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Abstract

With the advent of CO2 capture and storage (CCS) as an important remedy for reducing

atmospheric CO2 emissions, it has become necessary to develop accurate and efficient simulation

tools. Among other things, such tools should handle the depressurization from supercritical

pressures down to atmospheric conditions. This might involve the formation of solid CO2 (dry

ice) as the state passes the triple point. In this work, we propose a dynamic simulation method

that handles the dry-ice formation. The method uses the Span–Wagner reference equation of

state, with additional relations for thermodynamic properties along the sublimation line. A

density–energy state function formulation is employed, which naturally follows from mass

and energy conservation. To illustrate the method’s capabilities, demanding test cases are

considered, both for the depressurization of a vessel and for fluid dynamics in a pipeline, where

phase change occurs due to changing boundary conditions.

∗To whom correspondence should be addressed

1



Introduction

In Energy Technology Perspectives 2012,1 the International Energy Agency (IEA) recommends CO2

capture and storage (CCS) as one of the major means to reduce CO2 emissions to the atmosphere.

In the two-degree scenario (2DS), CCS accounts for 7Gt CO2 per year in 2050.1 The points of

capture will, to a large extent, not be colocated with the storage sites. Therefore, transportation in

pipelines or in tanks will be necessary. Due to the large quantities of CO2, it will be required to

maintain a high level of safety while keeping the costs moderate. Herein, accurate simulation tools

may help, during both design and operation.

One such safety issue is to avoid running fractures. If a pipeline ruptures, the crack may start to

propagate, depending on the load on the pipe and the crack-propagation speed relative to the speed

of the expansion wave in the fluid inside the pipe.2,3 Simulating this requires accurate models for

the structural mechanics and for the flow inside, and out of, the pipe. Recent computational studies

indicate that CO2 pipelines may be more susceptible to crack propagation than pipelines filled with

natural gas.4,5

Another issue requiring modeling is the depressurization of pipelines. This can occur because

of regular maintenance or an accident. Most often, the CO2 inside the pipeline will be in a liquid or

dense state. Depressurization will then entail phase change and a strong cooling. It is of interest

to estimate the lowest temperature that may occur, since the temperature where some steel types

become brittle may be reached. Reliable estimates of the lowest temperature may reduce over-

engineering of pipelines and thus reduce costs. At the same time, such estimates may support

the development of operational guidelines. Modeling issues regarding the transient simulation of

pipeline transport of CO2 mixtures were reviewed by Aursand et al..6

In dynamic simulations such as those performed here, the problem is commonly formulated

using mass and energy balances. Thus, at each time step, we know the density ρ and the specific

internal energy u. The remaining variables, such as pressure P and temperature T , must be

determined from an equation of state (EOS). The fact that the latter variables (P,T ) are unknown,

and not input parameters, makes the problem challenging to solve. One approach is to exploit the
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fact that the equilibrium condition represents a maximum in the entropy of the system.7 Herein,

the thermodynamically stable phases must be found, subject to the condition of constant volume

and energy. As remarked by Giljarhus et al.,8 this problem has been given limited attention in the

literature, and then usually for multicomponent mixtures.9–17

Giljarhus et al. 8 studied the solution of the Span and Wagner 18 reference EOS (SW EOS)

using a density–energy state function with application to dynamic simulations of depressurizations

and fluid flow of pure CO2. Their method was shown to be robust and efficient for various test

problems. In particular, the equivalent routines in the REFPROP19 program package were shown

to be 15–20 times slower. However, Giljarhus et al. only considered the single-phase and two-

phase (vapor–liquid) areas. For this reason, their calculations were limited to pressures above the

triple-point pressure of CO2 (518kPa), at which the vapor–liquid–solid equilibrium needs to be

considered. Depressurization of CO2 from elevated pressures down to atmospheric conditions has

considerable practical interest. Therefore, in this work, we propose a method to account for the

occurrence of a solid phase in the density–energy framework discussed by Giljarhus et al..8 This

is done by employing the Clapeyron equation together with auxiliary functions for the density

and pressure as functions of temperature along the sublimation line in the phase diagram. In this

way, the solid properties are accounted for at the triple point and for the solid–vapor mixture. For

dynamic simulations, we compare the SW EOS with the simple Peng and Robinson 20 (PR) cubic

EOS. Using the PR EOS, we also illustrate the effect of ignoring the formation of a solid phase.

There are two known EOSs for solid CO2, both enabling property calculations of dry ice.

Trusler 21,22 published a Helmholtz-energy-based EOS, while Jäger and Span 23 presented a Gibbs-

free-energy function. These EOSs can be used to solve equilibrium problems together with an EOS

describing the liquid and vapor properties of CO2. The methods of Trusler and Jäger and Span are

thought to be accurate and general, but also more complex and somewhat more computationally

expensive than the one we consider here. The present method may therefore be useful in situations

where the main emphasis is on the fluid phases and computational efficiency is paramount.
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Thermodynamics

Thermodynamic properties

If an expression for the Helmholtz free energy a(T,ρ) is known along with its derivatives, all

thermodynamic properties can be derived from these. T is temperature and ρ is the density. Here we

are interested in pressure, enthalpy, entropy and internal energy, which can be obtained as follows:

P(T,ρ)= ρ2
(
∂a
∂ρ

)
T
, (1)

s(T,ρ)=−
(
∂a
∂T

)
ρ

, (2)

h(T,ρ)= a+ρ
(
∂a
∂ρ

)
T
−T

(
∂a
∂T

)
ρ

, (3)

u(T,ρ)= a−T
(
∂a
∂T

)
ρ

. (4)

It is common to define a reduced nondimensional Helmholtz function, φ = a/RT , and to split the

function in an ideal-gas part, φ0, and a residual part, φr :

φ(τ,δ)= φ0(τ,δ)+φr (τ,δ). (5)

The variables used for the nondimensional Helmholtz function are the inverse reduced temperature,

τ = Tcrit/T , and the reduced density δ = ρ/ρcrit. Tcrit is the critical temperature and ρcrit is the

critical density.

The Span–Wagner reference equation of state for CO2

The Span–Wagner reference equation of state for CO2 (SW EOS) is in the reduced Helmholtz

form of eq 5. The Helmholtz function and its derivatives are found in the original paper by Span

and Wagner.18 It contains a total of 51 terms, including logarithms and exponentials, making it

computationally demanding. Efficient numerical methods are therefore required to maintain a
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Figure 1: Phase diagram for CO2.

reasonable run time for a dynamics simulation.

The SW EOS is valid from the triple-point temperature to 1100K and for pressures up to

800MPa. Span and Wagner also provided auxiliary equations for the sublimation line and the fusion

line. These equations are used together with the saturation line calculated from the Helmholtz

function for pure CO2 to plot the phase diagram in Figure 1. The dotted line continuing the saturation

line above the critical pressure and temperature represents (∂2 P/∂ρ2)T = 0. The triple point and

critical properties of CO2 are displayed in Table 1.

In this work, we assume that the SW EOS is valid for vapor-phase properties below the triple-

point temperature.

Table 1: Critical properties of CO2. Data taken from Span and Wagner,18 except for the solid
density at the triple point, which is calculated from eq 7.

Property Symbol Value

Critical density ρcrit 467.6kg/m3

Critical temperature Tcrit 304.1282K
Critical pressure Pcrit 7.3773MPa

Triple-point temperature Ttr 216.592K
Triple-point pressure Ptr 0.51795MPa
Triple-point density

liquid ρtr,` 1178.5kg/m3

vapor ρtr,v 13.761kg/m3

solid ρtr,s 1511.6kg/m3
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The SW EOS is tuned against a large set of experimental data for single-phase properties, that is,

the liquid–vapor saturation line, speed of sound, specific isobaric heat capacity, specific isochoric

heat capacity, specific enthalpy, specific internal energy and the Joule–Thompson coefficient. The

uncertainty of the EOS is estimated to be less than 0.05% for the density, less than 1.0% for the

speed of sound and less than 1.5% for the specific isobaric heat capacity.18

Dry-ice modeling

To simulate the appearance of dry ice, we must extend the thermodynamic model to include solid

properties for the triple point and to account for a mixture of solid and vapor. These properties

can be calculated by applying the Clapeyron equation. Two-phase solid–liquid does not need to

be modeled, since it will not occur at normal operating conditions of vessels and pipelines. It is

also not possible to get two-phase solid–liquid from a homogeneous isentropic decompression from

single-phase liquid or vapor, which is the primary interest of this paper. For the same reasons, there

is no need for modeling a pure solid.

It might, however, be possible to get into two-phase solid–liquid during a depressurization, if the

phases are allowed to separate. The cooling of the fluid can then be greater than the pure isentropic

cooling of the depressurization. For the homogeneous systems considered here, on the other hand,

any deviation from isentropic behavior will reduce the cooling.

In view of the above, we model dry ice at the sublimation line, that is, solid CO2 in equilibrium

with vapor. This can be achieved using the Clapeyron equation,

(
d P
dT

)
subl
=

1hsubl

T1vsubl
=

hv−hs

T (vv−vs)
. (6)

From eq 6, it is seen that the solid enthalpy at the sublimation line can be calculated if the derivative

of pressure with respect to temperature, (d P/dT )subl, and the specific solid volume, vs, are known,

together with the vapor properties from the SW EOS.
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Table 2: Coefficients used for the solid-density correlation.

Parameter Value Unit

A −0.0224 kg/m3K2

B 6.8896 kg/m3K
C 1070.8 kg/m3

Table 3: Coefficients used for the sublimation-pressure correlation.

i a b

0 −14.7408463 1.0
1 2.4327015 1.9
2 −5.3961778 2.9

The solid density can be modeled as a polynomial in terms of the temperature,

ρs(T )= AT 2
+ BT +C, (7)

where a set of polynomial coefficients are given in Table 2. This polynomial has been fitted to

data tabulated by Höchst 24 for CO2 properties along the sublimation line from 193.15K up to the

triple-point temperature. As already mentioned, Span and Wagner 18 published an auxiliary function

for the sublimation pressure Psubl(T ):

Psubl = Ptr exp
(

B(τtr)

τtr

)
, (8)

B(τtr)=

2∑
i=0

ai (1− τtr)
bi . (9)

Here τtr = T/Ttr is the reduced temperature, and the coefficients a and b are listed in Table 3. The

required derivative (d P/dT )subl is found by differentiating eqs 8 and 9. The function describing

the sublimation pressure is validated against experimental data from 180K to the triple point.18

When 1hsubl and 1vsubl are known, both the internal energy and entropy of dry ice at the
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Figure 2: Entropy, s ( J/(molK)), along the sublimation line plotted with the Clapeyron method,
and by using the Gibbs-free-energy function published by Jäger and Span.23

sublimation line can be calculated using the following thermodynamic relations:

us = uv−1hsubl+ P1vsubl, (10)

ss = sv−
1hsubl

T
. (11)

Using the same approach, it is possible to calculate the dry-ice properties along the fusion line. This

is not considered in further detail here.

It is also possible to calculate the properties of solid CO2 using the EOS for solid carbon dioxide

based on the Gibbs free energy published by Jäger and Span 23 or the Helmholtz-energy function of

Trusler.21 These are more general approaches that also can be used for multicomponent mixtures

and other EOSs. For the present work, where only dry ice at the sublimation line needs to be

described, it is sufficient to model the dry ice using the Clapeyron equation.

Only limited experimental data for the thermodynamic properties of solid CO2 are available,

but the Gibbs-free-energy function by Jäger and Span 23 represents most of the available data to

experimental uncertainty. The proposed model, applying the Clapeyron equation, is validated by

plotting the entropy against that obtained using the Gibbs-free-energy function of Jäger and Span 23

in Figure 2. The observed difference is considered to be insignificant in the present context.

8



0.1

1

10

100

1000

10000

100 200 300 400 500 600 700

ρ
(k

g/
m

3 )

u (kJ/kg)

Gas-Liquid-
Liquid-Gas

Liquid

G
as

Solid-LiquidSolid

Solid-Gas

Solid

Figure 3: Phase diagram for CO2 in the (ρ,u) plane. The circular dot marks the critical point.

Equilibrium and the ρu problem

During resolution of the conservation equations for a vessel model or for a fluid element in a pipe

simulation, the overall mass and energy is integrated forward in time. For the governing system

of equations considered here, the specific internal energy can be calculated from the total energy.

Here, the specific mass, ρin, and specific internal energy, uin, are given, denoted by the subscript in,

and the pressure, P , temperature, T , and phase mass fractions, zv, z` and zs, must be calculated.

This is the ρu problem.

The densities and specific internal energies along the saturation line, sublimation line, fusion

line (not dry ice) and for the coexistence region of vapor, liquid and solid are plotted in Figure 3.

It is seen that the triple point of the temperature-pressure space occupies a large region of the ρu

space.

Different problem formulations are required for all the different areas shown in Figure 3. The

single-phase equation is the simplest, being simply

u(T,ρin)−uin = 0, (12)

where ρin and uin are the specified ρ and u. Equation 12 must be solved for the unknown temperature,

T .
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To solve the ρu problem for liquid in equilibrium with vapor, both the equilibrium conditions

Pv = P`,Gv = G` and the density and internal energy specification equations must be fulfilled:

P(T,ρv)− P(T,ρ`)= 0, (13)

G(T,ρv)−G(T,ρ`)= 0, (14)

zvu(T,ρv)+ (1− zv)u(T,ρ`)−uin = 0, (15)

zv

ρv
+
(1− zv)

ρ`
−

1
ρin
= 0. (16)

Here G(T,ρ) denotes the Gibbs free energy. The unknowns of the liquid–vapor equation system,

eqs 13–16, are [ρv,ρ`,T, zv].

In the pressure–temperature plane triple point (Ttr,Ptr), vapor, liquid and solid CO2 are in

equilibrium. Solving the ρu problem at this point means solving three algebraic equations,

zvutr,v+ z`utr,`+ zsutr,s−uin = 0, (17)

zv

ρtr,v
+

z`
ρtr,`
+

zs

ρtr,s
−

1
ρin
= 0, (18)

zv+ z`+ zs−1= 0. (19)

The unknowns of the triple-point equation system, eqs 17–19, are [zv, z`, zs].

At the sublimation line the equilibrium condition simplifies to two pressure equations, P =

Psubl(T )= P(T,ρv),

P− Psubl(T )= 0, (20)

P− P(T,ρv)= 0, (21)

zvu(t,ρv)+ (1− zv)us−uin = 0, (22)

zv

ρv
+
(1− zv)

ρs
−

1
ρin
= 0. (23)

The unknowns of the sublimation ρu problem, eqs 20–23, are [P,ρv,T, zv].
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The ρu algorithm

Given (ρin,uin), a qualified guess for the correct phase will simplify the ρu problem. Otherwise, all

the different phase combinations would have to be tried in order to find the solution.

The following four criteria are used to determine which phases to solve for:

1. Since the triple-point ρu problem is three algebraic equations, it is simple to solve these

equations. A valid solution is zv ≥ 0, z` ≥ 0 and 1− zv− z` ≥ 0.

2. Another simple test is to check if the solution lies above or below the line made between

the two points (utr,v,vtr,v) and (utr,`,vtr,`) in the uv space. If the specification is above the

line, the solution will be either in the single-phase area or in the liquid–vapor area. If the

specification is below the line, the solution will be either single-phase vapor or a mixture of

solid and vapor.

3. Giljarhus et al. 8 used a polygon representing the inside of the liquid–vapor (ρ,u) space area,

together with a ray-crossing algorithm, to determine whether a point was in the liquid–vapor

region. The same criterion is used here.

4. A polygon can be mapped for the vapor properties at the sublimation line. It is possible to

determine if the specified point, (ρin,uin), lies to the left or to the right of the polygon, by

calculating a cross product for each line segment of the polygon.

The second criterion determines whether the third or the fourth criterion applies. Note that the

first two criteria are exact, while the two latter may fail, because of the difference between the

polygons and the actual nonlinear functions. If they fail, a second guess is made. This second guess

will always succeed, since the third and fourth criteria are binary choices; a point is either inside or

outside the vapor–liquid region, and a point is either to the left or to the right of the sublimation line.

The ρu problem is solved using a Newton-Raphson numerical solver combined with a line

search to guarantee convergence, cf. Chapter 6 of Dennis and Schnabel.25 Analytical Jacobians are

provided for all the different problem formulations, allowing for efficient solution of the equations.

11



For the method to be robust, the liquid–vapor and solid–vapor ρu problems must be solved in a

nested manner.15 For the liquid–vapor case, the equilibrium conditions, eqs 13 and 14, are solved in

the inner loop, and the modified internal energy and density equations are solved in the outer loop,

zvu(T,ρv)+ (1− zv)u(T,ρ`)−uin

1000T
= 0, (24)

zvρin

ρv
+
(1− zv)ρin

ρ`
−1= 0. (25)

The above are scaled versions of eqs 15 and 16, in order to minimize numerical errors.

For the solid–vapor ρu problem, the pressure eqs 20 and 21 are solved in the inner loop, and the

modified internal energy and density equations are solved in the outer loop,

zvu(t,ρv)+ (1− zv)us−uin

1000T
= 0, (26)

zvρin

ρv
+
(1− zv)ρin

ρs
−1= 0. (27)

Again, eqs 22 and 23 are scaled in order to minimize numerical errors.

For the liquid–vapor and solid–vapor systems, the mass fraction zv of the vapor must lie between

0 and 1. Similarly, the temperature T of the liquid–vapor system must be between Ttr and Tcrit, and

the temperature of the solid–vapor system must be T ≤ Ttr. This implies that the liquid–vapor and

solid–vapor equation systems will provide either a valid solution or no solution at all.

For the single-phase ρu problem, there is, unfortunately, no such sanity check. Solving eq 12

might produce a metastable liquid or vapor phase. The solution therefore has to be checked for

phase stability by comparing the solution pressure against either the saturation or the sublimation

pressure, depending on the solution temperature.

The Ps problem

In a pipeline depressurization simulation, for subsonic flow, it is desirable to apply a boundary

condition for the pressure, P . From the inner domain, we extrapolate the mass flux, ρw and entropy,
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s. The entropy is chosen since it is a characteristic variable of the Euler equations; see eqs 39–41

below. As a result of this, temperature and phase mass fractions must be calculated from pressure

and entropy. This is the Ps problem.

The dry-ice entropy at the sublimation line is calculated from eqs 6 and 11. The vapor and liquid

entropies are calculated from the SW EOS. The pressure is plotted against entropy in Figure 4.

A different problem formulation is required for all the different phase combinations shown in

Figure 4. The single-phase Ps problem must satisfy two nonlinear equations,

P(T,ρ)− Pin = 0, (28)

s(T,ρ)− sin = 0. (29)

The unknowns are [T,ρ].

The liquid–vapor Ps problem can be solved in two steps. First, the equilibrium temperature

at the specified pressure, Pin, is found by solving eqs 13 and 14. When the temperature and the

phase densities at the saturation line are known, the liquid–vapor Ps problem is reduced to a single

algebraic equation,

zvs(T,ρv)+ (1− zv)s(T,ρ`)− sin = 0, (30)

for the unknown vapor phase fraction, zv.
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The solid–vapor Ps problem can be solved in three steps. The first step is finding the sublimation

temperature for the given pressure by solving

Pin− Psubl(T )= 0. (31)

The second step is solving the SW EOS for the vapor density, ρv, at the sublimation line,

P(T,ρv)− Pin = 0. (32)

Finally, the vapor mass fraction, zv, can be found by solving the linear algebraic equation

zvsv+ (1− zv)ss− sin = 0. (33)

The Ps problem does not always have a unique solution for the triple-point pressure. The

equation system for the triple point is given by

zvstr,v+ z`str,`+ (1− zv− z`)str,s− sin = 0

P− Ptr = 0.
(34)

When str,s < sin < str,v, multiple combinations of zv and z` will satisfy the specification equation.

This can also be seen from Figure 4.

The Ps algorithm

The single-component Ps problem is easy to solve when compared to the ρu problem. Given the

pressure, there are four possibilities.

1. P ≥ Pcrit: Single-phase solution.

2. Ptr < P < Pcrit: Single-phase or liquid–vapor solution. The entropies sv and s` at the

saturation line are used to determine if the solution is single-phase or two-phase liquid–vapor.
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3. P = Ptr: Single-phase vapor or no unique solution.

4. P < Ptr: Single-phase vapor solution, or solid–vapor solution. The entropies sv and ss at

the sublimation line are used to determine if the solution is single-phase vapor or two-phase

solid–vapor.

The Peng–Robinson equation of state

To illustrate some of the benefits of using a multiparameter equation of state, a comparison with

the Peng and Robinson 20 equation of state (PR EOS) is included. Some selected properties are

plotted against the saturation pressure in Figure 5. It is seen that the SW and PR EOS saturation

temperatures as a function of pressure are similar. The liquid density and liquid speed of sound

deviate significantly, and the vapor speed of sound deviates in the proximity of the critical point.

In order to solve the ρu and Ps problems using the PR EOS, the same strategy as that for the

SW EOS is employed. The sublimation-line function in eq 8 is utilized by shifting the triple-point

temperature to meet the saturation line at Ptr = 0.51795MPa. The main difference is the variables

used during resolution. The PR EOS and its differentials are evaluated and solved for temperature

and pressure, (T, P), not temperature and density, (T,ρ), as for the SW EOS.

Vessel model

To perform a depressurization simulation of a vessel, we formulate a model employing the following

dynamic conservation equations for mass and energy:

dM
dt
=−ṁ(P,ρ), (35)

dU
dt
= Q̇(T )− ṁ(P,ρ)h(T,ρ). (36)

Here, M is the total mass in the vessel, ṁ is the mass-flow rate, U is the internal energy and Q̇ is

the heat-transfer rate. The vessel is treated as a rigid body with constant volume, V . The specific
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ṁ

Q̇ V

Figure 6: Schematic illustration of the vessel model.

internal energy and density are related to the conserved variables as u =U/M and ρ = M/V , and

the solver for the ρu problem described above is used to calculate the pressure, temperature and

phase mass fractions of the vessel. The vessel model is illustrated in Figure 6.

To have closure of the vessel model, we need expressions for the heat-transfer rate, Q̇, and the

mass-flow rate, ṁ. The heat transfer is modeled as a heat-transfer rate multiplied with the difference

between the vessel temperature, T , and the ambient temperature, Tamb,

Q̇(T )= ηA (Tamb−T ) , (37)

where η(W/m2 K) is the overall heat-transfer coefficient and A is the surface area of the vessel.

The flow rate is modeled using a simplified valve equation,

ṁ = Kv
√
ρ (P− Pamb), (38)

where Kv (m2) is a flow coefficient for the valve and Pamb is the ambient pressure. To integrate the

equations, the DASSL26 differential-algebraic equation solver is used.

There exist experimental results from vessel depressurization.27,28 However, a direct comparison

to the measured temperature, pressure and void fraction at different vertical positions in the vessel
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would require a substantial extension of the vessel model presented here.

Fluid dynamics

Governing equations

Another typical application of the above thermodynamic algorithms is in a 1D flow model, in

which CO2 may undergo a phase change. For simplicity, we assume that all the phases have the

same velocity, such that the governing equations have the same form as the Euler equations for

single-phase flow:

∂(ρ)

∂t
+
∂(ρw)

∂x
= 0, (39)

∂(ρw)

∂t
+
∂(P+ρw2)

∂x
= 0, (40)

∂(ρe)
∂t
+
∂ [w(ρe+ P)]

∂x
= 0. (41)

Here, ρ = α`ρ`+αvρv+αsρs is the mixture density, w is the velocity and e = u+1/2w2 is the

specific total energy. This model can be regarded as a drift-flux model with no slip (no relative

velocity) between the phases, and it is often denoted as the homogeneous equilibrium model. It can

be accurate if the interphasic momentum transfer is high, such as in highly dispersed flows.

In this work, the purpose is to illustrate the ρu problem. Therefore, we neglect other physical

effect, such as wall friction, heat transfer and gravity. These effects could be included in the above

equation system as source terms.

When the thermodynamic relation, de = T ds+ P/ρ2 dρ, is applied on the fluid eqs 39–41, it

can be shown that the specific entropy, s, is advected with the flow,

∂ s
∂t
+w

∂ s
∂x
= 0. (42)

Hence, it follows that if the initial specific entropy is constant in the pipe, the specific entropy will
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remain constant for a pipe with no inflow.

Numerical method

The governing eqs 39–41 are discretized using the finite-volume method. They are then solved

numerically using the first-order centered (FORCE) scheme.29 It is optimal in the sense that it has

the least numerical dissipation of the first-order central schemes that are stable for all Courant–

Friedrichs–Lewy (CFL) numbers less than unity.30

The FORCE scheme is also the building block of the multistage centered scheme (MUSTA)

by Toro and coworkers.31,32 This scheme aims at attaining the accuracy of upwind schemes while

retaining much of the simplicity of centered schemes. It has been employed for several two-phase

flow models, including drift-flux models.33,34

The system of eqs 39–41 can be written in the following form:

∂q
∂t
+
∂ f (q)
∂x

= 0, (43)

where q = [ρ,ρw,ρe]> is the vector of conserved variables. Employing the finite-volume method,

we obtain the discretized system

qm+1
j = qm

j −
1t
1x

(
f m

j+1/2− f m
j−1/2

)
, (44)

where qm
j denotes the numerical approximation to the cell average of the vector of unknowns

q(x, tm) in control volume j at time step m. In the FORCE scheme, the numerical flux at the cell

interface at x j+1/2 is a function of the cell averages on each side:

f j+1/2 = f FORCE(q j ,q j+1). (45)

To obtain second-order spatial accuracy, we employ a semidiscrete version of the monotone

upwind-centered scheme for conservation laws (MUSCL).35,36 Herein, a piecewise linear function
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is constructed by using the data {q j (t)}. At each side of the interface x j+1/2 we have values from

the linear approximations in the neighboring cells. These are denoted by

qR
j = q j +

1x
2

l j and qL
j+1 = q j+1−

1x
2

l j+1, (46)

where l j are the slopes calculated using a suitable slope-limiter function. There are several possible

choices of variables to use in the slope-limiter procedure. Here we have chosen the variables

(w,ρ,u). After this procedure, the numerical flux is found from

f j+1/2 = f FORCE(qR
j ,q

L
j+1). (47)

For use with the MUSCL scheme, the system of conservation equations, eq 43, is semidis-

cretized:
dq j

dt
=−

f j+1/2− f j−1/2

1x
. (48)

To obtain a second-order solution in time, we employ the two-stage second-order strong-stability-

preserving (SSP) Runge–Kutta (RK) method (see, for instance, Ketcheson and Robinson 37).

Mixture speed of sound

In the numerical method, eq 44, the time-step length is restricted by the Courant–Friedrichs–Lewy

(CFL) stability criterion, given by the CFL number

R =
‖λ‖∞1t
1x

, (49)

where ‖λ‖∞ is the maximum value in the computational domain of the eigenvalues of the Jacobian

matrix of the flux function f in eq 43. Here, we have

‖λ‖∞ =max|w± C̃ |, (50)
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where C̃ is the speed of sound. It should be noted that, outside the single-phase region, the predicted

speed of sound of the mixture is not a purely thermodynamic function, but it is the combined result

of thermodynamic relations employed in the flow model. Furthermore, the equilibrium assumptions

made regarding pressure, velocity and chemical potential will influence the speed of sound. This is

discussed by Flåtten and Lund 38 and Lund.39

Vapor–liquid

In the vapor–liquid region, the mixture speed of sound C̃v,` for the present homogeneous equilibrium

flow model can be calculated e.g. as shown in Section 9.2.1 in the paper of Lund:39

C̃−2
v,` = ρ(Z p+ Z pT + Z pTµ), (51)

Z p =
αg

ρgcg
+
αl

ρlcl
, (52)

Z pT =
cp,gcp,l T
cp,g+ cp,l

(
0l

ρlcl
−

0g

ρgcg

)2

, (53)

Z pTµ =
ρmixT

cp,g+ cp,l

(
ρg−ρl

ρgρl(hg−hl)
(cp,g+ cp,l)+

0gcp,g

ρgC̃2
g
+
0lcp,l

ρlC̃2
l

)2

, (54)

where 0i is the Grüneisen coefficient,

0i =
1
ρi

(
∂ p
∂ui

)
ρi

. (55)

It is interesting to note that, in large parts of the two-phase region, the mixture speed of sound is

lower than the pure-vapor or pure-liquid speed of sound.
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Vapor-solid

To calculate the speed of sound of a mixture of solid and vapor in equilibrium, we do not have

expressions of the type in eqs 51–54 at hand. Instead, we consider the function

g( y(ρin),ρin)=



P(T,ρv)− P

Psub(T )− P

zvs(T,ρv)+ (1− zv)ss(T,ρv)− sin

zv

ρv
+
(1− zv)

ρs(T )
−

1
ρin


, (56)

with

y(ρin)= [P,ρv,T, zv]> . (57)

We require that the vapor and solid pressures be equal, and that the mixture entropy and volume be

constant:

g( y(ρin),ρin)= 0. (58)

Differentiating eq 58 with respect to the specified density ρin gives

dg
dρin
=
∂ g
∂ y

∂ y
∂ρin
+
∂ g
∂ρin
= 0. (59)

The equation system (59) is set up using analytical derivatives, and solved for ∂ y/∂ρin . The

first element of the vector will be ∂ P/∂ρin at constant entropy, whose square root is the speed of

sound.
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Figure 7: The fluid velocity calculated from the Bernoulli equations, and the mixture speed of
sound, plotted against pressure.

Boundary conditions

The boundary pressure at the open end of the pipe is found by solving the steady-state version of

the Euler equations, the Bernoulli equations for constant pipe cross section,

dh+wdw = 0, (60)

ds = 0, (61)

d(wρ)= 0. (62)

The Bernoulli equations are solved for the choke pressure, where the flow velocity equals the speed

of sound, w = C̃ . The solution of this equation system is illustrated in Figure 7, for an initial

condition of P = 100bar, T = 300K and w = 0m/s. In this case, the solution is found at the

discontinuity of the mixture speed of sound. The speed of sound is discontinuous across the phase

boundaries.

It should be noted that, even if the Ps problem does not have a unique solution for the triple-

point pressure, the Bernoulli equations have a unique path through the triple point. From the

23



thermodynamic identity for the enthalpy differential,

dh = T ds+v d P, (63)

it is seen that the Bernoulli path through the triple point is both constant entropy and constant

enthalpy.

Results

In this section, the versatility of the proposed method is demonstrated by simulating a depressuriza-

tion of a vessel, and by two challenging pipeline flow simulations in which the state dynamically

changes between one, two and three phases. Flow problems are particularly challenging for the

thermodynamic routines with respect to robustness and consistency. Further, these simulations will

illustrate how all the thermodynamic variables are coupled through the fluid-flow model. In order to

highlight the effect of the EOS, we consider idealized cases without including models for velocity

slip, friction and heat transfer.

Vessel depressurization

As a test case, we consider a cylindrical tank with diameter 0.2m and height 1.0m, with initial state

P0 = 100bar and T0 = 300K. The ambient conditions are Pamb = 1bar and Tamb = 293.15K. A

moderate overall heat-transfer coefficient of ηA = 1W/K is used, and the valve coefficient is set

to Kv = 5×10−7 m2. At t = 0, the valve is opened to the surroundings. Note that initially, CO2 is

in a liquid state, above the critical pressure, while at steady state, it will reach ambient conditions,

which is in the vapor region. This is a challenging test case, since it covers pure liquid, transition to

liquid–vapor, coexistence of vapor, liquid and solid at the triple point, transition to solid–vapor and

finally transition to pure vapor.

Figure 8 shows the main results from the vessel depressurization simulation. Pressure, tempera-
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Figure 8: Depressurization of a vessel. Pressure (bar) and temperature (°C) are plotted along the left
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ture and mass fractions are plotted against simulation time. The pressure and temperature drop fast

down to the saturation line, and evaporation starts at approximately 59bar. The process follows the

saturation line down to the triple point. From the solid mass fraction, it is seen that the triple point

is reached at approximately time t = 1950s. The pressure and temperature then stay constant for

approximately 150s before leaving the triple point and continuing along the sublimation line. The

solid then starts to sublimate. After approximately 2700s, all the solid CO2 has sublimated, and

pure vapor remains. The temperature then rises quickly to ambient temperature.

The simulation trajectory is plotted in the ρu and PT space, see Figures 9a and 9b. The phase

changes in the vessel during the simulations are clearly seen in both figures.

A comparison between the SW and PR EOS for the vessel simulation is shown in Figure 10.

The dynamic trends from the SW and PR EOS simulations are similar, but the depressurization time

for the PR EOS is shorter than that for the SW EOS.

Shock tube

The next test case is a Riemann problem (shock tube) and has been constructed to illustrate the

wave separation at the phase boundaries and at the triple point. The physical interpretation of this

case is a 100m pipe section with two adjacent uniform states separated by a membrane. At time

t = 0, the membrane ruptures, and waves will start to propagate. Initially, the fluid is at rest. The
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Figure 9: The vessel depressurization trajectory plotted in the ρu and the T P spaces, shown as a
full black line. The circular dot in Figure (a) marks the critical point.

left half of the tube is at 250K and 3MPa (liquid phase), and the right half of the tube is at 250K

and 0.1MPa (vapor phase).

The following fluid-dynamics simulations have been performed with the MUSCL-FORCE

scheme employing the minmod limiter, see e.g. Sec. 9.2 in the book of LeVeque,40 and a CFL

number of 0.5. The case is simulated until t = 0.06s, and pressure, temperature, velocity, vapor

volume fraction and solid volume fraction profiles are plotted for the end time. The numerical

scheme has been shown to converge upon grid refinement.

Figure 11 shows results calculated on a 4000-cell grid using the SW EOS, and the PR EOS

with and without the model for the triple point and vapor–solid equilibrium behavior. Five pressure

plateaux can be identified in Figure 11a. Apart from the initial pressure plateaux there are three

intermediate plateaux, one at the saturation line, at approximately 1.75MPa, one at the triple

point (0.518MPa), and one apparently at the sublimation line, at approximately 0.3MPa. In an

examination of Figures 11b and 11e, it is seen that this pressure plateau is split between a left part

at the sublimation line and a right part as a high-temperature vapor.

Regarding the different EOSs, two main effects can be seen in Figure 11. First of all, the SW

EOS predicts a faster-moving liquid-phase rarefaction wave, seen on the left-hand side in Figure 11a.

This is caused by the higher liquid speed of sound predicted by the SW EOS compared to the PR

26



0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500

P
(b

ar
)

t (s)

SW
PR

(a) Pressure

200

210

220

230

240

250

260

270

280

290

300

0 500 1000 1500 2000 2500 3000 3500

T
(K

)

t (s)

SW
PR

(b) Temperature

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

z
(-

)

t (s)

zs (SW)
zv (SW)
zs (PR)
zv (PR)

(c) Mass fractions

Figure 10: Comparison of the Span–Wagner (SW) and Peng–Robinson (PR) EOS for the vessel
simulation.
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EOS, cf. Figure 5c. Second, the PR EOS without the solid model fails to predict the sublimation

plateau, as seen in Figure 11c, and it underestimates the highest temperature by 13 K and the

lowest temperature by 8 K, Figure 11b. This indicates that, in order to obtain accurate results, it is

necessary to include solid formation in the model.

Depressurization of a pipe

We now consider a case in which the state will dynamically pass from single-phase to two-phase

(vapor–liquid), three-phase (vapor–liquid–solid), and then to two-phase (vapor–solid). A closed

pipe of length 100m is filled with CO2 at a pressure of 10MPa and a temperature of 300K. At

time t = 0, the right-hand end is fully opened to atmospheric conditions, and expansion waves start

traveling to the left. This is illustrated in Figure 12, where the SW EOS and a computational grid

of 1000 cells have been employed. As in the previous section, the MUSCL-FORCE scheme was

employed with the minmod limiter and a CFL number of 0.5. At t = 5.5s, practically the whole

pipe is at the triple point. After that, the pressure decrease continues, with CO2 in a vapor state with

some solid.

The present case constitutes a challenging test regarding the robustness of the thermodynamic

routines. It is also challenging for the numerical method employed to solve the fluid eqs 39–41, in

particular, because of the strongly varying mixture speed of sound.

The case has also been calculated employing the PR EOS. A comparison between the results

obtained using the SW and the PR EOSs is displayed in Figure 13 for time t = 0.2s. Appreciable

differences can be noted in the pressure and the temperature. Compared to the SW reference EOS,

the PR EOS gives too low pressure, temperature, and mixture density, and too slow decompression

wave speed. It is interesting to note that, in the present case, the SW EOS predicts that the pipe is

emptied faster than the PR EOS, while it was the other way around for the vessel in Figure 10. This

is because the SW EOS gives a higher speed of sound, which influences the pressure propagation

in the pipe, but which does not enter directly into the vessel model. The plot of the liquid volume

fraction in Figure 13d illustrates that the fluid is in a single-phase state until about x = 84m, after
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which phase change takes place.

The case is further illustrated in Figure 14 employing the SW EOS. Figure 14a shows the

mixture speed of sound plotted together with the flow velocity. It can be seen that the flow is

subsonic in the pipe. The speed of sound is equal to the single-phase liquid speed of sound in the

liquid region. As the fluid enters the two-phase region, the speed of sound drops discontinuously.

At the outlet, the flow velocity and speed of sound are equal, which means that the flow is choked.

As shown in Figure 13d, the specific entropy is constant in the pipe. This is because no source terms

are added to the governing equations.

Figure 15 displays results for time t = 7.4s. At this time, the state in the pipe has passed the

triple point. The differences between the SW and PR EOSs are now considerable. In particular,

the pressure predicted by the SW EOS in Figure 15b has reached an atmospheric level, while the

pressure predicted by the PR is still at at about 0.48MPa. We have also included data calculated

using the PR EOS without taking the solid formation into account (labeled “ns”). For the pressure

and temperature in Figures 15b and 15c, this gives values lying between those calculated using the

SW and PR EOSs when the solid is accounted for. This is since the solid formation retards the
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depressurization of the fluid inside the pipe.

Conclusions

In this work, we have considered fluid-dynamics simulations of CO2. In such simulations, the

governing equations are commonly formulated such that it is natural to employ a density–energy

state function. Furthermore, in depressurizations from elevated pressures to atmospheric conditions,

it is necessary to account for the presence of dry ice. To do so, we have devised a method for handling

solid–liquid–vapor CO2 in conjunction with the Span–Wagner (SW) reference EOS. The method has

been shown to be robust in challenging test cases. It therefore enables fluid-dynamics simulations

with accurate CO2 properties. To illustrate the effect of the EOS in fluid-dynamics simulations,

we have compared results obtained using the SW EOS and the Peng–Robinson (PR) EOS. Since

the thermodynamic variables are coupled through the fluid-dynamics governing equations, the

EOS generally affects the whole simulation result. Our simulations have also indicated that failure
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to account for the formation of solid CO2 may entail significant errors, even if the solid volume

fraction is low.
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