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ABSTRACT 
European and global power grids are moving towards a 
Smart Grid architecture. Supporting this, advanced 
measurement equipment such as PQAs and PMUs are 
being deployed. These generate vast amounts of data upon 
which machine learning models capable of forecasting 
incipient faults can be built. We use live measurements 
from nine PQA nodes in the Norwegian grid to predict 
incipient interruptions, voltage dips, and earth faults. After 
training ensembles of gradient boosted decision trees on 
spectral decompositions of cycle-by-cycle voltage 
measurements, we evaluate their predictive performance. 
We find that interruptions are easiest to predict (95 % true 
positive, 20 % false positives). Earth faults and voltage 
dips are more challenging. Our models outperform naïve 
classifiers. We have explored forecast horizons of up to 40 
seconds, but we have indications that forecast horizons of 
at least a few minutes are feasible. 

INTRODUCTION 
Changes in how electric energy is generated, consumed, 
distributed, and transmitted are beginning to challenge the 
reliability of the European power grid [1,2,3]. At the same 
time, advances in instrumentation, communications, and 
data analysis are driving novel solutions to address these 
challenges [2,4]. Real-time grid monitoring is unlocking a 
torrent of data driving development of new methods for 
fault detection, fault localisation, and self-healing [5,11]. 
 
Of particular interest in this contribution is the data 
becoming available through deployment of high-
resolution monitoring instrumentation, such as Power 
Quality Analysers (PQAs) and Phasor Measurement Units 
(PMUs). These instruments continuously record voltage, 
phase, and power data as well as tag detected events 
(faults). When combining this data with machine learning 
(ML) methods, advances in detection, characterisation, 
and prediction of faults are becoming possible [3,5,6,12]. 
 
As of the end of 2018, existing work on predicting faults 
based on PQA data is sparse. Authors report successful use 
of clustering methods and multi-hidden Markov models to 
predict disturbances [6,7,8]. On short time horizons, 
LSTMs have also been successfully deployed to predict 
disturbances [9].  

Continuing along this track, this contribution demonstrates 
the feasibility of predicting a range of incipient events 
from Norwegian PQA data.  
 
The structure of the contribution is as follows. We begin 
by summarising the sources of data with some emphasis 
on how the PQA infrastructure and data processing and 
archiving pipelines look like. This is followed by a 
description of the actual data. We then describe the 
machine learning models and their evaluation metrics. 
Before concluding, we evaluate and compare our models 
with respect to classification performance. 

DATA SOURCES 
Our objective is to export PQA measurements that precede 
a fault to train a machine learning model to predict such 
faults on previously unseen data. Doing so requires a 
mature data collection, archival, and retrieval solution, 
which we now describe prior to characterising the data. 

PQA Infrastructure & Data Pipeline 
Norwegian grid companies must install PQAs in at least 
one critical node in their concession area. Most are 
installed in the high- (HV) and medium-voltage (MV) 
grid. They measure parameters relating to voltage quality, 
such as voltage level, frequency and harmonic distortion.  
 
We analyse data from Elspec PQAs, which continuously 
sample voltage and current waveform at rates of up to 50 
kS/s with data being compressed where appropriate. They 
can therefore efficiently store and reproduce continuous 
waveforms for long periods. Elspec devices collect many 
events and disturbances every year, and some nodes in the 
Norwegian grid have collected data continuously for over 
15 years. A 10-year time-series from an Elspec node in a 
22 kV MV grid is shown in Figure 1. 

 
Figure 1: 10 years of RMS phase voltage (22 kV MV grid). 
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The software Automatisk hendelsesanalyse – AHA (Eng. 
"Automatic event analysis") is used to generate lists of 
fault events and disturbances based on the measurement 
data from PQAs [10]. The tool sweeps time-series of 
power quality (PQ) data from selected nodes to detect 
different types of events. The tool can identify and classify 
interruptions, earth faults, voltage dips, and rapid voltage 
changes. These are annotated with event type, start time 
and end time for each event. This information is used to 
generate time-series for various voltage quality 
parameters, with a user-customised duration and 
resolution for each event.  

Time-series used in this contribution have been generated 
automatically based on the lists of faults from AHA. In our 
pipeline, the user can select what kind of faults to load 
time-series for, as well as specify the number of time-
series without faults.  

Data Used In This Work 
We exported 7616 time-series (observations) from nine 
PQA nodes in the Norwegian HV and MV grid. The 
selection covers voltage levels from 22 kV to 132 kV and 
each observation contains 1800 seconds (30 minutes) of 
data. Exports contain cycle-by-cycle RMS voltages for the 
three phase-to-ground and phase-to-phase voltages. Each 
observation contains 540’000 data points for a total of 
40 GB of data. 
 
There are 4101 observations without faults, 1944 with 
recorded voltage dips (< 90 % of nominal voltage), 133 
with interruptions, and 1438 with earth faults. We exclude 
observations with problematic data (e.g., missing data on 
one or more phases) and retain 4101, 1940, 132, and 1433 
observations (no faults, voltage dips, interruptions, and 
earth faults). Planned interruptions were not removed. 

METHODS & MODELS 
Classification problems in machine learning generally go 
through three steps. First, the features the classifier learns 
on must be selected. This is called feature extraction (or 
selection). Second, the selected algorithm is trained. Third, 
the predictive performance is evaluated. 
 
We use an ensemble of gradient boosted decision trees (a 
variant of random forests) to predict whether a fault is 
incipient in each time-series. As input features, we use the 
smoothened power spectral density of the three phase-to-
ground and phase-to-phase RMS voltages. The output that 
the model attempts to match is whether a fault occurred in 
a given time-series. Classification performance is assessed 
by comparing receiver operating characteristic (ROC) 
curves as well as the area under these curves (AUC). We 
use (stratified) five-fold cross-validation. We attempt to 
predict each fault class independently, i.e., we have three 
binary classification problems instead of a single multi-
class problem. In each run, the data is balanced 50/50 
between time-series with and without faults by 
undersampling the majority class. 
 
Figure 2 illustrates the first step of the modelling, where 
we extract features from the time-series for the ML 
algorithm to train on. Features are the power spectral 
densities at different frequencies. The example compares 
the smoothened spectra of a time-series without a recorded 
fault to one with a sudden voltage dip at the end of the 
measurement period. While the differences in spectrum is 
principally what the classifiers will pick up on during 
training, we note that there are many different ways of 
calculating spectra. In particular, we must select (i) over 
which time interval, (ii) at which time-slice, and (iii) into 

 
Figure 2: Illustration of the feature extraction procedure. Left: Single-phase cycle-by-cycle RMS voltage for an observation without 
a recorded fault (blue) and an observation with a recorded fault (red, note the voltage drop at the right edge). Right: The corresponding 
(smoothened) Fourier spectrum in terms of the power spectral density. The two operating conditions have spectra that differ 
significantly above 10 Hz, which is what the classifier picks up on. Note that this is a simplified example. 
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how many frequency components we process the time-
series. The second parameter is particularly important, 
because it sets the forecasting horizon. There are also 
additional parameters that we have not explored here to 
limit scope (e.g., how to smooth the power spectral 
density). To understand model performance, we evaluate 
the classifier over a range of parameter choices, cf. Table 
1. In total, we evaluate 264 combinations. 
 
We use the XGBoost implementation of gradient boosted 
trees with default hyperparameters [13]. The smoothened 
spectrum is calculated using the Welch method [14], with 
a top hat window function and segment lengths twice the 
number of frequency bins. 
 
During inference, the machine learning models accept the 
spectral decomposition of a time-series as input and return 
a probability of a given incipient fault. To translate a 
probability into a binary decision (“fault” or “no fault”), a 
threshold is set. Setting a high threshold only labels faults 
in which the classifier is confident (low false negative 
rate), but this comes at the cost of potentially missing a 
large number of faults (low true positive rate). Conversely, 
a low threshold will detect more faults (high true positive 
rate), but at the cost of classifying nominal conditions as 
faults (high false negative rate). By sliding the threshold, 
true and false positive rates can be traded off. To compare 
different models across all thresholds, we can calculate 

true and false positive rates across thresholds. This results 
in a ROC curves, summarised by the AUC. Models with 
larger AUC have more skill and naïve (random) classifier 
has AUC of 0.5. 
 
If we hold out some observations with known results, we 
can use these to evaluate classification performance. By 
varying which observations to hold out, we can further 
harden the classifier against overfitting. We vary the split 
five times for cross-validation. The split is stratified so that 
the class balance is maintained.  

MODEL EVALUATION 
Figure 3 shows the ROC curves for the best- and worst-
performing models for each type of fault. We note: 
 
1. Both best- and worst-performing models are most 

successful at predicting incipient interruptions. They 
are less capable of predicting earth faults and least 
capable of predicting voltage dips. 
 

2. The best model can predict 95 % of interruptions at a 
false positive rate of 20 % at a threshold of 0.35 (to 
limit scope, we do not show rates across thresholds). 
The best earth fault prediction only reaches this level 
at a false positive rate of 70 % (threshold of 0.2). No 
model achieves this performance for voltage dips 
without avoiding false positive rates exceeding 95 %. 

 
Figure 3: ROC curves for the best (left) and worst (right) performing models for each fault type. The diagonal line is a naïve classifier, 
which tosses a coin to determine whether a fault is incipient or not. The AUC for a naïve classifier is 0.5. 

Table 1: Overview of parameters that have been varied for each model. In total, 11 * 6 * 4 = 264 models were evaluated. 

Parameter In Units Of Explored Values 
Forecast Horizon Number of Samples 0, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 
 Seconds 0, <1, <1, <1, <1, 1, 2.5, 5, 10, 20, 40 
Spectral Transform Input Number of Samples 2048, 4096, 8192, 16384, 32768, 65536 
 Seconds 40, 80, 160, 320, 640, 1280 
Frequency Bins Number of Bins 8, 16, 32, 64 
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3. Even the worst-performing model for interruptions 
predicts 95 % of interruptions at a false positive rate 
of 20 % (using threshold of 0.2). This is much better 
than the models for earth faults and voltage dips. 

 
Overall, these first results are encouraging, especially for 
the prediction of full interruptions. While earth faults and 
voltage dips are more difficult to predict, even the worst 
models outperform a naïve coin toss. However, an 
operational deployment will want to balance true and false 
positives rates. From a model performance perspective, 
this can be done by selecting the threshold corresponding 
to the point of the ROC curve that is closest to the upper 
left corner. For the best models (and the worst model in the 
case of interruptions), this point is comparatively easy to 
locate. For the worst models, visual selection of this point 
is ambiguous. Trading off true and false positives is 
therefore more nuanced. 
 
But how exactly do the models depend on the parameters 
of the feature extraction, i.e. the forecast horizon, the 
length of the signal for the spectral decomposition, and the 
number of frequency bins? Figure 4 shows model 
performance as each parameter is varied while 
marginalising over the other two. We find that: 
 
1. Again, predictive performance for interruptions is 

best, performance for earth faults is intermediate, and 
voltage dips are the most difficult to predict.  

 
2. The performance for each fault type is nearly constant 

as the forecast horizon increases. The relative 
difference of the median AUC between the shortest 
(0 s) and longest (40 s) forecast horizons is only 
1.6 %, 0.5 %, and 1.5 % (service interruption, earth 
fault, and voltage dip, respectively). This suggests that 
the horizon can be increased beyond 40 seconds. 

 
3. Increasing the number of samples used to calculate the 

spectrum increases the predictive performance. The 
improvement is largest for voltage dips (13 % relative 

difference in median AUC between using fewest and 
most samples) and earth faults (10 % improvement), 
but small for outages (3 % improvement). 

 
4. Increasing the number of frequency bins used as 

features weakly decreases performance. Comparing 8 
to 64 bins, the median AUC decreases by 1.4 %, 
0.5 %, and 2 % (interruptions, earth faults, and 
voltage dips, respectively). 

 
5. When marginalising over the two variables not shown 

in each panel, the difference between the median and 
the 10/90 percentiles of the computed AUCs is usually 
between 5 % and 10 %. This suggests that the trends 
are robust and are only weakly complicated by higher 
order interactions. 

 
The most important finding is that predictive performance 
does not decrease drastically over the explored forecast 
horizons. This suggests that extending the horizon to at 
least a few minutes is feasible. As this is a most critical 
requirement for operationalisation, we will explore this in 
future work. 
 
The improved performance from increasing the number of 
samples is likely related to the increased frequency 
resolution during the spectrum calculation. While the 
improvement is welcome, it must be balanced by the 
(linearly) increased computational load. The performance 
decrease when using more frequency bins is likely caused 
by overfitting, which manifests as decreased out-of-
sample performance (recall that we use six voltage pairs, 
so that 64 frequency bins means using 384 features). 

CONCLUSION 
We explored how well gradient boosted decisions trees can 
predict three different types of fault events (interruptions, 
voltage dips, and earth faults) based on cycle-by-cycle 
phase-to-phase and phase-to-ground voltages in the HV 
and MV grid. After describing our data pipeline, as well as 

 
Figure 4: Model performance (expressed as AUC; the area under the ROC curve) depending on forecast horizon (left), length of the 
time-series going into the spectral transform (middle), and number of frequency bins (per voltage pair) used in the spectral 
decomposition (right). We distinguish between fault types (see legend). As we explore three model parameters in total, each panel 
marginalises (by indicating the 10 to 90 percentile range) over the two parameters. 
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the method for generating user-specified datasets based on 
power quality data, we presented results obtained from a 
set of 7616 observations from nine measurement nodes in 
the Norwegian power grid. 
 
While service interruptions are easiest to predict, earth 
faults and voltage dips are more challenging. The best-
performing models can be tuned to successfully predict 
95 % of faults at a false positive rate of 20 %. Depending 
on operational requirements, these metrics can be traded 
off against one another. 
 
While we have only explored forecast horizons of up to 
2048 samples (~40 seconds), results suggest that horizons 
on the order of at least a few minutes are possible. Along 
with more complex models and larger amounts of training 
data, we plan to explore this in future work. 
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