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Biofouling in marine aquaculture: a review of recent research and
developments

Jana Bannistera , Michael Sieversb , Flora Busha and Nina Bloecherc

aInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia; bAustralian Rivers Institute - Coast
and Estuaries, Griffith University, Gold Coast, Queensland, Australia; cSINTEF Ocean, Trondheim, Norway

ABSTRACT
Biofouling in marine aquaculture is one of the main barriers to efficient and sustainable produc-
tion. Owing to the growth of aquaculture globally, it is pertinent to update previous reviews to
inform management and guide future research. Here, the authors highlight recent research and
developments on the impacts, prevention and control of biofouling in shellfish, finfish and sea-
weed aquaculture, and the significant gaps that still exist in aquaculturalists’ capacity to manage
it. Antifouling methods are being explored and developed; these are centred on harnessing nat-
urally occurring antifouling properties, culturing fouling-resistant genotypes, and improving
farming strategies by adopting more sensitive and informative monitoring and modelling capa-
bilities together with novel cleaning equipment. While no simple, quick-fix solutions to biofoul-
ing management in existing aquaculture industry situations have been developed, the
expectation is that effective methods are likely to evolve as aquaculture develops into emerging
culture scenarios, which will undoubtedly influence the path for future solutions.
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Introduction

In 2016, global aquaculture production was 110.2 mil-
lion tonnes (US$243.5 billion), including 54.1 million
tonnes of finfish (US$138.5 billion), 17.1 million tonnes
of molluscs (US$29.2 billion) and 30.1 million tonnes of
aquatic plants (US$11.7 billion) (FAO 2018). Despite
annual growth rates of global aquaculture slowing to an
average of 5.8% during the period 2000–2016, aquacul-
ture continues to grow faster than other major food
production sectors (FAO 2018). More specifically, mar-
ine shellfish aquaculture has expanded substantially over
the last few decades, with Asia dominating production
and accounting for >90% of global tonnage (FAO
2018). Supped oysters (Crassostrea spp.) and the
Japanese carpet shell (Ruditapes philippinarum; a clam)
account for more than half of global production (FAO
2018). Finfish aquaculture has increased its volume by
>70% over the last decade and freshwater fish, most of
them cyprinids, make up 86%. Salmonids, including
Atlantic salmon (Salmo salar), which are predominantly
featured in the scientific literature on biofouling in fin-
fish aquaculture and its management, account for 43%
of non-freshwater aquaculture (FAO 2018). Finally,

aquatic plants are harvested globally for direct human
consumption, and for the production of thickening
agents for pharmaceutical and cosmetics, and dried
ingredients for animal feed, fertilisers and other prod-
ucts (FAO 2018). Global aquatic plant production has
tripled from 10.1 million tonnes in 2000 to 30.1 million
tonnes in 2016 (FAO 2002, 2018) with the increased
production of the tropical seaweeds Kappaphycus alvare-
zii and Eucheuma spp. in Indonesia (as raw material for
carrageenan extraction) being the major contributor to
this growth (FAO 2018).

Biofouling in marine aquaculture is one of the
main barriers to efficient and sustainable production
(D€urr and Watson 2010). It is the settlement and
development of unwanted aquatic species on natural
and artificial surfaces, and plagues shellfish, finfish
and seaweed culture globally. The direct economic
costs of managing biofouling in the aquaculture
industry are estimated to be 5–10% of production
costs (Lane and Willemsen 2004). However, the cost
of biofouling often varies considerably between aqua-
culture locations, species and companies, as farmers
use differing management approaches and cost
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accounting (Iversen et al. 2016). Furthermore, many
of the indirect impacts remain largely unassessed, so
the overall economic cost of biofouling in marine
aquaculture is still uncertain but is likely to be signifi-
cantly underestimated (Fitridge et al. 2012).

The aim of this review article is to present and dis-
cuss recent research and developments on the
impacts, prevention and control of biofouling in mar-
ine aquaculture, and thereby update the seminal
review article by Fitridge et al. (2012). In addition to
marine shellfish and finfish aquaculture, the authors
also include a comprehensive evaluation of epiphy-
tism/biofouling in seaweed aquaculture, as this indus-
try has grown significantly over recent years.

The impact of biofouling on shellfish
aquaculture

A wide variety of biofouling organisms are associated
with shellfish aquaculture globally (Table S1
Supplemental material). The impacts of these species
growing on shellfish and farm infrastructure can be
partitioned into three broad categories: (1) increased
weight, (2) physical damage, and (3) reductions to
shellfish fitness. These impacts, along with the cost of
biofouling management, can culminate in substan-
tially reduced farm productivity.

Increased weight

Biofouling adds considerable weight to both stock and
culture equipment, causing stock detachment in long-
line culture and increasing the costs associated with
buoyancy and anchoring systems (see Fitridge et al.
2012 and references within). Relative to finfish and
seaweed culture, the impacts of increases to weight to
shellfish culture are less frequently quantified, so
impacts to productivity are comparatively unknown.

Physical damage

Boring organisms, such as clionid sponges and poly-
chaete worms from the genus Polydora, can penetrate
shellfish, causing blisters, cavities and tunnels (Sato-
Okoshi and Abe 2013; Carroll et al. 2015). This causes
disrupted shell and hinge formation and results in
brittle, thin shells that are susceptible to parasites, dis-
ease and predation (see Fitridge et al. 2012 and refer-
ences within). Several other calcareous fouling species
settle on shellfish and do not cause direct damage to
the shellfish but do affect aesthetics and often lead to
the product being devalued or discarded, with

considerable financial losses to affected farms
(Campbell and Kelly 2002).

Reductions to shellfish fitness

One of the most important impacts from biofouling
in shellfish aquaculture is the reduction in shellfish
fitness (ie survival, growth, condition and weight).
These reductions are typically attributed to direct
competition for food, oxygen and other resources, or
indirectly, via smothering or interfering with proper
valve functioning (Lodeiros and Himmelman 1996;
Pit and Southgate 2003; Woods et al. 2012). In an
empirical study, Sievers et al. (2013) added biofouling
to experimental mussel lines and found clear evidence
of commercially relevant reductions in growth and
flesh weights in mussels (Mytilus galloprovincialis)
fouled by the widespread tunicates Ciona intestinalis
and Styela clava and the hydroid Ectopleura crocea.
However, in general, scant evidence exists in the lit-
erature to confirm fitness reductions (Sievers et al.
2017). Much of the evidence comes from observa-
tional studies, where initial differences between fouled
and unfouled stock such as health, size and antifoul-
ing (AF) capacity may confound observed patterns.
For example, slower growing stock may be more sus-
ceptible to the settlement of fouling on shells, poten-
tially leading to erroneous conclusions that fouling
reduces growth where fouled and unfouled stock are
compared. Despite a general lack of empirical evi-
dence, considerable observational and anecdotal evi-
dence (eg Daigle and Herbinger 2009; Fitridge and
Keough 2013) strongly suggests that biofouling can
impact cultured shellfish fitness and thus warrants
considerable attention from the industry.

Farm productivity

The aforementioned impacts coupled with the sub-
stantial cost of removal has spurred considerable
interest in quantifying the total impact of biofouling
on farm productivity. For example, based on impacts
to yield and seed-stock supply, fouling within green-
lipped mussel farms by M. galloprovincialis was esti-
mated to cost the New Zealand industry US$16.4 mil-
lion per year, representing �10% of the industry’s
value (Forrest and Atalah 2017). In the same region,
the direct and combined economic impacts of two
key biofoulers (the tunicate Styela clava and the poly-
chaete Sabella spallanzanii) were estimated at
NZ$26.4 million over a 24-year period (the timeframe
at which models predict total farm infestation would
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occur [Soliman and Inglis 2018]). Similar estimates
from around the world (eg Adams et al. 2011) mean
that biofouling prevention and treatment are critical
areas of research and that suitable AF methods are
pertinent to efficient production within the shell-
fish industry.

The control of biofouling in shellfish
aquaculture

The diverse impacts from biofouling drive persistent,
resource intensive control efforts across the shellfish
industry. Husbandry strategies to reduce the impact
of biofouling involve preventing the development of
fouling and treating fouled stock and infrastructure
(Fitridge et al. 2012; Sievers et al. 2017) with the most
effective biofouling management strategies incorporat-
ing aspects of both.

Prevention

Preventing harmful organisms from affecting aquacul-
ture offers considerable advantages over treatments
(Bui et al. 2019). A greater focus on avoiding biofoul-
ing will yield production benefits by reducing both
the direct impacts of fouling organisms, and the fre-
quency and intensity of treatments. In locations with
predictable seasonal fouling patterns, spatial and tem-
poral avoidance of biofouling may be feasible (Bullard
et al. 2013; Sievers et al. 2014; Holthuis et al. 2015),
and considerable recent effort has gone into monitor-
ing biofouling development at farms around the
world (eg Carraro et al. 2012; Antoniadou et al. 2013;
Watts et al. 2015; Casso et al. 2018; das Chagas et al.
2018). Modelling biofouling settlement and develop-
ment is also paving the way for sophisticated avoid-
ance strategies. For example, computer modelling of
mussel spat-fall in New Zealand, together with the
creation of a readily accessible interactive application,
has allowed farmers to actively avoid mussel fouling
by informing when and where to deploy lines
(Atalah, Rabel, et al. 2016; Atalah et al. 2017). In add-
ition to using monitoring and modelling data to avoid
culturing stock in specific locations during times of
heavy fouling by particularly harmful species, these
data can lead to more effective decisions on the tim-
ing of spat collection, and also inform when AF treat-
ments and husbandry strategies that incidentally
remove fouling, such as re-socking and grading,
should occur (Cyr et al. 2007; Sievers et al. 2014).

Alternative preventative measures include strategic
selection of rope types or culture methods, applying

AF shell coatings, and culturing fouling resistant gen-
otypes. For example, Sievers et al. (2019) examined
both spat collection and biofouling accumulation rates
on seven different rope types, noting substantial and
consistent variability amongst ropes, with clear advan-
tages of selecting particular types in long-line mussel
culture. Modifying stocking densities can also influ-
ence fouling rates (Dunham and Marshall 2012), and
the surface wettability and microtopography of spat
collectors has been altered to both enhance spat
settlement and reduce fouling loads (Carl et al. 2012;
Vucko et al. 2013). Finally, selective breeding of foul-
ing resistant stock holds potential as a future pre-
ventative measure. In New Zealand, the fouling
resistant properties of genetic variants of
GreenshellTM mussels (Perna calaniculus) are being
investigated, with efforts extending beyond pilot-scale
trials to large-scale intensive efforts (Camara and
Symonds 2014).

Treatment

Despite the clear advantages of prevention, some bio-
fouling will inevitably develop. On-site treatment
methods which remove biofouling effectively, cheaply,
easily and with minimal environmental impact are
needed. Since Fitridge et al. (2012), several treatment
methods have been tested experimentally and used
commercially with varying levels of success, including
manual removal (Li et al. 2018), exposure to air
(Hillock and Costello 2013; Hopkins et al. 2016),
freshwater (Fletcher et al. 2013), heat (Sievers et al.
2019), organic acids and bases (Rolheiser et al. 2012),
pressure washing (Davidson et al. 2012), applying sili-
cone release coatings (Tettelbach et al. 2014), adding
a culture medium (a substratum within suspended
bag culture that physically dislodges biofouling)
(Dunham and Marshall 2012; Marshall and Dunham
2013), and employing biocontrol (Atalah et al. 2014;
Sterling et al. 2016).

An interesting avenue of continued research which
may prove useful for many cultured species involves
combining multiple treatments. This approach has
considerable appeal as (1) it may be more effective
against a broader range of fouling species; (2) treat-
ments will be effective using lower chemical concen-
trations or temperatures when applied simultaneously
(safer for farmers and the environment); and (3) the
effective exposure times are likely to be shorter. For
example, recent evidence suggests that combining
heat and acid treatments is more effective against
numerous fouling species at lower intensities than
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either in isolation (Sievers et al. 2019). Strategic tim-
ing of treatment application also offers considerable
benefits over a random or intermittent approach. For
instance, cost–benefit analysis of high pressure wash-
ing to remove the tunicate Ciona intestinalis found
that beginning treatment when tunicates were small
was most effective, and that three to four repeat treat-
ments produced the greatest increase to overall farm
profitability (Davidson et al. 2012).

In general, specific treatment methods are often tail-
ored for the species cultured (eg oysters, mussels, scal-
lops), the culture method (eg longline, trays, lanterns)
and the composition of the fouling community. It is
thus difficult to provide general guidelines for biofoul-
ing management within shellfish culture. Furthermore,
although often effective at removing fouling, many
current and previous treatment methods have little
benefit for shellfish fitness or farm productivity, and at
times can be more detrimental to cultured shellfish
than biofouling (Sievers et al. 2017). For example,
although the addition of culture media reduced bio-
fouling by 70%, it also significantly reduced shellfish
fitness due to the media limiting access to fresh sea-
water and food (Marshall and Dunham 2013). These
issues have spurred considerable research into novel
AF methods since Fitridge et al. (2012).

Novel antifouling control technologies

Natural compounds that inhibit larval metamorphosis
may be useful antifoulants in shellfish aquaculture
(Cahill et al. 2012; Cahill, Burritt, et al. 2013; Moodie
et al. 2017). These products typically have a contact
active mode of action, whereby they are effective
while remaining bound within a stable matrix, so
effects are limited to coated surfaces (Cahill and
Kuhajek 2014). Although these compounds are sug-
gested to have little environmental impact, be applic-
able to both farm infrastructure and shellfish, and
reduce biofouling (Cahill, Heasman, et al. 2013), the
present authors are not aware of any commercial-
scale trials to test the effectiveness or feasibility of this
method. Other natural compounds, such as extracts
from shellfish periostracum, exhibit strong AF proper-
ties and can be designed for commercial use. For
example, periostracum dichloromethane extracts con-
taining oleamide reduce algal spore settlement (Kang
et al. 2016), and crude periostracum extracts inhibit
the attachment of barnacles, diatoms and marine
bacteria (Bers et al. 2006). Shellfish periostraca and
biogenically derived microtopographies present a non-
toxic, environmentally friendly substratum to prevent

the settlement and attachment of a range of fouling
organisms. However, many of the tested topographies
that reduce biofouling settlement are species-specific
and thus not particularly useful as a broad AF treat-
ment (Bers and Wahl 2004; Magin et al. 2010;
Scardino and de Nys 2011; Vucko et al. 2013).
Furthermore, developing suitable methods to apply
these types of compounds to shellfish is a major chal-
lenge. Coating shellfish with an AF formulation may
be unviable from a logistical, fiscal, or consumer per-
spective. However, with additional research these
products may become – at a minimum – a useful
future tool for the shellfish aquaculture industry to
protect infrastructure from biofouling.

An emerging strategy currently being tested to com-
bat non-indigenous biofouling species via biosecurity
incursion responses is encapsulation, whereby fouled
structures are wrapped in material (eg PVC pallet
wrapping), denying the organisms oxygen, nutrients
and light (Roche et al. 2015; Atalah, Brook, et al. 2016).
Toxic compounds also build up and contribute to high
mortality rates of biofoulers (Coutts and Forrest 2007;
Vaquer-Sunyer and Duarte 2010). Empirical evidence
also suggests that combining encapsulation with chem-
ical dosing using acetic acid may greatly reduce effect-
ive treatment times (Forrest et al. 2007; Denny 2008).
Encapsulation was largely developed for use on boat
hulls, pontoons and piles (see Atalah, Brook, et al. 2016
and references within), and is unlikely to be appropriate
for use directly on shellfish (eg wrapping mussel lines).
As with coatings, encapsulation may, however, be a
viable option for removing biofouling from infrastruc-
ture such as mooring lines, buoys and trays.

The long-term genetic improvement of broodstock
through selective breeding offers several advantages
for the shellfish industry, including a potential means
to combat biofouling (Camara and Symonds 2014;
Hollenbeck and Johnston 2018). Selective breeding of
GreenshellTM mussel and Pacific Oyster genetic var-
iants have begun to improve farm productivity and
overall profit yields, with indications that these var-
iants accumulate hard-bodied biofoulers at lower rates
(Camara and Symonds 2014). Ultimately, the practi-
cality and efficacy of genetic improvements, and
indeed all novel AF methods, need to be rigorously
evaluated, with particular attention given to how such
treatments affect stock fitness and farm productivity.

The impact of biofouling on finfish
aquaculture

There are four main concerns regarding the growth
of biofouling organisms on fish cages and
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infrastructure in finfish aquaculture: (1) modified
hydrodynamics in and around the cage affecting
water quality and the cage’s volume and stability; (2)
increased disease risk due to biofoulers and associated
pathogens; (3) behavioural impacts to cleaner fish
used as biological control against sea lice; and (4) res-
ervoirs for non-indigenous species.

Modified hydrodynamics

The occlusion of nets by biofouling restricts water
exchange, which reduces oxygen levels, waste flushing
and cage volumes, and increases the effective stocking
densities, impacting fish health and welfare (reviewed
in Fitridge et al. 2012). In addition, biofouling can
increase the hydrodynamic load on nets up to 10-fold
(Bi et al. 2018), deforming cages and adding strain to
moorings. Impacts differ with species composition
(Gansel et al. 2015, 2017) and organism size (Lader
et al. 2015), and percentage net-aperture occlusion is
a good predictor of flow reduction and drag increase
associated with biofouling (Gansel et al. 2015; Bi and
Xu 2018).

Biofouling and associated pathogens

Direct contact with cnidarian biofouling can be harm-
ful to the fish, as organisms bearing nematocysts
(stinging cells), such as the hydroid Ectopleura larynx
and the anemone Anthothoe albocincta, have the
potential to cause gill and skin damage (Baxter et al.
2012; Wybourne 2013; Bloecher, Powell, et al. 2018).
In addition, biofouling poses a health risk to cultured
fish as it can facilitate and amplify the presence of
pathogens by harbouring viral, bacterial, and parasitic
organisms that cause various diseases (reviewed in
Fitridge et al. 2012). Resuspended faeces of the mussel
Mytilus edulis containing the bacterium Vibrio anquil-
larum can infect cod with vibriosis in nearby cages
and cause mortalities (Pietrak et al. 2012). This issue
is also concerning for integrated multi trophic aqua-
culture (IMTA) sites where fish and shellfish are
intentionally cultured in close vicinity. Vibriosis bac-
teria have also been found in biofilms on cage nets in
Malaysia, where their abundance correlated with out-
breaks of the disease (Albert and Ransangan 2013).
The parasitic amoeba responsible for amoebic gill dis-
ease (AGD) in Atlantic salmon, Paramoeba perurans,
is associated with several key biofouling organisms
during acute AGD outbreaks, including hydroids,
bryozoans, tunicates, and molluscs (Hellebø et al.
2017). Although the amoeba’s reservoir between

outbreaks is still unknown, biofouling organisms
could act as reinfection agents for recently treated or
uninfected fish in nearby cages. Finally, other para-
sites, such as blood flukes (Cardicola spp.) that infect
bluefin tuna in Japan, can be found growing on ropes,
floats, and frames around cages where their inter-
mediate hosts, terebellid polychaetes, live in balanid
shells (Shirakashi and Hirano 2015; Sugihara
et al. 2015).

Effects on cleaner fish

Cleaner fish, such as lumpfish (Cyclopterus lumpus)
and ballan wrasse (Labrus bergylta), are increasingly
used for biological control of sea lice in salmon farm-
ing (Powell et al. 2018). They are opportunistic,
omnivorous feeders, targeting multiple food sources
and switching their choice of prey organisms to what
becomes available in their environment (Deady et al.
1995; Kvenseth 1996; Imsland et al. 2015; Eliasen
et al. 2018). As their prey includes biofoulers, such as
seaweeds, crustaceans, hydrozoans and mussels
(Deady et al. 1995; Imsland et al. 2015; Eliasen et al.
2018), they can effectively reduce biofouling on cage
nets (Kvenseth 1996). Consequently, to encourage lice
feeding behaviour, farmers were recommended to
keep nets free of biofouling (Deady et al. 1995;
Kvenseth 1996; Powell et al. 2018). However, recent
research has found the presence of biofouling to have
a positive effect on the prevalence of sea lice in lump-
fish stomachs, possibly because of a more active for-
aging behaviour of the lumpfish, or the provision of a
sheltered environment resulting in better lumpfish
welfare (Eliasen et al. 2018). Furthermore, cleaning
cage nets to remove biofouling does not affect the
behaviour (depth distribution, activity and habitat
use) of lumpfish and ballan wrasse (Leclercq et al.
2018). Based on these findings, the salmon producer
HiddenFjord on the Faroe Islands reduced the fre-
quency of net cleaning to allow biofouling to accumu-
late for the benefit of cleaner fish, reporting positive
results (E. Patursson, HiddenFjord, pers. comm.). In
Norway and Scotland, however, regular net cleaning
remains the norm.

Non-indigenous species reservoir

Fish farm biofouling communities can act as reser-
voirs for non-indigenous species (NIS) that can affect
fish health, while farming practices can result in their
range expansion, with potential ecological impacts
(Table S2; Mineur et al. 2012; Simkanin et al. 2012).
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For example, the movement of infrastructure into
new areas increases the risk of spreading harmful
algal blooms (HABs) when biofouling includes certain
tunicates (eg Didemnum vexillum and Molgula man-
hattensis) (Rosa et al. 2013). HABs reduce fish welfare
and can even cause mass mortality in caged fish with
considerable economic consequences (Rensel and
Whyte 2003; Cook et al. 2012). In some jurisdictions
where the presence of NIS is of significant environ-
mental concern, more stringent biofouling manage-
ment and waste disposal practices are required (Rosa
et al. 2013), with the presence of NIS resulting in
stricter controls and potential removal of the site.
However, from an operational farm perspective, bio-
fouling by NIS is no more harmful to finfish culture
than fouling by native species unless they have a
faster growth rate, greater biomass or introduce add-
itional health risks to cultured species than compared
to their native counterparts, and thus the presence of
NIS does not necessarily increase the need for
additional biofouling management practices. To the
best of the authors’ knowledge, no studies exploring
the economic implications of NIS vs native
biofouling communities on fish aquaculture have
been published.

The control of biofouling in finfish
aquaculture

The management of biofouling in finfish aquaculture
is an increasingly important issue for regulators as the
impacts of different control methods become realised
(Sim-Smith and Forsythe 2013; Floerl et al. 2016;
Scianni et al. 2017). While the use of antifoulants is
generally declining, the onset of other biofouling
management techniques (eg in situ cleaning) with dif-
ferent environmental implications has spurred the
development of aquaculture biofouling best manage-
ment practices. This development has been largely
industry-led and, in some jurisdictions, statutory
aquaculture biofouling regulation has not yet been
established. Table S3 summarises the current statutory
and recommended best management practices for
select countries.

Net cleaning and exchange

In situ net cleaning is one of the most common meth-
ods to manage biofouling on fish cage nets (Floerl
et al. 2016). The technology, based on a rig equipped
with rotating discs that expel high pressure water
through nozzles, is moving towards remote operation

and autonomy by attaching rigs to remotely operated
vehicles or equipping them with crawl belts (eg
‘RONC’ by MPI, ‘NCL-LX’ by Yanmar) or propulsion
units (eg ‘FNC8’ by AKVAgroup, ‘Manta’ by Stranda
Prolog, ‘Stealth Cleaner’ by Ocein). Alternative sys-
tems apply suction parallel to (and potentially inde-
pendent of) high-pressure cleaning (eg ‘MIC2.0’ by
PFG group), while others rely on cavitation-based sys-
tems (eg Cavitator Underwater Surface Cleaners).

Net cleaning or net exchange is often conducted
ad hoc, determined by biofouling accumulation rates
and requirements of the cultured species and/or statu-
tory requirements. While this can be as seldom as
once a year, in some cultures more frequent biofoul-
ing control is required. Further, in many salmon
farms in Norway and Scotland concern over cleaner
fish performance has led to considerable increases in
cleaning frequency within the last decade (Guenther
et al. 2010; Bloecher et al. 2015), now commonly fixed
at fortnightly intervals (Bloecher et al. 2015). During
the main biofouling season, intervals may even be
reduced to as little as five days, especially for nets
without antifouling coatings (SINTEF Ocean, unpub-
lished data). For coated nets, increased net cleaning
frequency leads to abrasion of the AF coating, consid-
erably reducing the life-time of the coating (SINTEF
Ocean, unpublished data) and contributing to the
release of harmful AF products into the environment
(Skarbøvik et al. 2017).

Other farm infrastructure such as mooring lines
and chains, walkways and buoys are cleaned at much
lower frequencies, occasionally only following the
grow-out phase. Therefore, biofouling accumulation
on these structures can be considerable (Bloecher
et al. 2015) and may act as a reservoir for pathogens
(Sugihara et al. 2014; Shirakashi and Hirano 2015),
likely exacerbating biofouling recruitment to cage nets
(Bloecher et al. 2015).

Net cleaning can also facilitate the spread of NIS
by fracturing colonial species (Hopkins et al. 2011;
Aldred and Clare 2014; Floerl et al. 2016) and trigger-
ing the simultaneous release of gametes, causing rapid
recolonization (Carl et al. 2011; Floerl et al. 2016).
Furthermore, the release of cleaning waste containing
fragments of biofouling organisms and, potentially,
particles of abraded copper coating, can severely
impact fish health. Salmon farmers report agitated
behaviour and reduced appetite during net cleaning
and have observed gill and skin disorders afterwards.
Upon contact, cnidarian biofoulers expel nematocysts
that can penetrate fish skin and deliver poison
(Helmholz et al. 2010; Cegolon et al. 2013), even after
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fragmentation following pressure-washing (Bloecher,
Floerl, et al. 2018). For example, the hydroid
Ectopleura larynx causes gill injuries in Atlantic sal-
mon (Baxter et al. 2012; Bloecher, Powell, et al. 2018),
and white-striped anemones Anthothoe albocincta are
suspected to cause skin damage in Chinook salmon
(Wybourne 2013). Management methods for other
issues (eg parasitic sea lice) can further exacerbate
these impacts. For example, lice skirts (Stien et al.
2018) can trap cleaning waste within cages, leading to
greater interaction and risk of stinging by
nematocysts.

Finally, in situ cleaning without waste retention can
release large volumes of organic material into the sur-
rounding environment, exacerbating existing issues
around the build of organic matter below salmon
farms (Sim-Smith and Forsythe 2013; Floerl et al.
2016). For this reason, in situ cleaning has been dis-
continued in New Brunswick and Nova Scotia in areas
where the benthic environment is anoxic or hypoxic.
While in situ cleaning is still conducted in New
Zealand, Sim-Smith and Forsythe (2013) recommend
that it should not be used at sites with low flow due to
concerns for the benthic environment (see Table S1).

Net materials and treatments

While salmon farmers in Australia and New Zealand
have recently abandoned biocidal antifoulants due to
environmental concerns (Floerl et al. 2016, Table S3),
their use is common elsewhere. Copper continues to
be the main active biocide (Guardiola et al. 2012;
Makridis et al. 2018), with Norway’s salmon industry
using �1,250 t of copper for AF coatings annually
(Skarbøvik et al. 2017). Copper coatings protect nylon
nets from fouling for up to sevenmonths at sea
(Edwards et al. 2015) and can result in better growth
and feed conversion rates in seabass compared to
those in unprotected nylon nets (Yigit et al. 2018).
However, if biofouling pressure is high, coatings may
fail after only eight weeks at sea (Bloecher, Floerl,
et al. 2018). Furthermore, �85% of the copper on
Norwegian farms is released into the sea because of
leaching and abrasive net cleaning (Skarbøvik et al.
2017). While copper accumulation in marketable tis-
sue of cultured fish does not exceed food safety stand-
ards (Cotou et al. 2012; Nikolaou et al. 2014; Kalantzi
et al. 2016), impacts on the fish (Azizishirazi et al.
2015) and non-target organisms (Fitridge et al. 2012;
Guardiola et al. 2012) have been reported.

Alternative biocides termed ‘booster biocides’ can
be added to enhance the efficacy of copper coatings

(Guardiola et al. 2012; Amara et al. 2018), or can be
used as the main active ingredient, offering alterna-
tives to traditional coatings based on cuprous oxide.
The most commonly used ‘booster biocide’ com-
pounds in net coatings include copper pyrithione,
zinc pyrithione, and tralopyril (‘Econea’) (Bloecher,
Floerl, et al. 2018). In a comparative study, only cop-
per pyrithione-based coatings performed similar to
conventional copper coating (Bloecher, Floerl, et al.
2018). While booster biocides are often marketed as
environmentally friendly alternatives to conventional
copper coatings, there are still environmental con-
cerns regarding their toxicity. Copper pyrithione, for
example, reduced salmonid gill health in laboratory
assays (Borg and Trombetta 2010) and impacted non-
target organisms (Bao et al. 2011; Oliveira et al. 2014;
Oliveira et al. 2016; Amara et al. 2018).

Another alternative to traditional copper coatings
is copper alloy metal (CAM) nets. CAM nets are able
to prevent most biofouling (Chambers et al. 2012)
and offer higher form stability in strong currents due
to reduced drag (Tsukrov et al. 2011). Growth and
feed conversion rates in CAM nets are equal to or
better than in nylon net pens treated with conven-
tional copper coating (Chambers et al. 2012; Yigit
et al. 2018). In comparison to conventional copper
coatings, leaching rates are higher during the first
sixmonths at sea before they reach similar levels
(Kalantzi et al. 2016). It is assumed, however, that the
reduced frequency of cleaning required for CAM nets
will result in an overall lower leaching rate for a
growing season (Kalantzi et al. 2016).

Most non-biocidal alternatives seal net surfaces
under wax- or resin-based coatings. The aim is to
reduce surface structure and texture to create a less
favourable settlement surface in addition to increasing
resilience to net cleaning (Swain and Shinjo 2014;
Edwards et al. 2015; Baum et al. 2017). Alternative
net materials such as HDPE (‘Dyneema’) or PET
monofilaments (‘Kikko net’) are also used with similar
intention. While this technology can delay the onset
and reduce the accumulation of biofouling compared
to regular, uncoated raschel-knitted nylon nets
(Edwards et al. 2015; Baum et al. 2017), they do not
outperform conventional copper coated nets (Edwards
et al. 2015; Bloecher, Floerl, et al. 2018).

Biological control

While there are a range of invertebrate and fish spe-
cies that feed on specific biofouling organisms and
can theoretically be co-cultured in cages or on nets,
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not all biofoulers have natural predators suitable as
biofouling control agents (reviewed in Fitridge et al.
2012; Madin and Ching 2015). Since the publication
of Fitridge et al. (2012), no significant advances in the
use of biological controls have been made and there-
fore their use in finfish aquaculture remains in the
experimental stage.

Novel biofouling control technologies

Given the current reliance on copper for biofouling
control, efforts have been put into developing meth-
ods to minimise the release of copper into the envir-
onment whilst maintaining the use of its AF
properties (Liu et al. 2017). The combination of poly-
mer coatings with embedded copper biocide has
shown potential in deterring biofouling while limiting
the release of copper on hard surfaces (Vucko, King,
et al. 2014) and netting (Sato et al. 2012; Ashraf and
Edwin 2016; Ashraf et al. 2017). Although many stud-
ies have explored the use of natural compounds (eg
from plants, bacteria, fungi, algae and sponges) as
antifoulants with varying success (reviewed in
Almeida and Vasconcelos 2015), to date none are
available for commercial application in finfish
aquaculture.

As a biocide-free approach to biofouling preven-
tion, manipulation of surface texture and wettability
to create a less favourable settlement and adhesion
surface has been explored (Scardino and de Nys 2011;
Bloecher et al. 2013; Nir and Reches 2016). However,
results highlight the limited use of this approach in
finfish farming as different species are impacted by
different textures (Vucko, Poole, et al. 2014) and
deterrence of key pest species, such as hydroids, is
ineffective (Bloecher et al. 2013).

Silicone-based fouling-release (FR) technologies
have been trialled to develop environmentally benign
coatings that reduce adhesion and improve the ability
to clean nets (see references in Nurioglu et al. 2015,
Pradhan et al. 2018, and Gevaux et al. 2019 for exam-
ples). Although these coatings provide little preventa-
tive benefit when applied to fish cage nets, silicon-
based FR coatings offer the potential for improved
biofouling control in conjunction with mechanical
cleaning methods (Swain and Shinjo 2014; Edwards
et al. 2015).

With regard to mechanical cleaning, recent trends
have shifted towards preventing the development of
mature biofouling communities by frequent disturb-
ance using autonomous brush systems which continu-
ously clean the net (eg ‘HALO Net Maintenance

System’ by AquaRobotics, ‘Netrobot’ by Mørenot).
However, as these systems are just entering the market,
their efficacy has not yet been assessed independently.

While ambitions to develop environmentally
benign AF materials and cleaning strategies remain,
further developments are needed before existing alter-
natives compete with the biofouling management
methods currently employed by the finfish aquacul-
ture industry.

The impacts of biofouling in seaweed
aquaculture

Biofouling exerts a range of negative impacts on the
commercial production of seaweeds (Table S4). These
can be categorised into three groups: (1) competition
for light, space and dissolved nutrients; (2) physical
damage; and (3) interference with seaweed culture
infrastructure. The culmination of these can reduce
the productivity of seaweed farms.

Competition for light, space and
dissolved nutrients

Fouling species compete with cultured seaweed spe-
cies for light, space and dissolved nutrients. Studies
on the cultured red algae Gracilaria chilensis
(Buschmann and G�omez 1993) and Kappaphycus
alvarezii (Marroig and Reis 2016) show that biofoul-
ing significantly reduces levels of solar irradiance
reaching cultured stock, leading to lower photosyn-
thetic rates and photosynthetic efficiency than
unfouled stock (Borlongan et al. 2016). Interestingly,
higher chlorophyll-a and phycobilin content in heav-
ily fouled stock suggests that some seaweeds can accli-
matise to low-irradiance conditions (Borlongan et al.
2016). Furthermore, opportunistic benthic algae grow-
ing on cultured seaweed and farm infrastructure, such
as cultivation ropes, raceways and rafts, directly com-
pete with cultured seaweed for substratum, space, and
dissolved nutrients, such as ammonia, nitrogen and
inorganic carbon (Buschmann and G�omez 1993;
Fletcher 1995; Veeragurunathan et al. 2015).

Physical damage

Biofouling adds considerable weight to cultured sea-
weeds, making them prone to breakage and dislodge-
ment. Some fouling species, such as the encrusting
bryozoans Membranipora membranacea and Electra
pilosa, make the lamina of cultivated kelps brittle,
which increases susceptibility to breakage (Førde et al.
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2016). In addition, the presence of tunicates, predom-
inantly Ciona intestinalis, and the hydroid Obelia gen-
iculata can deteriorate the appearance and quality of
cultured kelp blades (Park and Hwang 2012; Rolin
et al. 2017). Furthermore, some epiphytic fouling spe-
cies penetrate deep into the host cell tissues, causing
disorganisation or even destruction of the host’s cells
close to the infection (Leonardi et al. 2006). Epiphytic
red algae from the genus Neosiphonia (syn.
Polysiphonia) can cause pit-like structures to form on
cultured seaweeds, leading to future infections
(Hurtado et al. 2006; Vairappan et al. 2008).

Interference with seaweed culture infrastructure

Fouling organisms on ropes and rafts used to culture
seaweeds can cause infrastructure to sink below the
surface, requiring labour-intensive cleaning and lead-
ing to a loss of productivity (Marroig and Reis 2011,
2016). Biofouling on infrastructure can also cause
environmental effects beyond geographic farm boun-
daries. For example, the recurring large-scale green
tides in the Yellow Sea of China originated from the
green alga Ulva prolifera that was scraped off rafts at
Pyropia (syn. Porphyra) yezoensis farms in the Yellow
Sea (Fan et al. 2015; Song et al. 2018). The decompos-
ition of green tides can result in hypoxia and acidifi-
cation, induce red tides and have long lasting effects
on the coastal carbon cycle and ecosystem health
(reviewed in Zhang et al. 2019).

Reduction in productivity, quality and
commercial value

Similar to shellfish and finfish culture, the culmination
of these negative impacts can lead to a loss in product-
ivity of seaweed culture by decreasing growth rates and
biomass and reducing the quality and commercial value
of the end product (Kuschel and Buschmann 1991;
Park and Hwang 2012; Bruhn et al. 2016; Førde et al.
2016; Marroig and Reis 2016). Although the impact of
biofouling is consistently cited as a leading issue in sea-
weed aquaculture (L€uning and Pang 2003; Kim et al.
2017), the authors are unaware of any attempt to quan-
tify the financial implications of productivity reductions
or increases to time and labour costs.

The control of biofouling in seaweed
aquaculture

The economic feasibility of seaweed aquaculture
requires the control of various factors, including

biofouling (Zuniga-Jara and Marin-Riffo 2016; Kim
et al. 2017). Prevention, inhibition and treatment of
biofouling on commercially cultivated seaweed species
includes understanding and harnessing the natural
antifouling defences of seaweeds, and strategic farm
management and husbandry practices.

Prevention and inhibition

Strategic farm management and husbandry strategies
can minimise the presence and impact of biofouling
and optimise biomass yields. Like shellfish and finfish
culture, farmers can choose to culture seaweed in
areas less likely to develop harmful biofouling by con-
sidering levels of exposure and water movement,
water temperature, cultivation period, timing of har-
vest, and through the choice of infrastructure materi-
als, which all influence biofouling rates. Farming
seaweed at exposed locations is one promising strat-
egy, but it is highly species-specific. For example,
exposed sites are linked with reduced levels of bio-
fouling for the cultured kelps Undaria pinnatifida,
Saccharina latissima and Laminaria digitata
(Andersen et al. 2011; Peteiro and Freire 2013; Rolin
et al. 2017) and increased water movement with less
siltation is recommended for the cultivated red alga
Kappaphycus alvarezii (Hurtado et al. 2006). In con-
trast, softer-bodied seaweeds such as the red alga
Gracilaria chilensis may lose biomass when cultured
at exposed locations (reviewed in Buck et al. 2018).
However, cultivating seaweeds at exposed sites may
also present other environmental challenges as severe
storms can damage seaweeds and displace aquaculture
structures, leading to reductions in biomass and farm
productivity (Rolin et al. 2017).

Water temperature also influences the accumula-
tion of fouling species. In general, it has been recom-
mended that cultured seaweeds are harvested before
sea temperatures rise in spring and summer to avoid
the negative impacts of seasonal biofouling (Park and
Hwang 2012; Ateweberhan et al. 2015; Marinho et al.
2015; Førde et al. 2016; Keesing et al. 2016).

In terms of infrastructure material, the efficacy of
microtextured surfaces in deterring the settlement of
specific fouling organisms has been increasingly
studied, with mixed findings (reviewed in Scardino
and de Nys 2011). For example, polyethylene tubes
used in the culture of Gracilaria promoted the
unwanted accumulation of Giffordia (Kuschel and
Buschmann 1991), but treated bamboo poles used in
the culture of Pyropia yezoensis inhibited the attach-
ment and germination of green alga Ulva prolifera
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micro-propagules (Song et al. 2018). The use of such
bamboo poles might therefore play a role in mitigat-
ing recurring large-scale green tides in the Yellow Sea
caused by U. prolifera (Song et al. 2018).

Biological aspects of farm management and hus-
bandry strategies to prevent and inhibit biofouling
include the selection of seed stock and stocking dens-
ity. The selection of clean and healthy seedlings that
are free of epiphytes to initiate cultivation is strongly
recommended to curb biofouling problems later in
the cultivation cycle (Hurtado et al. 2006; Hayashi
et al. 2010). Epiphytic biofouling can be controlled by
growing seaweeds at high densities in rope cultures in
the sea or in tank cultures on land (reviewed in
L€uning and Pang 2003), although the efficacy of this
method appears species-specific, with the culture
density for some species such as Gracilaria sp. and
the kelp Alaria esculenta not affecting the abundance,
species richness or composition of fouling species
(Kuschel and Buschmann 1991; Walls et al. 2017).

In addition, the role of surface-associated second-
ary metabolites as a chemical AF defence mechanism
has been demonstrated for several seaweed species
(reviewed in Jormalainen and Honkanen 2008; da
Gama et al. 2014; Othmani et al. 2016; Pereira et al.
2017), including the cultivated red alga Gracilaria ver-
miculophylla (Wang et al. 2018) and the brown alga
Fucus vesiculosus (Lachnit et al. 2013). These mecha-
nisms could be enhanced by farmers by using
Acadian Marine Plant Extract Powder (AMPEP), a
commercial product derived from the brown alga
Ascophyllum nodosum and used extensively to
increase the productivity of agricultural and horticul-
tural crops for over 30 years (Hurtado and Critchley
2013). More recently, AMPEP has been tested and
used as a culture medium to propagate and cultivate
the red seaweed Kappaphycus alvarezii (Hurtado et al.
2009; Hurtado et al. 2012; Hurtado and Critchley
2013; Marroig and Reis 2016) and mitigate various
biotic and abiotic stressors including biofouling
(reviewed in Hurtado and Critchley 2018). For
example, dipping K. alvarezii seedlings in AMPEP
solutions helps prevent the occurrence of epiphytic
infections and epibiont biomass during their culture
period (Borlongan et al. 2011; Marroig and Reis
2016). The use of AMPEP and alternative extracts to
prevent and inhibit epiphytes is a promising method,
which may lead to further studies on the mode of
action and metabolic pathways (Hurtado and
Critchley 2018) and to the broader adoption of this
method in seaweed aquaculture.

Treatment and mitigation

Seaweeds, particularly long-lived macroalgae species,
have numerous natural defences that effectively
remove biofouling, including blade abandonment and
simultaneous rapid proliferation (Littler and Littler
1999), and periodic epidermal shedding (Filion-
Myklebust and Norton 1981; Nylund and Pavia 2005;
Yamamoto et al. 2013; Halat et al. 2015). For
example, the commercially harvested brown alga
Ascophyllum nodosum from the intertidal zone of
Nova Scotia, Canada, sheds �25% of its frond epider-
mis per week for at least ninemonths of the year to
remove epiphytes, such as the host-specific red alga
Vertebrate lanosa (syn. Polysiphonia lanosa) and the
facultative brown algae Elachista fucicola and Pylaiella
littoralis (Longtin et al. 2009; Halat et al. 2015).
Combining knowledge of these natural defence mech-
anisms together with knowledge of the seasonal
occurrence of biofouling could provide seaweed farm-
ers with an increased capacity to limit biomass losses
by harvesting at strategic times.

Strategic farm management and husbandry practi-
ces to control epiphytes include the exposure of desic-
cation-tolerant intertidal seaweed species, such as
Porphyra, to air or the application of organic acids
onto the cultivation nets to control the pH (Harrison
and Hurd 2001; Kim et al. 2017). For seaweed species
cultured in tanks, such as Gracilaria, epiphytes can
also be controlled by nutrient pulsing, thereby starv-
ing the epiphytes of nitrogen between pulses, while
not significantly affecting the growth of Gracilaria
(reviewed in Harrison and Hurd 2001).

Biological control methods include encouraging
grazing by herbivores, such as amphipods, isopods,
and some fish species. The isopod Paridotea reticulata
grazes on the epiphytic red alga Ceramium diapha-
num growing on commercially farmed red alga
Gracilaria gracilis (Anderson et al. 1998; Smit et al.
2003). However, the relationships between cultured
seaweed, epiphytes and herbivores are dynamic, and
the benefits of herbivores preferentially consuming
epiphytes can be quickly overshadowed by negative
effects of herbivores grazing on cultured seaweed
when herbivore densities become too high and alter-
native food sources scarce (Shacklock and Doyle
1983; Smit et al. 2003; Cruz-Rivera and Friedlander
2011). In Gracilaria culture, isopod densities can be
controlled by short-term freshwater exposure (Smit
et al. 2003). Furthermore, in a food preference study
with 11 fish species, the fish Aphanius dispar and
Tilapia zillii, acclimatised to seawater, displayed
selective feeding on epiphytes and were identified as
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good candidates to control epiphytes in the mass cul-
ture of Gracilaria conferta (Friedlander et al. 1996).
Future efforts should focus on harnessing the utility
of biological control agents within culture settings.

Finally, since biofouling on seaweed culture infra-
structure can be a reservoir for epibionts, periodic
manual removal of fouling organisms on infrastruc-
ture and/or cultured species occurs in some farming
regions (Kuschel and Buschmann 1991; Hurtado et al.
2006; Marroig and Reis 2011; Liu et al. 2013).
However, manual removal is labour-intensive, and the
gains in productivity must be evaluated against the
increases in labour costs (Kuschel and Buschmann
1991). Furthermore, for several cultured seaweeds, the
logistics of removing epiphytes make this method
almost impossible. For example, epiphytic filamentous
red algae from the genus Polysiphonia penetrate the
cells of commercially cultured Kappaphycus (Hurtado
et al. 2006; Leonardi et al. 2006), making manual
removal difficult without harming the stock.

Although seaweed aquaculture technologies have
developed significantly over the last decades, simple,
economically viable biofouling management solutions
have not yet been realised. Further research in this
area is required (Kim et al. 2017), including trials of
promising methods at commercial scales to facilitate
future implementation by the industry.

Conclusion and future directions

Although there have been considerable recent advan-
ces in knowledge of biofouling in aquaculture, there
are still significant gaps in aquaculturalists’ capacity to
manage biofouling. Issues surrounding biofouling dif-
fer among shellfish, finfish and seaweed aquaculture
industries, yet the direction of emerging biofouling
management strategies are similar. These strategies
aim to take advantage of improved scientific under-
standing and technological advances to develop robust
and proactive preventative approaches. The use of
monitoring and modelling to inform preventative
management decisions (eg farm locations, timing of
treatment, harvesting cycles) can reduce the cost of
biofouling management and maximise the benefit of
any subsequent control treatments. The most effective
strategies are likely to include a combination of both
prevention and treatment. Likewise, though successes
have been identified at varying scales by applying
methods in isolation, the combination of multiple
treatments may enable more success in combating
biofouling in aquaculture.

Future research will need to address the unresolved
issues in existing aquaculture practice, in addition to
broadening the scope to encompass a wider variety of
culture species and habitats as the aquaculture indus-
try moves into new culture scenarios (eg offshore
aquaculture and closed culture systems). By under-
standing the settlement and development of biofoul-
ing in these environments, novel materials and/or AF
coatings for infrastructure, and technological advan-
ces, such as equipment for more efficient monitoring,
modelling and autonomous cleaning can be devel-
oped. Aquaculture may help feed the world into the
future, but biofouling stands out as a clear barrier
that needs to be overcome first.
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