example. For the analysis, one may assume the perspective of a patient (the
cases are induced by attribute patient identifier) or the work cycle of the
doctor (the cases are induced by attribute execution doctor).

Regardless of how a case is defined, we note that the events of a case are
ordered by their timestamps. In many application scenarios, this order is even
total — in our example, a patient may only get a single treatment at a specific
time point, or a doctor may finish a treatment step only for a single patient.
We denote the sequence of events recorded for a single case as trace and the
set of all traces induced by specific attributes C ⊆ A over an event log E as
LE,C ⊆ E∗. The order within a trace is captured by a relation � ⊆ E × E,
such that for two events e, e′ ∈ σ of a single case σ ⊆ LE,C , it holds that
e � e′, if and only if, e.timestamp < e′.timestamp.

The ordering of events within a trace is important for many process mining
methods. Assuming that a notion of a trace has been defined and that an at-
tribute (or an attribute combination) has been selected to signal the activities
of interest, i.e., the atomic units of a work, a process model may be discovered
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Fig. 2: The patient process before operation relying on the event schema in
Table 1 and adopted from [Mans et al., 2013]. The black Petri net transitions
are invisible transitions. They have no labels, are not recorded events and are
used for routing purposes.

from the ordering of the events that represents these activities. Common pro-
cess discovery algorithms, see [Augusto et al., 2017] for a recent survey and
comparative evaluation, generalize the observed ordering of events to extract
the causal dependencies between the activities in a process. Adopting the at-
tribute patient identifier as a notion of a case, Figure 2 shows an example: a
process model in Petri net notation derived for the event data of the schema
illustrated in Table 1. Transitions, depicted as rectangles, represent activities
and places, depicted as circles, are used to model the possible states of the
process. The unnamed black transitions, also denoted as invisible transitions,
are mined for routing purposes and do not represent actual activities. Together
with formal execution semantics (see e.g. in [van der Aalst, 2016]) the model
describes all the possible process behavior.

By discovering several process models and slightly varying the filtering
condition it is possible to identify patients and staff. An example would be
an attempt to check for the existence of patients with rare diseases, which
are likely to follow a unique sequence of activities. Together with background
knowledge, it may be possible to identify the patient, for which the events were
recorded and the staff who was involved in the treatment. To a certain degree
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process mining methods already abstract from (sensitive) details by deriving a
process model that reveals only the observed sequences of activity execution.
However, often occurrence frequencies, performance information, and decision
rules are discovered in addition to the basic control-flow of the process [Rozinat
& van der Aalst, 2006, van der Aalst et al., 2012], which may leak additional
information from the event log. Process mining is often an iterative process in
which multiple process models for different subsets of the event log, filtered
according to conditions of interest, are discovered and compared [van Eck
et al., 2015]. Eventually, event data and particularly healthcare processes have
a high demand for privacy preserving process mining. The next section studies
potential privacy leakages and means to protect someone from them in the
context of hospital health processes.

3 Privacy Issues for Process Mining of Healthcare Processes

Regarding the domain of healthcare processes in hospitals, we will show how
the aforementioned privacy design strategies (see Section 2.1) become relevant
in order to avoid the disclosure of personally identifiable records in event logs.
To this end, we discuss privacy checkpoints for healthcare processes.

With respect to RQ 1 (At which stage of data paths is a protection model
for event log privacy required?) we apply the privacy checkpoint diagram
from [Mannhardt et al., 2018] to the event schema of healthcare processes
shown in Table 1. According to this privacy checkpoint diagram, data passes
six stages within healthcare processes, which are visualized in Figure 3. These
stages are in line with common data life-cycle models [Yu & Wen, 2010], es-
pecially with those that are aligned with privacy considerations (see for a
reference [D’Acquisto et al., 2015b], p.26).
Specifically, the checkpoint diagram builds upon the following phases:

– data source: Given our use case, the sources of data originate from medical
staff, administrative staff and patients. We refer to this data as personal
data.

– data capture: Data from these data sources is captured when devices and
systems log tasks of medical staff, administrative staff and patients, or when
recognizing the identity or requesting actions. Since this stage tracks who
does what, when and where with data, anonymization techniques should
be used here protecting disclosure of sensitive events.

– primary use: The hospital determines the purposes for which and the means
by which the captured data is processed. For instance, the captured data
can be used to support the work of medical and administrative staff for
the diagnosis or treatment of patients.

– data storage: personal data and events of medical staff, administrative staff
and patients are stored in a database or event logs. The data might be pro-
cessed by data mining approaches aiming to address performance indicators
such as the number of pancreas operations, the length of waiting lists or
the success rate of surgeons.
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Fig. 3: Identification of data passes and privacy checkpoints for hospital health
processes adapted from the privacy checkpoint model proposed by [Mannhardt
et al., 2018]. Privacy checkpoint 4 is considered as a privacy leakage for process
mining.

– data (re)use: At this stage, data from event logs is used for process mining
aiming to determine the main paths that are followed by patients or med-
ical staff in the process. Such an analysis demands privacy techniques to
protect personally identifiable records in event logs. Personal data might
also be retrieved from third-party sources such as public databases or other
hospitals, which obviously triggers a GDPR requirement (i.e., demonstra-
tion that the data was retrieved in compliance with GDPR regulations).
Compliance is a central concern in the context of hospital processes [Mans
et al., 2013]. At this stage, data from several sources is required, which
increases the number of leakages.

– data removal : Raw data is permanently deleted.

With regard to RQ 1, we consider the privacy checkpoint 4 and the stage
data (re)use as points of privacy leakage for process mining. Although event log
protection becomes relevant at the data (re)use stage, several privacy concerns
must be addressed before. Data should not be captured in unauthorized ways
(see stage data capture). Particularly, requirements for event data must be
met in a way that information on cases, timestamps, and activities have been
authorized to be captured. Also, data should not be processed for unapproved
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purposes (see stage primary use). To ensure GDPR-compliant process mining
and, thus, to take into account all privacy checkpoints, requires organizational
and technological privacy and data security measures, which we consider as fu-
ture work. According to the value chain of data paths suggested in [D’Acquisto
et al., 2015b], the stage of data (re)use addresses the abstract privacy design
pattern (see Section 2.1). Thus, the protection model as presented in the next
section focuses only on the abstract privacy challenge, particularly for data
(re)use, as explained before allowing “to release aggregate information about
the data, without leaking individual information about participants” [Dwork
& McSherry, 2010]. Please note that while we use a hospital use case to illus-
trate our protection model for event logs, there are a many similar situations
in which organizations have centralised control over an event log and want
to protect the privacy of individuals for which cases are processed (e.g., pub-
lic administration process as the one in [de Leoni & Mannhardt, 2015]). The
next section presents the privacy protection model for events logs providing
differential privacy.

4 Protection Model for Event Logs based on Differential Privacy

Several privacy frameworks have been proposed in the literature. Such frame-
works have been suggested to a large extent for data mining [Aldeen et al.,
2015, Mendes & Vilela, 2017] and aim to find the best suitable privacy pre-
serving technique for the data. Several notions to measure the level of privacy
guaranteed by algorithms have been proposed, such as k-anonymity, l-diversity,
and differential privacy. In this work, we focus on differential privacy, as it is
known to provide a strong privacy model. We first summarize the underlying
ideas before incorporating it into a protection model for event logs.

4.1 Introduction to Differential Privacy

The strongest privacy model available to date which provides provable pri-
vacy guarantees is differential privacy [Dwork, 2008]. Therefore, the protection
model presented in this paper relies on differential privacy and it supports the
abstract design privacy patterns (see Section 2.1). Differential privacy estab-
lishes a theoretical limit on the influence of a single row on a dataset (e.g.,
individual’s data), thus limiting an attacker’s ability to infer such a member-
ship. Typically, noise is added proportionally to the sensitivity of the output.
Sensitivity measures the maximum change of the output due to the inclusion
of a single data instance.

Definition 1 (Differential Privacy [Dwork, 2008]) A randomized mech-
anism K provides (ε, δ)- differential privacy if for any two neighboring database
D1 and D2 that differ in only a single entry, ∀S ⊆ Range(K)1,

Pr(K(D1) ∈ S) ≤ eε Pr(K)(D2) ∈ S) + δ (1)
1 Here, Range(K) denotes the set of possible outputs of K and Pr denotes probability.
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Fig. 4: Adding random noise to the result of a counting query using the Laplace
distribution as illustrated in [McSherry, 2010]. This transformation ensures
differential privacy while keeping the noisy result close to the original value.

If δ = 0, K is said to be ε-differential privacy. In Definition 1, a larger ε
results in less privacy, while a smaller ε results in more privacy. However, as
the noise which is typically added to fulfill Definition 1 increases, the accu-
racy or utility of the results diminish. Two popular mechanisms for achieving
differential privacy are the Laplacian and Gaussian mechanisms [Dwork et al.,
2014].

The Laplacian mechanism is used to provide differential privacy for count-
ing the number of records in a database. Before releasing the number of records,
Laplacian noise is added to the original count ‖D‖ of records in a database D:

K(D) = |D|+ Laplace(0,
1

ε
)

The Laplace distribution is chosen, since, due to the symmetric exponential
nature of the distribution, therefore the result is likely be close to the correct
one while ensuring the differential privacy property [McSherry, 2010]. Fig-
ure 4 illustrates this property of the Laplace distribution for example database
counts. Note that restricting the type of queries to counting the number of
records might seem limiting, but we will show later that this is sufficient for
many process mining applications. Furthermore, other mechanisms exist to
extend this to other aggregation queries like averages and median as well as
to partition queries [McSherry, 2010].

Multiple kinds of differential privacy have been proposed in the literature.
In particular, a distinction can be made based on where a differential privacy
mechanism can be run. In the first case, an entity can be trusted to cope
with a differential private mechanism. In the second case, data owners hide
their information, and hence add noise locally before sharing their data [Blum
et al., 2005]. In the latter case, the amount of noise injected into query results is
higher to keep the privacy guarantees, which makes it more difficult to obtain
high accuracy.

Additionally, event-driven differential privacy approaches have been pro-
posed for cases where continuous observations are produced [Dwork et al.,
2010]. In these scenarios, data needs to be anonymized differently given that
there is no concept of creating a table. As will be explained later, we model
the problem in a way that a table can be constructed and standard differential
privacy methods for static databases can be applied.
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Fig. 5: Schematic illustration of the privacy protection model for event logs in
reference to the stages introduced by [Mannhardt et al., 2018]

4.2 Privacy Protection Model for Event Logs

Given the fact that in the use case at hand hospitals already have access to
the patient’s and hospital records, we assume a centralized privacy approach
to realize the abstract privacy design strategy to protect the data (re)use of
event data for process mining using differential privacy. Please note that this
centralized approach to handling privacy would also be possible in many other
scenarios with a centralized data management, e.g. in public administration.

Figure 5 shows a schematic illustration of the envisioned protection model.
The environment is divided into a trusted environment, in which data is pro-
cessed to provide the primary services of the hospital (primary use) in accor-
dance with the consent of patients and staff (data sources). Additionally, the
captured sensitive data is stored as an event log in a protected data storage
for later analysis with process mining methods. Up to the data storage stage
we rely on organizational and technological measures (e.g., access control, en-
cryption) to fully protect the privacy of stakeholders.

However, the (re)use of data may not be covered by the initial consent
for using the data. Indeed, process mining is commonly applied to historical
data in an exploratory fashion without a clear analysis question in mind. For
such usage it is difficult to obtain consent and, thus, it is difficult to access the
data for process mining directly inside the trusted environment. Many patients
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Table 2: A simplified event log to illustrate the privacy threats and protec-
tion model. Potential sensitive information from both patients and staff may
contained in the execution of activities and their timing.

Patient Activity Time Staff Further attributes

P1 A 0 S1 . . .
P1 B 5 S2 . . .
P1 C 5 S3 . . .
P2 A 15 S2 . . .
P2 B 7 S3 . . .
P2 C 10 S2 . . .
P3 A 15 S2 . . .
P3 B 7 S3 . . .
P4 A 10 S1 . . .
P4 D 10 S3 . . .
P5 A 0 S4 . . .

could choose to opt out of such secondary use of their data if we cannot ensure
their privacy to be respected in all cases.

The main idea of the envisioned protection model is to guarantee differen-
tial privacy (cf. Definition 1) for the data providers. We introduce a privacy
engine, which acts as the single point of access for process mining algorithms.
All data required by the algorithms needs to be queried according to a set of
restricted query operations. This privacy engine resides in the trusted envi-
ronment and introduces noise to each query result in order to maintain dif-
ferential privacy guarantees at all times. Thus, from the point of view of the
data provider there is no difference (in a statistical sense) between the data
used by the process mining algorithm regardless of whether data is included or
not. This enables to safely reuse the collected data for process mining without
jeopardizing the privacy of stakeholders.

With regard to RQ 2 (How can event log privacy be ensured with a min-
imum loss of utility for process mining?) we will ensure privacy versus utility
by varying the ε parameter.

5 Differential Privacy for Event Log Queries

First, we discuss the kind of queries required by typical process mining algo-
rithms (Section 5.1) and the associated threats to the privacy of both patients
and staff ( Section 5.2). Then, in Section 5.3 we present strategies to provide
differential privacy guarantees and discuss the implications for data providers
and the process mining result.

5.1 Event Log Queries

Whereas an event log as shown in Table 1 is sufficient input for all process
mining algorithms, there are varying requirements for the information abso-
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Table 3: Activity sequences or trace variants (left) and directly-follows relations
(right) are possible input requirement of process discovery algorithms. We use
− to denote no predecessor or successor activity.

Sequence Frequency

〈A,B,C〉 2
〈A,B〉 1
〈A,D〉 2
〈A〉 2

Relation Frequency

(−, A) 4
(A,B) 3
(A,D) 1
(B,C) 2
(B,C) 2
(A,−) 1
(B,−) 1
(C,−) 2
(D,−) 1

lutely necessary depending on the kind of algorithm. Generally, there are two
types of input requirements for process discovery algorithms:

1. those that only require successor and predecessor relations of activities and
their frequency (directly-follows frequencies) and

2. those that require full sequences of activity occurrences and their frequency.

To illustrate the information required, we use the simplified event log in
Table 2 and assume a fixed case notion in which the patient identifier induces
cases. Table 3 illustrates the difference between the input requirements for this
log. There is less information available when using only the directly-follows
frequencies since the case context in which activity executions were recorded
is missing. Therefore, using only directly-follows frequencies prevents certain
types of analysis such as replay animation and alignment-based conformance
checking [van der Aalst et al., 2012]. Based on these information requirements,
we can identify two queries specific to process mining that the privacy engine
needs to support.

Both queries require a totally ordered set of traces LE,C based on the event
log E and with a fixed case notion C and a single attribute Aact ∈ A signaling
the activity of interest as input2. We define N = dom(Aact) as a short-hand
notation for the set of all possible activity names. Furthermore, in addition
to the queries, the proposed privacy engine should support filtering the event
log E based on standard relational algebra operations to provide sub logs,
e.g., through the WHERE construct of SQL. Such filtering is also enabled on
sensitive information contained in the event log and orthogonal to the two
queries.

Definition 2 (Query 1 – Directly-follows relation frequencies) The
first query dfrL : N ×N → N retrieves the frequency with which we observe
an activity a ∈ N to be followed by an activity b ∈ N in the event log:

dfrL(a, b) = |{(ea, eb) ∈ E × E | 〈e1, . . . , ea, eb, . . . en〉 ∈ L ∧ a = ea.act ∧ b = eb.act}|

2 In the case of a combination of multiple attributes signalling the activity, we can always
create a single attribute by concatenation of the multiple attributes.
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Query 1 provides the most basic information required by process discovery
algorithms to construct a process model. Typically, an algorithm would query
the directly-follows frequencies for any combination of activities a and b, as well
as introduce artificial start- and end activities for each trace. For n activities
this results in a matrix of maximum size n2 as shown on the right side in
Table 3.

Definition 3 (Query 2 – Trace variant frequencies) The second query
seqL : N∗ → N takes a sequence of activities 〈a1, . . . , an〉 as input and returns
their observed frequency:

seqL(〈a1, . . . , an〉) =
∣∣{(e1, . . . , en) ∈ L | ∀1≤i≤n(ai = ei.act)}

∣∣
Query 2 avoids loosing information in the trace context in which an event

occurred. Note that the sequence of activities ignores all other event attributes
that are not relevant to discover the control-flow of the process. Different from
Query 1, the set of all possible trace variants is infinite and cannot be fixed
based on the finite set of activities known for a specific process at hand. In
practice, the process might contain looping behavior or parallelism leading
to a high number of trace variants. Therefore, the set of trace variants that
should be queried is needed. We will provide a concrete method to overcome
this issue later in Section 5.3. First, we discuss the privacy threats that we
aim to counter as well as assumptions made by our method.

5.2 Privacy Threats

At first glance, it may seem that restricting the access to the event log to
the two queries discussed in the previous section already protects privacy of
process participants. In fact, no personal identifiers are returned. However, as
illustrated in the context of the healthcare process in Section 3 when assuming
that there are rarely visited trajectories in the process, e.g., a patient with a
rare disease, it would be possible to identify the information on individuals by
repeatedly querying of the event log.

In the context of our process mining use case in healthcare, we can distin-
guish privacy threats from a patient perspective and from a staff perspective.
Typically, as in the example event logs in Table 1 and Table 2, a case is as-
sociated with a single patient and each event of a case is associated to some
hospital staff member. Thus, each trace (activity sequence) of the event log
can be seen as personal data of the patient and the sets of events associated
with staff members as their personal data. Whereas the privacy protection for
hospital staff is an important issue, our primary goal in this work is to protect
the privacy of patients and analyze the privacy threats to them according to the
differential privacy framework. That is, we want to quantify the privacy risk
of an individual contributing their data to the event log and have bound it to
the value of the ε parameter, which may be chosen according to organizational
or societal agreements.
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Choosing epsilon for differential privacy is not-trivial. The choice of ε is
essentially a social question and a too high value of ε might lead to unwanted
disclosure. Usually, ε is a small value close to zero (0.01, 0.1 or in some cases
ln(2) or ln(3)), which implies that eε is a value close to 1. If the probability
that some bad event will occur is very small, it might be tolerable to increase
it by factors like 2 or 3, while if the probability is already felt to be close to
unacceptable, then an increase by a factor of e0.01 ≈ 1.01 might be tolerable,
while an increase of e0.1 would be intolerable. However, the smaller epsilon
is chosen the more noise is added when using the Laplacian mechanism. For
example, when choosing an ε of 0.01, the added Laplacian noise Laplace(0, β)
with parameter β = 1

0.01 = 100 may cause to vanish the ”real” values in many
cases as the variation incurred by adding noise is larger than that the natural
variation of the frequencies in the event log. The added variation decreases
with an increase of ε and the real values become more visible.

The selection of the ε value might also depend on the interests of the
involved parties. Hsu et al. [Hsu et al., 2014] suggest an economic method for
the right choice of the ε value assuming two individuals with conflicting use of
the data. They recommend to use a privacy budget εmax for each individual (in
our case the patient and the medical staff) that corresponds to the maximum
loss of privacy that the individuals are willing to accept. The cost of each
query is deducted from the budget until it is exhausted.

5.3 Privacy-aware Queries Providing Differential Privacy

To safeguard the privacy of patients, we need to add an appropriate amount
of noise to the results reported by both queries. As shown in Figure 5, the
privacy engine splits the available event data into disjoint event logs that can
be partitioned by time through a periodic update. For each query received, it
retrieves the answer from a pre-processed unprotected event log, adds noise
to the result, and reduces the pre-configured privacy budget for the selected
event log partition according to the chosen ε parameter. The smaller the value
of ε, the smaller the amount is that will be removed from the privacy budget.
When the privacy budget for an event log is depleted, no further access is
allowed to avoid the risk of identification.

5.3.1 PINQ Framework

We employed the PINQ framework [McSherry, 2010] to implement the privacy
engine of our privacy protection model3. PINQ is a platform that provides a
small number of standard declarative data queries which provide differential
privacy and can be combined with each other. We show that it is possible
to transform each of our queries to a composition of the queries supported
by PINQ. This demonstrates that our protection model provides differential

3 The source code of the privacy engine based on PINQ is available as C# application at:
https://github.com/fmannhardt/pddp/.
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privacy guarantees. Additionally, the usage of PINQ avoids the introduction
of unnecessary notation and ensures implementation correctness. In fact, we
only make use of three operations: Partition, NoisyCount, and Where.

The Partition operation provides us with a privacy efficient method to
apply an operation on disjoint subsets of the data based on a set of user-
defined keys4 according to which the data is split. It is important to note that
if one would sequentially query information from the same data source, the
privacy budget is reduced by the sum of the individual ε parameters. With each
additional query the likelihood of a privacy breach increases. However, it can be
shown that by applying the same query in each disjoint subset in parallel, only
the maximum of the individual ε values needs to be paid [McSherry, 2010]. The
NoisyCount operation uses the standard Laplacian mechanism on the original
data (cf. Section 2) to add symmetric exponential noise to the result of a
counting query. The Where operation fulfills the filtering requirement as it can
be used to filter data with predicates similar to the SQL WHERE statement
over the unprotected event log.

5.3.2 Assumptions

To simplify the discussion, we make three assumptions about the content of
the event log and the purpose of the process mining analysis.

– First, we assume that there is only one case per patient in the event log with
at most c events per event log. The assumption may seem problematic when
considering, for example, chronic patients in the dataset. However, our
protection model assumes that separate event logs are created periodically
(Figure 5), which reduces the likelihood of subsequent visits being part
of the same event log. Even when including multiple visits it is possible
to quantify the dilution of the privacy guarantee provided when including
multiple cases per patient. The privacy bound would decrease by at most
exp(ε ∗ g), where g is the number of rows in which a patient participates
in the dataset [Dwork, 2008].

– Second, we assume that the set of possible process activities N is publicly
known and that we can establish an upper bound for the length of traces of
the event log. Both assumptions do not limit our approach in practice. In
most cases, the activity names would be known as part of the process docu-
mentation. Process executions are bounded in practice and an estimate for
the maximum trace length can often be obtained through domain knowl-
edge. For example, in our hospital setting the length could be estimated
based on the typical duration of a stay. Overestimation of the maximum
trace length would affect the computation time negatively, whereas under-
estimation would impair the accuracy of the discovered process model as
long execution may not be represented correctly.

4 The keys for the partitioning operation need to be user-defined since we do not want to
leak information on which keys are present in the unprotected event log.
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Table 4: Pre-processed input data for the application of PINQ to Query 1.

Patient Source Target Further attributes

P1 > A . . .
P1 A B . . .
P1 B C . . .
P1 C ⊥ . . .
P2 > A . . .
P2 A B . . .
P2 B C . . .
P2 C ⊥ . . .
P3 > A . . .
P3 A B . . .
P3 B ⊥ . . .
P4 > A . . .
P4 A D . . .
P4 D ⊥ . . .
P5 > A . . .
P5 A ⊥ . . .

– Third, we assume that the purpose of process mining is to discover aggre-
gated information about large groups of patients.

Next, we propose strategies to provide differential privacy for both queries.

5.3.3 Query 1 – Laplacian mechanism

We employ a transformation method TransformDFG that pre-processes the set
of all traces LE,C of an event log E with activities N to the format shown
in Table 4. Note that this pre-processed table is only available to the privacy
engine. Let REL = (N ∪ {>,⊥}) × (N ∪ {>,⊥}) be the set of all possible
binary activity relations. Instead of providing the results of Query 1 for each
individual pair of activities (a, b) ∈ N ×N , we obtain the full set of directly-
follows count DFRpublic ⊆ REL×N at once. This allows us to avoid repeated
querying and combine the retrieval of the following single PINQ query:

DFRpublic = TransformDFG(L).Where(Pred)

.Partition(REL)

.NoisyCount(ε)

In the resulting set DFRpublic the necessary level of noise is added to the
frequency for each possible directly-follows relation. We implement Query 1
by looking up the frequency for any directly-follows relation in DFRpublic:

dfrL(a, b) = n with ((a, b), n) ∈ DFRpublic

Note that some of the frequencies might be negative, these can be disregarded,
and that non-existent directly-follows relations in the original data may be
added to the query result. However, process discovery algorithms typically
disregard such infrequent behavior as noise.
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Table 5: Pre-processed input data for the application of PINQ to Query 2.

Patient Sequence Further attributes

P1 〈A,B,C,⊥〉 . . .
P2 〈A,B,C,⊥〉 . . .
P3 〈A,B,⊥〉 . . .
P4 〈A,D,⊥〉 . . .
P5 〈A,⊥〉 . . .

5.3.4 Query 2 – Prefix-tree based counting

Similar to our method for the first query, we define a transformation method
TransformTraces that pre-processes the event log to the format shown in
Table 5, which is suitable for the application of PINQ queries. Here, we treat
each trace as a sequence of identifiers and add a ⊥ identifier to the end of
each one. However, since the set of possible activity sequences is theoretically
infinite, we cannot follow the same procedures as for Query 1 and issue a
Partition query for all possible sequences. We solve this problem by adopting
a scheme similar to the one proposed by [McSherry & Mahajan, 2011], in
which the frequency of k-length strings is counted, as well as the method
proposed by [Bonomi & Xiong, 2013], in which sequential pattern mining with
differential privacy guarantees is described.

Definition 4 (Set of activity sequences of length n) We define pref(n) :
N→ N∗ to return the set of all possible activity sequences of length n:

pref(n) = {σ ∈ (N ∪ {⊥})∗ | σ = 〈a1, . . . , an〉 ∧ ∀1≤j≤(n−1)(aj 6= ⊥)}.

Activity sequences returned by pref(n) are either prefixes of complete se-
quences without the symbol ⊥ or complete sequences, which end with ⊥.

We iteratively query prefix sequences SEQ i ⊆ N∗ × N using the following
PINQ operation:

SEQi = TransformTraces(L).Where(Pred)

.Partition(pref(i))

.NoisyCount(ε)

to build the result set SEQpublic =
⋃

1≤i≤k SEQ i. Based on SEQpublic, we can
implement Query 2 as:

seqL(〈a1, . . . , an〉) = n with (〈a1, . . . , an〉, n) ∈ SEQpublic

To avoid that an larger amount of |N |k subsets are queried than can be
dealt with, we extend this method by using a second user-defined parameter
p that is applied to prune low-frequency prefixes. The occurrence frequency of
prefixes is equal to or higher than the frequency of complete sequences — a
prefix needs to be at least as frequent by definition. Therefore, we can reduce
the number of prefixes queried in each iteration by pruning the prefix tree to
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only contain activity sequences with prefixes that occur more often than p-
times. Having obtained the frequencies for the considered prefix tree, we only
retain complete activity sequences in the result SEQpublic, i.e., only sequences
ending with ⊥. In total, this method uses at most k queries as described above
and, thus, reduces the privacy budget by k ∗ ε.

5.4 Limitations

We acknowledge that there are limitations to our proposed method. Since
Query 1 is formulated by means of a data table in which each row corresponds
to a single event instead of to a single case, the privacy guarantee for patients
is diluted by at most exp(ε ∗ g) as described in the assumptions. Furthermore,
the prefix-tree based method for Query 2 is only computationally feasible for
a relatively short maximum trace length parameter k or aggressive pruning
parameter values p. Furthermore, The likelihood that traces which are not in
the original event log are added to the result grows for a larger k parameter
value.

6 Evaluation

We evaluated the proposed privacy protection model by testing the impact
of our method on the quality of discovered process models compared to a
ground truth. As ground truth we use process models discovered in the origi-
nal, unprotected event log without any privacy protection. We compare both
quantitatively based on the standard evaluation measures fitness and preci-
sion as well as qualitatively by discussing the differences. First, we discuss our
experimental set-up.

6.1 Experimental set-up

As process discovery algorithm, we use Inductive Miner5 infrequent [Leemans
et al., 2013] in its variant supporting directly-follows relations as input [Lee-
mans et al., 2018] with standard parameters and discover models for varying
ε values. This shows how the ε parameter influences the trade-off between
privacy and accuracy (see RQ 2) and gives an indication which ε values are
feasible.

We replicate a typical scenario for process discovery and attempt to dis-
cover a model representing the main process behaviour by first removing infre-
quent behaviour by applying the filtering plug-in ’Filter directly follows graph’
for Query 1 or the plug-in ’Filter Out Low-Frequency Traces’ for Query 2, both

5 We chose the Inductive Miner since it is the only process discovery algorithm available
in the open-source framework ProM 6.8 that allows to use both directly-follows relations
and trace variants as input.
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with standard parameters. The same filters and the same discovery approach
is used on the unprotected event log without added noise. Then, we measure
the difference between the discovered process models based on the F1-score
calculated with the projected recall and precision measure proposed by [Lee-
mans et al., 2018]. Since the results returned by our privacy protection method
are subject to random noise, we repeat the discovery process 10 times for each
parameter setting.

As dataset, we use two publicly available event logs from the IEEE task
force on process mining repository6: Sepsis Cases [Mannhardt, 2016] and Road
Traffic Fine Management [de Leoni & Mannhardt, 2015]. These two event logs
represent two different prototypes of event logs for which we expect differ-
ences in the performance of our protection model. The sepsis log is typical
for the health-care domain and has many infrequent variants. The road fines
log is more structured and only few trace variants exist. We use it as example
for a simpler process that is to a large degree standardised and exhibits less
infrequent variants.

Sepsis Cases This is a hospital event log with approximately 1,000 cases for
trajectories of patients who are suspected to have a life-threatening sepsis
condition, from the emergency room of a hospital until discharge. It is a chal-
lenging dataset for our method since out of the total 1050 traces, there are 846
unique trace variants. The maximum trace length is 185 and on average traces
contain 14.5 events. The main source for the large number of trace variants
are three activities regarding the collection of laboratory results [Mannhardt &
Blinde, 2017], which occur in parallel to the remainder of the process. We use
a maximum sequence length of k = 15 and a pruning parameter p = 30. We
base these parameters on the average trace length and feasibility of computa-
tion. Only when using ε = 0.01 did we need to increase the pruning parameter
to p = 350 to keep the computation time within a few seconds.

Road Traffic Fines Road Traffic Fine Management [de Leoni & Mannhardt,
2015], is an event log obtained for the process of handling road traffic fines
in a local Italian police. We use a random sub-sample of 10,000 cases from
the event log. In contrast to the Sepsis Cases log, the Road Fines event log is
very structured. In the sample of 10,000 traces there are only 69 distinct trace
variants. Furthermore, the maximum length of a trace is 10 and the average
length is 3.7. Adding noise should affect the process discovery result from this
log less. Here we use a maximum sequence length of k = 10 and pruning
parameter p = 200 to keep the computation time within a few seconds.

6.2 Results and Discussion

The computed F1 score indicating the difference between the process mod-
els discovered in the original unprotected event log without the usage of our

6 https://data.4tu.nl/repository/collection:event_logs_real
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Fig. 6: F1 score based on the projected recall and precision measures when
comparing the process model discovered on the unprotected data without our
protection method and on the privacy-protected event log for both processes.
Each box plot is based on 10 repetitions.

protection model, i.e., without privacy guarantees, and the models discovered
when using the proposed privacy protection model are shown in Figure 6. For
each combination of query and event log a box plot indicates the effect of our
method and the value of ε on the discovery result.

The results show clear differences between both event logs and between
the kind of query used. For the proposed directly-follows querying approach
(Query 1), there is only little difference between the event logs used, and
changes in ε have relatively little impact on the quality of the discovered
model. This indicates that the noise added to the directly-follows relation
frequencies can, largely, be filtered by the noise filtering capabilities of the
Inductive Miner discovery algorithm. In fact, there are only small changes
between the models7 in Figure 7 in which the best process models discovered
for ε = 0.1 and ε = 1.0 using Query 1 are compared with the process model
discovered for the unprotected directly-follows relations from the Sepsis Cases
event log. For an ε value of 0.01 a difference begins to appear between Road
Traffic Fines log and Sepsis Cases. Whereas the quality of the discovered Sepsis
Cases process model decreases, there is still little change for the Road Traffic
Fines model.

7 The Petri net models are visualized using the compact Inductive Visual Miner notation
as described in [Leemans et al., 2014].
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(a) Unprotected Data (b) ε = 0.1

Fig. 7: Process models discovered in the unprotected sepsis event log and the
privacy-protected log using Query 1 for ε = 0.1.
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Regarding the RQ 2 (How can event log privacy be ensured with a min-
imum loss of utility for process mining?) we varied the ε parameter. When
using the proposed sequence querying approach (Query 2), there are larger
differences both when reducing ε and between the two event logs. The result
for the Road Traffic Fines event log is much better and also very stable across
repetitions, which indicates that the noise added by our proposed method has
only little influence on the quality of the discovered process model. In the case
of the Sepsis Cases event log it can be observed that our technique produces
relatively high error rates, i.e., a low F1 score when comparing to the ground
truth model. This is not surprising, since the Sepsis Cases log represents a
flexible process with many parallel branches. To mine process models from
such event logs is already a challenge for existing process mining algorithms
without added noise. When using ε = 0.01 many sequences not originally in
the unprotected event log are generated and we need to increase the pruning
threshold p to 350 for performance reasons. This hides many of the actual
traces, i.e., only trace variants occurring more than 350 times would be re-
tained. Figure 8 shows the results obtained for the Sepsis Cases log based on
Query 2 for ε = 0.1. Infrequent trace variants and some infrequently occurring
activities are hidden by the injected noise; still, parts of the main process flow
remain intact. For example, in both process models the execution can start
with the sequence of ER Registration, ER Triage, and ER Sepsis Triage. How-
ever, when using our protection model, the discharge activities Release A and
Release B are no longer of the 80% most frequent trace variants.

In contrast, Figure 9 shows that the error caused by Query 2 on the Road
Traffic Fine log is small. It is noteworthy that by using Query 2 with an ε
value of 0.1 we often obtain the exact same result as when using the unpro-
tected event log. In this case, the F1 score is consistently 1.0 indicating that
our approach can be used to protect the privacy of individual participants
while still discovering the correct main process behavior for very structured
processes with a small number of variants. When lowering the ε further to 0.01
as shown in Figure 9, differences appear due to the added noise by our protec-
tion approach. In particular, some of the less frequent activities connected to
the appeals part of the Road Traffic Fines process, for example Notify Result
Appeal to Offender and Receive Result Appeal From Prefecture, appear in the
discovered process model. Some of the noise added by our privacy protection
method cannot longer be distinguished from the regular process behavior. Still,
other parts of the frequent process behavior are left intact. For example, the
process model starts with Create Fine and may end with either Payment or
Send for Credit Collection as in the model discovered on the unprotected log.

7 Related Work

The paper proposes the first privacy-preserving process mining approach.
Privacy-preserving data mining techniques (PPDM) have been considered to
a large extent in the literature and have been accompanied by several experi-
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(a) Unprotected Data (b) ε = 1.0

Fig. 8: Process models discovered in the unprotected sepsis data and the
privacy-protected data using Query 2 with ε = 1.0
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(a) Unprotected Data (b) ε = 0.01

Fig. 9: Process models discovered in the unprotected road fines log and the
privacy-protected log using Query 2 for ε = 0.01.
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mental implementations [Zhiqiang & Longjun, 2018] and platforms. Different
evaluation parameters for PPDM algorithms can be found in literature. Ac-
cording to [Verykios et al., 2004] the evaluation parameters are performance
required to secure data, data utility, uncertainty level for the prediction of
hidden data, and resistance in terms of tolerance against the data mining al-
gorithms. [Bertino et al., 2008] extend this list of evaluation criteria by hiding
failure, which is “the portion of sensitive information that is not hidden by the
application of a privacy preservation technique”. Algorithms for PPDM either
adopt distributed frameworks or add random noise to the data [Bhowmick
et al., 2006] in order to prevent the loss of user’s privacy before publishing
data. To randomize data by adding noise either a known statistical distribu-
tion is used [Agrawal & Srikant, 2000] or noise is multiplied with a known
statistical distribution [Kim et al., 2003]. There is also a vast amount of lit-
erature on privacy in databases. In this area, several efforts were made in the
last decade to integrate privacy when designing databases by using multi-level
security [Macedo et al., 2017] or role-based access control [Colombo & Ferrari,
2015] approaches.

Since this paper applies the notion of differential privacy for event logs, we
studied the respective domain of interest. Approaches relying on differential
privacy can be found for health data [Dankar & El Emam, 2013], location-
based services [ElSalamouny & Gambs, 2016] and smart meters [Zhang et al.,
2017], which are domains with high demand for data protection. This paper
uses a hospital event log for the evaluation of our approach.

Related to event log data and process mining, a large body of research
exists for security-oriented analysis. The tool of Stocker and Accorsi [Stocker
& Accorsi, 2014] enables the configuration of security concerns (i.e., authen-
tication, binding of duty and separation of duties) when generating synthetic
event logs. A different event log configuration according to security concerns
is suggested in [Fazzinga et al., 2018] who use security risk as criterion to
filter related traces. To support decision making in security audits, [Accorsi
et al., 2013] suggest to mine the control- and the data-flow since only both per-
spectives make it possible to analyze security requirements. The application
domain of security-oriented analysis of event logs is intrusion detection [Myers
et al., 2017] or smart metering [Eibl et al., 2017]. While a large body of re-
search exists for security-oriented analysis, privacy concerns have been scarcely
considered for process mining. Only the work of [Mannhardt et al., 2018] dis-
cusses privacy challenges for process mining, however, without suggesting any
approach for event log protection. A privacy-preserving system design for pro-
cess mining has been suggested in [Michael et al., 2019], which allows to specify
who does what, when, why, where and how with personal data during process
mining. Our approach could be integrated into the privacy-preserving system
design as a privacy engineering technique to protect the event logs.

To sum up, privacy-preserving techniques for process mining have received
little attention and the approach presented in this paper is the first one so far.
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8 Conclusion

An increasing amount of data is continuously collected and stored by organiza-
tions and poses security and privacy challenges. While methods for knowledge
extraction from data which preserve privacy have been widely considered for
data mining [Mendes & Vilela, 2017], privacy-preserving process mining is still
in its infancy.

Contribution This paper contributes a privacy-preserving technique for pro-
cess mining and an approach to protect event logs. In this way, we address tech-
nological challenges of privacy-preserving process mining. To show which pri-
vacy leakages exist while conducting process mining, we use a hospital health
process use case. Clearly, this domain has a high demand for privacy protec-
tion. We have applied the concept of privacy checkpoints on an event schema
of hospital health processes and identified six stages of data paths. The pri-
vacy checkpoint between data storage and data (re)use can be considered as
possible privacy leakages while conducting process mining. We map the stages
of data passes to the data value chain suggested in [D’Acquisto et al., 2015b]
and identify the abstract privacy design patterns as possible candidates where
protection is essential. This provides an answer to RQ 1 (At which stage of
data paths is a protection model for event log privacy required?).

We present a protection model including a trusted environment for pri-
mary use purposes and an untrusted environment using a differential privacy
approach, which is the strongest privacy model available to date which pro-
vides provable privacy guarantees. Here historical data may be used in an
exploratory fashion without clear analysis question. Thus, it is difficult to at-
tain consent for it afterward. We suggest to introduce a privacy engine as single
access point between the two environments. This engine introduces noise to
each query result according to the differential privacy framework which safe-
guards the privacy of patients. With this approach, it is possible to safely reuse
the collected data for process mining purposes.

For evaluation purposes, we have applied our method to two publicly avail-
able real-life event logs and applied the Inductive Miner algorithm to both of
them. The evaluation shows that our method can be used to discover the
frequent behavior of a process while providing privacy for individual partici-
pants. For event logs from highly structured processes with few trace variants
the error introduced is small, whereas for event logs with a large number of
infrequent behavior leading to many trace variants the introduced noise af-
fects the utility of the discovered process model. With regard to RQ 2 (How
can event log privacy be ensured with a minimum loss of utility for process
mining?) we can conclude that the choice of the ε value and the structure of
the event log affect the trade-off between utility and privacy.

Future work There are several avenues for future work. More accuracy may
be achieved when integrating a process discovery algorithm into the differen-
tial privacy framework by placing the process mining engine in the trusted
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environment depicted in Figure 5. This could help reducing the amount of
noise that needs to be injected by means of exploiting properties of particu-
lar process discovery algorithms. There are several examples for such tailored
approaches in the data mining domain, e.g., k-means [Blum et al., 2005] and
sequential pattern mining [Bonomi & Xiong, 2013] with differential privacy
guarantees. Also, we plan to investigate more closely the relationship between
the parameters of our method: ε, k, and p in the accuracy-privacy trade-off
in the resulting process model. So far, we have only considered differential
privacy for discovering the control-flow perspective of processes from event
logs. Many useful applications of process mining rely on other perspectives
such as performance information or data values. It would be possible to ex-
tend our method towards these perspectives to provide differential privacy for
aggregated information, e.g., the average time between activities.

Another interesting aspect is to focus also on other privacy design strate-
gies. Privacy models could be used to generate an information platform by
means of MDA [Adam et al., 2018] that enables end users to either (a) define
privacy policies, in order to determine more precisely who can do what with
which data (guided consent process) and (b) monitor compliance with them,
in order to allow them to see which privacy mechanisms are provided for which
process stages regarding the process mining of their data. The domain specific
concepts for such a privacy model can be easily extracted from event logs to
be used in conceptual models, considering relevant contexts [Michael & Stein-
berger, 2017], as event logs include data with regard to several concepts in
a condensed way. This approach would support the privacy design strategies
control and enforce (cf. Section 2.1).

To sum up, this paper presents a first technical contribution for privacy-
preserving process mining using a differential privacy approach and outlines a
roadmap for future research on that field.
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