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A B S T R A C T

Knowledge about extreme ocean currents and their vertical structure is important when designing offshore
structures. We propose a method for statistical modelling of extreme vertical current velocity profiles,
accounting for factors such as directionality, spatial and temporal dependence, and non-stationarity due to
the tide. We first pre-process the data by resolving the observed (vector) currents at each of several water
depths into orthogonal major and minor axis components by principal component analysis, and use harmonic
analysis to decompose the total (observed) current into the sum of (deterministic) tidal and (stochastic)
residual currents. A complete marginal model is then constructed for all residual current components, and
the dependence structure between the components is characterized using the conditional extremes model by
Heffernan and Tawn (2004). By simulating under this model, estimates of various extremal statistics can be
acquired. A simple approach for deriving design current velocity profiles is also proposed. The method is tested
using measured current profiles at two coastal locations in Norway, covering a period of 2.5 and 1.5 years.
It is demonstrated that the method provides good extrapolations at both locations, and the estimated 10-year
design current velocity profiles appear realistic compared to the most extreme velocity profiles observed in
the measurements.

1. Introduction

Knowledge about ocean currents and their vertical structure is
important as a design criterion for ocean and coastal structures. For
offshore structures located in shallow water, waves are typically the
most important load factor, while in deeper water, currents can actually
dominate the load equation (Forristall and Cooper, 1997). This is
also the case for many structures located in the coastal zone, where
coastal features such as islands and skerries can provide shelter from
severe sea states, whilst currents might retain, or even increase, their
strength. An example of the latter type of structure is aquaculture
fish cages, where the mooring line tension is generally dominated by
current loads (Huang et al., 2008). It is clear that simplification of the
vertical current profile can introduce substantial errors in the calculated
design load in such cases. In a review paper on recent developments
of ocean environmental description (Bitner-Gregersen et al., 2014),
improved accuracy of the statistical description of currents is called for;
particularly regarding change of the current profile with water depth.
This issue is addressed in the present paper.

Unlike many other time signals in nature, ocean currents include
a deterministic signal due to the astronomical tide, generally becom-
ing much stronger and important near the shore and in shallow wa-
ter (Pugh and Woodworth, 2014). Applying standard tidal analysis
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techniques, the tidal signal can be extracted and predicted with very
high accuracy for ‘any’ future time (Robinson and Tawn, 1997). Cur-
rents have this in common with sea-levels, so the methods used for
estimating the distribution of extreme currents and sea-levels are there-
fore somewhat related. Two broad classes of methods exist: (1) Direct
methods, analysing extremes of the total (observed) current directly,
and (2) indirect methods, exploiting the decomposition of the total
current into (deterministic) tidal and (stochastic) residual currents,
modelling both separately before inferring the distribution of extreme
total currents. Our focus will be on the second class, sometimes re-
ferred to as the joint probabilities method (JPM). This method was
originally introduced for estimation of extreme sea-levels by Pugh and
Vassie (1978, 1980), and later applied for estimating extreme currents
by Pugh (1982). Extensions were given by Robinson and Tawn (1997),
demonstrating substantial benefits over traditional direct methods. For
sea-levels, Dixon and Tawn (1999) found that the observed bias in
direct methods was primarily caused by the non-stationarity introduced
by the tide.

Extreme currents are far more difficult to estimate than extreme
sea-levels, not only due to their directional and spatial variation, but
also because of the difficulty of obtaining sufficiently long series of
observations (Pugh and Woodworth, 2014). Even if a long time series
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is available, a particular issue when dealing with extremes is that rare
events are necessarily unusual, so the quantity of directly relevant
observations is limited. This difficulty is compounded in the spatial
setting (such as for current profiles) because forecasting then requires
extrapolation into a high-dimensional space, with all its associated
uncertainties. It is thus important that the statistical models used should
both be flexible and have a strong mathematical foundation, so that
such extrapolation has an adequate basis (Davison et al., 2012).

Arguably, the most useful and flexible current approach for mod-
elling extremes in high dimensions is the conditional extremes model
by Heffernan and Tawn (2004). Based on an assumption of the asymp-
totic form of the conditional distribution of a 𝑑-dimensional variable,
given that it has an extreme component, they present a semipara-
metric approach valid for extremes from a wide class of multivariate
distributions, applicable to problems of any dimension. Examples of
application are spatial risk assessment of extreme river flows (Keef
et al., 2009), joint modelling of extreme significant wave height and
spectral peak period (Jonathan et al., 2010, 2013), modelling of tempo-
ral dependence in river flows (Eastoe and Tawn, 2012) and modelling
spatial extremal dependence of sea surface elevations at neighbouring
locations (Eastoe et al., 2013). The conditional extremes model was
introduced for joint modelling of vertical current profiles by Jonathan
et al. (2012), and Raghupathi et al. (2016) applied it both for joint
modelling of currents and waves, and for modelling of current profiles.
Owing to the positive experiences of the mentioned authors in using
the Heffernan and Tawn model and its solid theoretical foundation, this
model will be applied here as well. The additional constraints and slight
change in model formulation recently proposed by Keef et al. (2013),
are also implemented to overcome a few complications that have been
identified with using the Heffernan and Tawn model.

As commented by Jonathan et al. (2012), any viable approach to
modelling extreme vertical current velocity profiles must account for
(a) the vector nature of the current at each depth, and (b) the depen-
dence between currents at different depths. Instead of using empirical
orthogonal functions (EOF) to pre-process the data and then perform
extreme value analysis on just a few energetic modes of the observed
current profiles (see, e.g., Forristall and Cooper (1997)), we choose to
model orthogonal current components at each depth directly to avoid
loss of information. Our approach is therefore closely related to that
presented by Jonathan et al. (2012), however, we focus on modelling
‘instantaneous’ mean velocity profiles rather than profiles consisting of
hourly maxima and minima of the current components. By considering
orthogonal current components at each depth, we bypass the necessity
of explicitly introducing covariates (as would be required for modelling
current speeds and directions; see Raghupathi et al. (2016)).

The proposed method accommodates the vector nature of the cur-
rent by considering orthogonal current components at each depth, and
the dependence between the (residual) current components is char-
acterized by the conditional extremes model. Furthermore, observed
temporal dependence, leading to clustering of extremes, is accounted
for in both the marginal tail and dependence modelling by applying
the peaks over threshold (POT) method, and the non-stationarity intro-
duced by tidal currents is handled by exploiting the decomposition of
the total current into tidal and residual currents. The key steps of the
proposed method are summarized in Fig. 1. We outline each of the steps
herein, and also propose a simple and pragmatic approach for deriving
design current velocity profiles. The method is believed to provide a
valuable addition to existing methods for estimation of extreme current
velocity profiles, and we test it using ADCP (acoustic Doppler current
profiler) data collected at two coastal locations in Norway.

The paper is organized as follows. In Section 2, the considered
locations, together with the available data, are described. A brief, gen-
eral discussion on the accuracy of the measurements is also included.
The required pre-processing of the data is described in Section 3.
This includes application of principal component analysis (PCA) to
resolve the current velocities into major and minor axis components

Fig. 1. Flowchart of the steps involved in the proposed method for estimation of design
current velocity profiles.

at each depth and decomposition of the current velocity into tidal
and residual currents by harmonic analysis. In Section 4, a general
introduction of the conditional extremes model by Heffernan and Tawn
(2004) is given. Section 5 constitutes the main part of this paper.
Here, the statistical modelling of the residual current components is
described in detail and applied to obtain extreme vertical residual
and total current profiles at the two considered locations. We present
an approach for modelling the complete marginal distribution (bulk
and tail distribution) of each residual current component, describe the
application of the conditional extremes model for characterizing the
dependence structure between the components, and outline the Monte
Carlo procedure used to simulate extreme residual current and total
current velocity profiles. The simulated velocity profiles are compared
with the measurements. In Section 6, a simple approach for deriving
design current velocity profiles is proposed, and the main conclusions
and a discussion on assumptions and possible improvements are given
in Section 7.

2. Locations and data

As indicated in Fig. 2, the measurements have been made at two
coastal locations off the west coast of Trndelag, Norway, roughly 150
km east of the shelf break. The Munkskjæra site (63.8221 N, 8.3836 E)
has a water depth of approximately 80 m, and is located in vicinity
of a number of small islands and skerries, forming a strait in the
east–west direction. Fifteen kilometres to the northeast, at Salatskjæra
(63.9200 N, 8.5927 E), the water depth is approximately 40 m. This
site is surrounded by a myriad of small islands, underwater rocks and
skerries, resulting in a local bathymetry that is even more complex than
at Munkskjæra. A simple statistical analysis of the current and wave
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Fig. 2. Nautical chart showing the two considered locations (Source: The Norwegian
Mapping Authority).

conditions at both sites has previously been made at an earlier stage of
the measurement programme (Kristiansen et al., 2017).

There are two major current systems in this coastal area; the Nor-
wegian Atlantic Current, primarily flowing along the shelf edge, and
the Norwegian Coastal Current, causing high current speeds near the
coast (Sætre, 2007). The larger fjord systems along the coastline are
forced by freshwater runoff from land, resulting in a surface outflow
of brackish water that eventually adds to the Norwegian Coastal Cur-
rent (Broch et al., 2017). From the island Frya (see Fig. 2), a chain of
small islands, stretches north-eastward. Between this island chain and
the mainland of Norway, is a deep ocean bay, Frohavet, cutting inwards
towards the entrance of Trondheimsfjorden. The local flow conditions
at the considered sites (Munkskjæra and Salatskjæra) are dominated by
water exchange between the Norwegian Sea (to the west) and Frohavet,
primarily following the semidiurnal tidal cycle. Wind-induced currents
are of importance too, and the rough topography creates a dynamic
environment, including tidal residual currents generated by interaction
of tidal currents with coastal features and bottom topography, and is
also responsible for steering the current along its contours.

The measurements at both locations were made with a three-beam
acoustic Doppler current profiler (ADCP) of type Nortek Aquadopp
400 kHz, mounted on a moored oceanographic surface buoy (Seawatch
Midi 185). An ADCP utilizes a physical principle called the Doppler
effect to measure the current speed and direction in multiple depth cells
through the water column. The Doppler effect is exploited by emitting
sound pulses from transducers (beams) which are reflected (echoed) by
particulate matter moving with the water. The signal is then shifted in
frequency (Doppler shifted) in proportion to the particle velocity; see,
e.g., Nortek (2017) for additional information. Note that the resulting
measured velocity vector (in a given depth cell) by an ADCP is not an
instantaneous velocity at a fixed point, but rather a spatial average
with an inherent assumption that the flow is homogeneous in the
horizontal plane over the distances separating the acoustic beams (Lu
and Lueck, 1999). The current measurements were performed with
a sampling rate of 1 Hz over an ensemble interval of 10 min (600
samples) with output once every hour. This yields a time series of
hourly (10 min average) current speeds and directions. The speed range
was 0–300 cm/s, discretized by 256 points (bin size of 1.2 cm/s), and
the depth cell size was 3 m. The data were post-processed internally on
the buoy before being sent to land every hour.

The measurement period at Munkskjæra was almost 2.5 years, from
February 2016 to end of May 2018, and we consider the resulting
hourly measurements of easterly and northerly velocity components at

depths 4 m, 10 m, 16 m, 22 m, 28 m and 34 m below the surface.
At Salatskjæra, the buoy deployment lasted approximately 1.5 years,
from March 2016 to September 2017, and we consider the same depths
as for Munkskjæra, apart from depth 34 m which was left out as the
acoustic measurements here appeared to be (occasionally) affected by
the proximity to the seabed. The reason for focusing on the upper part
of the water column is primarily a consequence of the measurement
setup. In addition, the considered sites are located in an important area
for fish farming (mainly Salmon farmed in open sea-cages). Knowledge
of the current velocity as a function of depth during extreme events
in the upper part of the water column is important both for structural
design of the cages and for the welfare of the fish.

An essential point when relying on measurements is their quality
and validity. The performance of acoustic Doppler current profilers
in laboratory flumes is generally found to be good for measuring
mean current velocity profiles, particularly in flow with low turbu-
lence (Nystrom et al., 2007). However, in a recent 5-year measurement
program in the North Sea, large discrepancies were observed between
overlapping current speed data measured by different current profilers
at the same locations and water depths, suggesting that the accuracy
of current profilers is not as good as the user expects; see Bruserud
and Haver (2017). Also, as our measurements are performed with
ADCPs mounted on surface buoys, an aspect likely to affect of their
validity is the presence of surface waves (an effect which is hoped
to be ‘averaged out’ over the ensemble interval). There is only a
limited literature investigating the effect of wave-induced motions on
buoy-mounted ADCPs (see Mayer et al. (2007), Seim and Edwards
(2007), Bruserud and Haver (2017), Lohrmann (1998) and Winant et al.
(1994)). The overall conclusion is that the buoy motion does affect the
measurements, but the above references do not agree on the magnitude
of the effect. The latter is not really surprising considering that the
buoy response depends on multiple factors such as buoy type, mooring
system, wave conditions (including Stokes drift; see, e.g., Röhrs et al.
(2012) and Longuet-Higgins (1953)) and ambient (Eulerian) current.
This will not be discussed further; however, we emphasize that any sta-
tistical method assumes the input data to be valid. The corresponding
validity of the estimated extremes therefore depends critically on the
quality of the measurements.

3. Pre-processing of the data

Prior to the statistical modelling, pre-processing of the current
velocity data is required. Although the techniques used are standard
within the oceanographic community (Boon, 2004), they may not be
familiar to an ocean engineer working with structural design. For
completeness, we therefore provide some level of detail in the present
section. Specifically, the mathematical techniques principal component
analysis (PCA) and harmonic analysis is introduced, along with their ap-
plication. We mention that, as presented here, the order of application
of the two techniques is interchangeable.

3.1. Principal component analysis — resolving the current velocity into
major and minor axis components

Principal component analysis (PCA), sometimes referred to as em-
pirical orthogonal functions (EOF), is a statistical approach where
the usual objective is to condensate the information contained in a
large number of (interrelated) original variables into a smaller set of
linearly uncorrelated variates with a minimal loss of information (in
terms of variance); see Jolliffe (2002). This technique has been used
for decades by oceanographers and meteorologists to analyse complex
time series (Forristall and Cooper, 1997). In our case, the motivation
for applying PCA is primarily to obtain uncorrelated current compo-
nents at each depth, following Jonathan et al. (2012), not to reduce
the dimensionality of the problem (unless the current to be analysed
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is rectilinear). Note that uncorrelated variables are not necessarily
statistically independent.

Consider a time series consisting of 𝑛 measured horizontal current
velocities at a given depth, expressed as orthogonal vector components
𝐮𝑒 and 𝐮𝑛; 𝑢𝑒,𝑘 and 𝑢𝑛,𝑘, 𝑘 = 1,… , 𝑛, being the velocity observed at
time 𝑡𝑘 in the eastward and northward direction, respectively. We now
want to apply PCA to convert this set of (generally correlated) variables
into a set of values of linearly uncorrelated variables, the principal
components. This is achieved by using an orthogonal transformation,
defined in such a way that the first principal component has the
greatest fraction possible of the total variance and, consequently in the
two-dimensional case, the second principal component has the least.
The practical procedure for obtaining the principal components is as
follows:

Our time series of horizontal current velocities is expressed as a 𝑛×2
data matrix 𝐔 =

[

𝐔𝑒 𝐔𝑛
]

, where 𝐔𝑒 and 𝐔𝑛 are the eastward and
northward velocity vectors with their mean value subtracted. The sample
covariance matrix 𝐒 is then given as

𝐒 = 1
𝑛 − 1

𝐔T𝐔 (1)

where the diagonal elements of 𝐒 is the variance of 𝐮𝑒 and 𝐮𝑛, respec-
tively.

To find the principal components, we must calculate the eigenvalues
and corresponding eigenvectors of 𝐒. The resulting 2 × 2 unit eigen-
vector matrix, 𝐕, is then sorted so that the first column of 𝐕 is the
eigenvector corresponding to the largest eigenvalue. The first principal
component axis then simply refers to the first column of 𝐕 and the
second principal axis to the second column. The values, or scores, of
the original variables onto the principal axes are then found as
[

𝐮𝑀 𝐮𝑚
]

=
[

𝐮𝑒 𝐮𝑛
]

𝐕 (2)

where 𝐮𝑀 is termed the major axis component and 𝐮𝑚 is termed the
minor axis component, corresponding to the first and second principal
component, respectively.

In practice, 𝐕 in Eq. (2) is nothing more than a rotation matrix.
This is seen in Fig. 3 and 4, showing the resulting major and minor
axis of the surface current velocity observations at Munkskjæra and
at Salatskjæra. The dominant current direction is seen to be closely
aligned with the east–west axis at Munkskjæra and in the southeast–
northwest direction at Salatskjæra. The direction of the highest ob-
served velocities at Salatskjæra is however not aligned with the major
axis. The choice of positive directions is up to the analyst to decide; our
choice is indicated in the figures.

The procedure above has been followed to resolve the current veloc-
ity into uncorrelated major and minor axis components independently
at each depth at the two considered sites. At the Munkskjæra site, the
major axis component account for 90−95% of the total current velocity
variance, increasing with depth as shown in Fig. 5(a). In Fig. 5(b),
it is seen that the relative major axis variance is less prominent at
Salatskjæra, where it accounts for 75 − 85% of the total variance. The
direction of the major axis is determined by the local bathymetry and
topography at both locations. A slight anti-clockwise and clockwise
rotation for increasing depths is seen at Munkskjæra and Salatskjæra,
respectively.

Here, the direction of the major and minor axes has been decided
based on the total current velocity at each depth, following Jonathan
et al. (2012). Other rational choices exists, however — for instance
deciding their direction based on the residual current velocity at each
depth and/or only considering velocities whose magnitude exceeds
some threshold. The best choice is dependent on the data at hand.

3.2. Harmonic analysis — decomposing the total current into tidal and
residual currents

The measured total current velocity is the vector sum of an essen-
tially deterministic tidal current and a stochastic (random) residual

Fig. 3. Current velocity at 4 m depth at Munkskjæra. The (positive) major and minor
axis resulting from application of PCA are indicated. The white cross is the bivariate
mean, revealing a net surface flow in the eastward direction.

Fig. 4. Current velocity at 4 m depth at Salatskjæra. The (positive) major and minor
axis resulting from application of PCA are indicated. The white cross is the bivariate
mean, revealing a net surface flow in the northeastward direction.

Fig. 5. Total, major axis, tidal, and residual current velocity variance with depth.

current. It is only meaningful to perform extreme value analysis on
stochastic variables, so it would be desirable to decompose the observed
current into a tidal and a residual component at each depth. The
standard method for extracting the tidal signal from a time series is
called harmonic analysis and will be briefly described in the following.

Unlike many other time signals in nature, tides and tidal currents
are forced oscillations that occur only at known tidal frequencies (Boon,
2004). The driving forces originate from the gravitational fields of the
sun and moon, acting on a rotating earth, expressed mathematically
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as the tidal potential (Doodson, 1921). This astronomical forcing can
be written as a linear combination of sinusoidal terms, each having
a distinct amplitude, phase and temporal frequency (Foreman and
Henry, 1989). The oceanic response can be described in the same
manner, each sinusoid being referred to as a tidal constituent. Due to the
hydrodynamic effects caused by irregular coastal boundaries and the
bathymetry of the oceans, the amplitudes and phases of the constituents
can vary greatly, but their frequencies remain the same as those in the
tidal potential (Foreman and Henry, 1989). The tidal frequencies are all
linear combinations of the rates of change of the mean lunar time (the
earth rotation with respect to the moon) and five astronomical variables
that uniquely specify the position of the sun and moon; see Foreman
et al. (2009).

Unlike spectral analysis, harmonic analysis takes advantage of the
fact that the tidal frequencies are known in advance. Once a suitable
set of 𝑚 tidal constituents has been chosen, the amplitude and phase of
each constituent are calculated by solving a system of linear equations.
In the one-dimensional case, this equation system takes the form

ℎ(𝑡𝑘) = 𝐴0 +
𝑚
∑

𝑗=1
𝐴𝑗 cos

(

𝜎𝑗 𝑡𝑘 − 𝜙𝑗
)

(3)

where 𝐴0 is the mean, 𝐴𝑗 , 𝜙𝑗 and 𝜎𝑗 are the amplitude, phase and
frequency of constituent 𝑗, and ℎ(𝑡𝑘), 𝑘 = 1,… , 𝑛, is the observation
at time 𝑡𝑘. Eq. (3) is generally overdetermined (there exists more
equations than unknowns), and is therefore solved by a least squares
technique, minimizing the equation residuals.

The UTide MATLAB functions by Codiga (2011), have been ap-
plied for the harmonic analysis of the current velocity at each depth.
The functions take orthogonal current components along the first and
second axes in any right-handed coordinate system as input; con-
ventionally the eastward and northward components. The time series
are permitted to be irregularly sampled and/or contain gaps. UTide
then uses a refined two-dimensional, complex version of Eq. (3) to
(indirectly) solve for the so-called current ellipse parameters. The tip
of the velocity vector of a constituent traces out an ellipse over its
tidal period, so the goal is to find the lengths of its semi-major and
semi-minor axes, its angle of inclination and (Greenwich) phase; see,
e.g., Foreman (2004) for illustrative figures. The equation system can
be solved either by the ordinary least squares (OLS) method or by an
iteratively reweighted least squares (IRLS) method, the latter limiting
the sensitivity to outliers and reducing confidence intervals compared
to the OLS method (Codiga, 2011). Diagnostics to assess constituent
independence includes, among others, the conventional Rayleigh cri-
terion (a time series of length 𝑇 is required to distinguish between
two constituents with frequency separation of 𝑇 −1) and its noise-
modified version due to Munk and Hasselmann (1964), accounting for
the amount of non-tidal energy (noise) in the record. The so-called
nodal/satellite and astronomical argument corrections are evaluated at
the exact times of each measurement, removing the restriction that the
analysis periods should not be much longer than one year (Foreman
et al., 2009). The nodal/satellite corrections accounts for the fact
that the amplitudes and phases of the constituents are generally not
constant due to interaction with minor unresolved constituents (called
satellites), while the astronomical argument simply re-expresses phase
lags with respect to an absolute time and space origin (Foreman and
Henry, 1989).

There are a maximum of 146 possible tidal constituents that can
be included in UTide. Of these, 45 are astronomical in origin while
the remaining 101 are shallow water tides. The latter constituents arise
due to distortion of the tidal wave by shallow water effects, and have
frequencies that are multiples, sums and differences of the frequencies
of the astronomical constituents (see, e.g., Pugh and Woodworth (2014)
for further details). The automated decision tree constituent selection
method (default option in UTide) due to Godin (1972) and formalized
by Foreman (1977), was applied to decide which constituents to include

Table 1
Current ellipse parameters of the five most energetic tidal constituents at the
Munkskjæra and Salatskjæra sites at depth 4 m. The constituent period is given in
solar hours. 𝐿𝑚𝑎𝑗 and 𝐿𝑚𝑖𝑛 is the length of the semi-major and semi-minor axis. Positive
and negative 𝐿𝑚𝑖𝑛 means anticlockwise and clockwise rotation, respectively. 𝜃 is the
semi-major axis inclination, measured anticlockwise from the positive eastward axis,
and 𝑔 is the Greenwich phase.

Constituent Period [h] 𝐿𝑚𝑎𝑗 [cm/s] 𝐿𝑚𝑖𝑛 [cm/s] 𝜃 [deg] 𝑔 [deg]

Munkskjæra
𝑀2 12.42 18.8 −0.79 4.23 233
𝑆2 12.00 6.98 −0.51 4.85 273
Sa 8766 6.33 0.46 19.6 318
𝑁2 12.66 3.83 −0.14 4.41 212
MSf 354.4 3.52 0.11 11.8 239

Salatskjæra
𝑀2 12.42 15.7 −2.74 125 25.6
𝑆2 12.00 5.13 −1.14 121 60.1
𝑁2 12.66 3.05 −0.51 118 2.16
Sa 8766 2.34 −0.81 35.0 355
𝐾2 11.97 1.48 0.26 122 40.1

in the analysis. The method selected a total of 68 constituents for
inclusion in the harmonic analysis at both Munkskjæra and Salatskjæra.

The resulting current ellipse parameters of the five most energetic
tidal constituents are given in Table 1 for both sites. The tidal cur-
rent at Munkskjæra and Salatskjæra is semidiurnal, dominated by the
𝑀2 (principal lunar semidiurnal) and 𝑆2 (principal solar semidiurnal)
constituents. The seasonal, low-frequency constituent Sa (solar annual)
is also seen to be important, particularly at Munkskjæra. It should
be noted that this low-frequency constituent is largely influenced by
non-tidal forcing (Boon, 2004).

Once the current ellipse parameters have been obtained, UTide
can be used to reconstruct/hindcast the tidal current over the period
of observations. In the reconstruction, we conservatively neglect non-
significant tidal constituents having a signal-to-noise ratio (SNR) below
2 with respect to the raw signal at that frequency (default option in
UTide; see Codiga (2011)). The residual current in the major and minor
axis direction at depth 𝑖 are then given as

𝑢𝑅𝑀,𝑖(𝑡𝑘) = 𝑢𝑀,𝑖(𝑡𝑘) − 𝑢𝑇𝑀,𝑖(𝑡𝑘)

𝑢𝑅𝑚,𝑖(𝑡𝑘) = 𝑢𝑚,𝑖(𝑡𝑘) − 𝑢𝑇𝑚,𝑖(𝑡𝑘)
(4)

where subscript 𝑅 refers to the residual current and 𝑇 to the tidal
current (the latter includes the mean current velocity). If the eastward
and northward velocity components have been used as input to the
harmonic analysis, the velocities are easily transformed to components
along the major and minor axis at each depth using Eq. (2).

The decomposition of the total current into tidal and residual cur-
rent is shown in Fig. 6 and 7 for the major axis surface current at
Munkskjæra and Salatskjæra, respectively. Though only a 14-day period
is plotted, it is clear that the tidal current is important at both locations.
This is confirmed in Fig. 5, displaying the total, tidal, and residual
current velocity variance with depth at the considered locations. The
tidal current accounts for 57−71% of the total variance at Munkskjæra
and 59−68% of the total variance at Salatskjæra. Accordingly, the vari-
ance of the current we are to perform extreme value analysis on (the
residual current) is reduced by the same percentages. At both locations
the relative importance of the residual current increases towards the
sea surface. It is somewhat surprising to note that the total current
variance at the top bin (4 m) is slightly lower than that at 10 m at
both locations. When comparing buoy-mounted and bottom-mounted
ADCPs, Mayer et al. (2007) found that the near-surface measurements
of the buoy-mounted ADCPs were biased low. Though we have no
means of verifying it, this could be a possible explanation for the
observed near-surface velocity reduction in our measurements as well.

In the remaining sections, the tidal current is assumed to be de-
terministic and known at any time due to the preceding harmonic
analysis.
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Fig. 6. 14-day plot of the major axis current velocity at Munkskjæra at depth 4 m
and the resulting decomposition into tidal and residual current by harmonic analysis,
March 2016. The 14.8-day spring-neap cycle can be observed in the tidal signal.

Fig. 7. 14-day plot of the major axis current velocity at Salatskjæra at depth 4 m
and the resulting decomposition into tidal and residual current by harmonic analysis,
March 2016. The 14.8-day spring-neap cycle can be observed in the tidal signal.

It is worth noting that an underlying assumption in tidal harmonic
analysis is that the tide is stationary. There are cases where this as-
sumption can be invalid; for instance as a result of nonlinear interaction
between the tide and storm surges in shallow water, for internal tidal
currents that change with the stratification, or seasonally varying ice
cover that can modify both tidal elevation and current harmonics (Fore-
man et al., 2009). In such cases, the use of wavelet analysis, allowing
for tidal non-stationarity, can provide a better alternative for extracting
the tidal signal (see, e.g., Flinchem and Jay (2000)).

4. The conditional extremes model

In this section, a general description of the conditional extremes
model by Heffernan and Tawn (2004) is given. For additional theo-
retical details, the reader should consult the original paper (Heffernan
and Tawn, 2004) or the article by Heffernan and Resnick (2007), the
latter providing a formal mathematical framework. Its application for
joint modelling of extreme residual currents, including practical details
and required modifications, in addition to the marginal modelling, is
presented in Section 5.

Consider a continuous 𝑑-dimensional random vector variable 𝐗 =
(𝑋1,… , 𝑋𝑑 ) with unknown distribution function 𝐹 (𝐱); 𝐗 being for in-
stance simultaneously observed values of an environmental parameter
at different locations. From a sample of 𝑛 independent and identically
distributed observations from 𝐹 , the conditional extremes model by
Heffernan and Tawn concerns the estimation of functionals of the distri-
bution of 𝐗 when 𝐗 is extreme in at least one component. Specifically,
it describes the conditional distribution of 𝐗−𝑖|𝑋𝑖 > 𝑣𝑋𝑖 , where 𝐗−𝑖
denotes the vector variable 𝐗 excluding component 𝑋𝑖 and 𝑣𝑋𝑖 is a
high threshold. Here and throughout, vector algebra is to be interpreted
componentwise.

4.1. Marginal transformation

Having established the marginal distribution of each 𝑋𝑖, 𝑖 = 1,… , 𝑑,
by univariate extreme value theory (see Section 5.2), the method starts
by componentwise transforming all variables to follow a common dis-
tribution. This is known as marginal standardization, and is performed
in order to separate the marginal behaviour from the dependence struc-
ture between the components (Drees and Janßen, 2017). Heffernan
and Tawn chose the standard Gumbel distribution for this purpose. We
will however follow Keef et al. (2013), transforming the marginals to
standard Laplace distributions. The motivation for choosing the Laplace
distribution is that the semiparametric regression model in Heffernan
and Tawn (2004), used to characterize the behaviour of 𝐘−𝑖 occur-
ring with large 𝑌𝑖, takes different functional forms for positively and
negatively associated variables. As the Laplace distribution has both
exponential tails and symmetry, this captures the exponential upper tail
of the Gumbel distribution required for modelling positive dependence,
while the symmetry allows the same functional form to be used for
modelling the dependence of negatively associated variables (Keef
et al., 2013). We will later see that this is particularly convenient for
modelling current profiles as it generally includes modelling of both
positively and negatively dependent variables.

Using the probability integral transform, our original vector variable
𝐗 with marginal cumulative distributions 𝐹𝑋𝑖 (𝑋𝑖), is thus transformed
componentwise as

𝑌𝑖 =

{

log{2𝐹𝑋𝑖 (𝑋𝑖)} for 𝑋𝑖 < 𝐹−1
𝑋𝑖

(0.5)

− log{2[1 − 𝐹𝑋𝑖 (𝑋𝑖)]} for 𝑋𝑖 ≥ 𝐹−1
𝑋𝑖

(0.5)
(5)

where 𝐹−1
𝑋𝑖

(𝑞) is the inverse cumulative distribution function (quantile
function) of 𝑋𝑖 evaluated at the cumulative probability 𝑞. The new
vector variable 𝐘 = (𝑌1,… , 𝑌𝑑 ) then has standard Laplace distributed
marginals with

Pr
(

𝑌𝑖 ≤ 𝑦
)

= 𝐹𝑌𝑖 (𝑦) =

{

1
2 exp(𝑦) if 𝑦 < 0
1 − 1

2 exp(−𝑦) if 𝑦 ≥ 0
(6)

meaning that both the upper and lower tails of 𝑌𝑖 are exactly exponen-
tially distributed. For clarity, 𝐗 and 𝐘 are used throughout the paper
to denote the variable with its original marginal distributions and with
Laplace marginals, respectively, following Heffernan and Tawn (2004).

The focus will now be placed on extremal dependence modelling of
variables with Laplace marginal distributions.

4.2. Dependence model

The dependence model considers the asymptotic structure of the
conditional distribution Pr

(

𝐘−𝑖 ≤ 𝐲−𝑖 ∣ 𝑌𝑖 = 𝑦𝑖
)

, arising from a
𝑑-dimensional random variable 𝐘 = (𝑌1,… , 𝑌𝑑 ) with Laplace marginal
distributions. 𝐘−𝑖 denotes the vector variable 𝐘 excluding component
𝑌𝑖.

To examine the limiting conditional distributions as 𝑦𝑖 → ∞, the
growth of 𝐲−𝑖 must be controlled according to its dependence on 𝑌𝑖
so that the limiting distribution has non-degenerate marginals. This is
achieved by assuming that for a given 𝑖, there exist vector normalizing
functions 𝐚

|𝑖(𝑦𝑖) and 𝐛
|𝑖(𝑦𝑖) of the same dimension as 𝐘−𝑖, such that, for

all fixed 𝐳
|𝑖,

lim
𝑦𝑖→∞

[

Pr
{𝐘−𝑖 − 𝐚

|𝑖(𝑦𝑖)
𝐛
|𝑖(𝑦𝑖)

≤ 𝐳
|𝑖 ∣ 𝑌𝑖 = 𝑦𝑖

}]

= 𝐺
|𝑖(𝐳|𝑖) (7)

where the limit distribution 𝐺
|𝑖 has non-degenerate marginal distribu-

tions 𝐺𝑗|𝑖 for all 𝑗 ≠ 𝑖.
Eq. (7) is assumed to hold exactly for all values of 𝑌𝑖 > 𝑢𝑌𝑖 for a

suitably high threshold 𝑢𝑌𝑖 . As a consequence, the random variable 𝐙
|𝑖,

defined by

𝐙
|𝑖 =

𝐘−𝑖 − 𝐚
|𝑖(𝑦𝑖)

𝐛
|𝑖(𝑦𝑖)

, (8)
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is independent of 𝑌𝑖 for 𝑌𝑖 > 𝑢𝑌𝑖 and has distribution function 𝐺
|𝑖. The

extremal dependence behaviour is then characterized by location and
scale functions 𝐚

|𝑖(𝑦𝑖) and 𝐛
|𝑖(𝑦𝑖) and the distribution function 𝐺

|𝑖.
Due to the transformation to Laplace marginals, the form of the

normalizing functions 𝐚
|𝑖(𝑦𝑖) and 𝐛

|𝑖(𝑦𝑖) falls into a simple parametric
family, both for positively and negatively associated variables, given
by

𝐚
|𝑖(𝑦𝑖) = 𝜶

|𝑖𝑦𝑖

𝐛
|𝑖(𝑦𝑖) = 𝑦

𝜷
|𝑖
𝑖

(9)

where the vector constants 𝜶
|𝑖 and 𝜷

|𝑖 have components 𝛼𝑗|𝑖 ∈ [−1, 1]
and 𝛽𝑗|𝑖 ∈ (−∞, 1) for all 𝑗 ≠ 𝑖. No such simple class of parametric
models exists for 𝐺

|𝑖 as no specific structure is imposed by the limiting
operation (7). 𝐺

|𝑖 is therefore modelled nonparametrically.
The resulting dependence model is a multivariate semiparametric

regression model of the form

𝐘−𝑖 = 𝜶
|𝑖𝑦𝑖 + 𝑦

𝜷
|𝑖
𝑖 𝐙

|𝑖 for 𝑌𝑖 = 𝑦𝑖 > 𝑢𝑌𝑖 (10)

where 𝑖 = 1,… , 𝑑. For a large value of 𝑌𝑖, the behaviour of the
remaining components in 𝐘 is thus described by Eq. (10). The constant
𝛼𝑗|𝑖 describes the strength of dependence between 𝑌𝑗 on large values of
𝑌𝑖, while 𝛽𝑗|𝑖 describes how the variability of 𝑌𝑗 changes with increasing
𝑌𝑖. Positive and negative values of 𝛼𝑗|𝑖 corresponds, respectively, to
positive and negative association between the variables (𝑌𝑖, 𝑌𝑗 ). Positive
𝛽𝑗|𝑖 means that the variance of 𝑌𝑗 increases as 𝑌𝑖 increases, whereas
negative 𝛽𝑗|𝑖 means that the variance decrease. For 𝛼𝑗|𝑖 = 1 and 𝛽𝑗|𝑖 = 0,
(𝑌𝑖, 𝑌𝑗 ) are said to be asymptotically (positive) dependent (the quantiles
of the distribution of 𝑌𝑗 |𝑌𝑖 = 𝑦𝑖 grows at the same rate as 𝑦𝑖 for
𝑦𝑖 → ∞), and for 𝛼𝑗|𝑖 = −1 and 𝛽𝑗|𝑖 = 0, they are asymptotically
negative dependent; otherwise they are asymptotically independent
(see, e.g., Keef et al. (2013)).

4.3. Inference

As stepwise estimation is generally simpler than joint estimation,
inference for marginal and dependence structure is undertaken stepwise
in Heffernan and Tawn (2004). First, the parameters of the marginal
distributions of the components of 𝐗 are estimated. After transforma-
tion to Laplace marginals, the dependence parameters are estimated
assuming that the marginal parameters are known. Since the condi-
tional extremes model by Heffernan and Tawn offers nothing new
regarding marginal inference, we focus here on the estimation of the
conditional model parameters.

Inference for the parametric part of the conditional model consists
of estimating the values of the vector constants 𝜶

|𝑖 and 𝜷
|𝑖 based on

the sample data. During inference, a parametric model for 𝐺
|𝑖 must be

assumed. Specifically, the components of 𝐙
|𝑖 are (falsely) assumed to be

mutually independent and Gaussian distributed. The Gaussian distribu-
tion was selected for its simplicity and superior performance (Heffernan
and Tawn, 2004). If 𝐙

|𝑖 has marginal means and standard deviations
denoted by the vectors 𝝁

|𝑖 and 𝐬
|𝑖, then, following Eq. (10), the means

and standard deviations of the random variables 𝐘−𝑖|𝑌𝑖 = 𝑦𝑖, for
𝑦𝑖 > 𝑢𝑌𝑖 , are 𝜶

|𝑖𝑦𝑖 + 𝝁
|𝑖𝑦

𝜷
|𝑖
𝑖 and 𝐬

|𝑖𝑦
𝜷
|𝑖
𝑖 , respectively. From the 𝑘 =

1,… , 𝑛𝑢𝑌𝑖 observations of 𝐘|𝑌𝑖 > 𝑢𝑌𝑖 , the maximum likelihood estimates
of the unknown parameters 𝜶

|𝑖, 𝜷|𝑖, 𝝁|𝑖 and 𝐬
|𝑖 are then found from the

following objective function (log-likelihood):

𝑄
|𝑖
(

𝜶
|𝑖, 𝜷|𝑖,𝝁|𝑖, 𝐬|𝑖

)

= −
∑

𝑗≠𝑖

𝑛𝑢𝑌𝑖
∑

𝑘=1

[

log
{

𝑠𝑗|𝑖𝑦
𝛽𝑗|𝑖
𝑖|𝑖,𝑘

}

+ 1
2

⎧

⎪

⎨

⎪

⎩

𝑦𝑗|𝑖,𝑘 −
(

𝛼𝑗|𝑖𝑦𝑖|𝑖,𝑘 + 𝜇𝑗|𝑖𝑦
𝛽𝑗|𝑖
𝑖|𝑖,𝑘

)

𝑠𝑗|𝑖𝑦
𝛽𝑗|𝑖
𝑖|𝑖,𝑘

⎫

⎪

⎬

⎪

⎭

2
]

(11)

Numerical maximization of 𝑄
|𝑖 over the parameter space of the model

is required to obtain the point estimates (�̂�
|𝑖, �̂�|𝑖, �̂�|𝑖, �̂�|𝑖), with 𝝁

|𝑖 and 𝐬
|𝑖

treated as nuisance parameters. The distribution 𝐺
|𝑖 is finally estimated

nonparametrically by using the empirical distribution function �̂�
|𝑖 of

replicates of the random variable �̂�
|𝑖, defined by

�̂�
|𝑖 =

𝐘−𝑖 − �̂�
|𝑖𝑌𝑖

𝑌
�̂�
|𝑖

𝑖

for 𝑌𝑖 = 𝑦𝑖 > 𝑢𝑌𝑖 (12)

The resulting observations �̂�
|𝑖 provide a sample from the multivariate

distribution 𝐺
|𝑖.

A problem identified by Keef et al. (2013) is that due to the omission
by Heffernan and Tawn of imposing joint constraints on the param-
eters of the semiparametric regression model (𝛼𝑗|𝑖 and 𝛽𝑗|𝑖) and the
nonparametric element of the model, inconsistencies with the marginal
distributions can arise. The strongest form of extremal dependence
between two variables is asymptotic dependence (Coles et al., 1999),
given by (𝛼𝑗|𝑖, 𝛽𝑗|𝑖) = (1, 0) in the dependence model (10). This suggests
that when 𝛼𝑗|𝑖 = 1, 𝛽𝑗|𝑖 cannot be positive. However, as the parameter
space is (𝛼𝑗|𝑖, 𝛽𝑗|𝑖) ∈ [−1, 1] × (−∞, 1), such a combination of parameters
is allowed in the original model. This, together with the nonparametric
element of the model, results in the possibility of the estimated joint
probabilities to exceed the marginal probabilities. To avoid this, it is
recommended to impose the constraints given in Keef et al. (2013)
on 𝛼𝑗|𝑖 and 𝛽𝑗|𝑖 if strong extremal dependence is expected between the
variables. For pairs (𝑌𝑖, 𝑌𝑗), these constraints follows from requiring a
stochastic ordering, assuring that conditional quantiles for any form of
asymptotic independence are not larger than under asymptotic positive
dependence, nor smaller than under asymptotic negative dependence.
These constraints are imposed only on extrapolations (i.e. for 𝑦𝑖 > 𝑣
where 𝑣 is a value above the maximum observed value of 𝑌𝑖). The
reader is referred to Keef et al. (2013) for further details.

4.4. Conditional simulation

Since the dependence model (10) is semiparametric, estimates for
various extremal statistics must be acquired by simulation. We thus
generate random samples of 𝐗|𝑋𝑖 > 𝑣𝑋𝑖 , where 𝑣𝑋𝑖 ≥ 𝐹−1

𝑋𝑖

(

𝐹𝑌𝑖
(

𝑢𝑌𝑖
))

,
for each 𝑖 using the estimated conditional models. From these samples,
Monte Carlo approximations of functionals of the joint tails of the
distribution of 𝐗 can then be obtained. The sampling algorithm for each
𝑖 is as follows:

1. Simulate 𝑌𝑖 from a Laplace distribution conditional on it exceed-
ing its cumulative probability corresponding to 𝐹𝑋𝑖 (𝑣𝑋𝑖 ).

2. Sample 𝐙
|𝑖 from �̂�

|𝑖 independent of 𝑌𝑖.
3. Obtain 𝐘−𝑖 = �̂�

|𝑖𝑌𝑖 + 𝑌
�̂�
|𝑖

𝑖 𝐙
|𝑖.

4. Transform 𝐘 = (𝐘−𝑖, 𝑌𝑖) to 𝐗 using the inverse of transforma-
tion (5).

Let us say that we from the data sample at hand have 𝑛 independent
observations of 𝐗 where 𝐗 is extreme in at least one component.
A simulated random realization of this process, covering the same
period, is then obtained by simulating 𝑛 pseudo-observation of 𝐗 by
the sampling algorithm above. Typically, many of the observed

{

𝐱𝑘
}𝑛
𝑘=1

comprises observations where more than one of the components 𝑥𝑖,𝑘 are
simultaneously extreme. This raises the question of how to determine
the number of times one should condition on each 𝑋𝑖 to obtain 𝐗−𝑖 for
all 𝑖 = 1,… , 𝑑, resulting in a total of 𝑛 simulated pseudo-observations
of 𝐗. In the proceeding simulation of residual current profiles, we
principally follow the procedure proposed by Jonathan et al. (2012)
to estimate this.

The main argument in Jonathan et al. (2012) is that since the
conditional extremes model is motivated asymptotically, it is most
appropriately applied to the conditioning variable whose value is most
extreme in its marginal distribution. Transformed to 𝐘, this means
that for the observations

{

𝐲𝑘
}𝑛
𝑘=1, the number of times to condition

on variable 𝑌𝑖 during the conditional simulation, is determined by
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Fig. 8. Illustration of the four residual current velocity components in the local
coordinate system defined by the major and minor axis at each depth.

the number of times which 𝑌𝑖 was the largest component of
{

𝐲𝑘
}𝑛
𝑘=1.

The rate at which to condition on each 𝑌𝑖 (or 𝑋𝑖) is thus found as
1
𝑛
∑𝑛
𝑘=1 𝟏

{

𝑦𝑖,𝑘 = max 𝐲𝑘
}

, where 𝟏 {𝐴} denotes the indicator function of
some event 𝐴. In Section 5.4, a slight modification of this procedure is
described — the modification being introduced to account for temporal
dependence.

5. Application

In this section, the statistical modelling of the residual current
components is described in detail and applied to obtain extreme vertical
residual and total current profiles at the two considered locations
(Munkskjæra and Salatskjæra). This includes modelling the complete
marginal distribution (bulk and tail distribution) of each residual cur-
rent component, characterizing the dependence structure between the
components by application of the conditional extremes model (Heffer-
nan and Tawn, 2004), and outlining the Monte Carlo procedure used
to simulate extreme current velocity profiles. Following Pugh (1982),
Robinson and Tawn (1997), Jonathan et al. (2012), the tidal and
residual currents are assumed to be independent. Inspection of plots
of observed residual currents against observed tidal currents from the
measurements (as in Pugh and Vassie (1976)) confirmed that the inde-
pendence assumption generally appears reasonable. Just as assuming
tide–surge independence when estimating extreme sea-levels, this can
however be a slightly conservative assumption in some cases, particu-
larly in shallow water (see, e.g., Prandle and Wolf (1978), Horsburgh
and Wilson (2007), and Pugh and Woodworth (2014)). Subsequent to
the statistical modelling, extreme total current velocity profiles can
then be obtained by randomly adding predicted tidal current profiles to
realizations of extreme residual current profiles. We start by defining
the considered residual current velocity components.

5.1. Residual current components

The directionality of the extreme currents needs to be accounted
for in the analysis. This requires characterization of the extremal be-
haviour of both positive and negative principal current components.
The observed residual current velocities are therefore split into four
velocity components at each depth. Specifically, for each depth 𝑖 we
consider the positive major axis component 𝑢+𝑅𝑀,𝑖, the negative major
axis component 𝑢−𝑅𝑀,𝑖, the positive minor axis component 𝑢+𝑅𝑚,𝑖, and the
negative minor axis component 𝑢−𝑅𝑚,𝑖; see Fig. 8.

Since positive and negative velocity components along a given axis
at a given depth are mutually exclusive events, one can only observe
one of the major axis and one of the minor axis components simul-
taneously at each depth. In order to work with only positive variable
values, the residual current velocity components for the 𝑘 = 1,… , 𝑛
observations are defined as
𝑢+𝑅𝑀,𝑖𝑘 = 𝑢𝑅𝑀,𝑖𝑘 ∣ 𝑢𝑅𝑀,𝑖𝑘 > 0

𝑢−𝑅𝑀,𝑖𝑘 = −𝑢𝑅𝑀,𝑖𝑘 ∣ 𝑢𝑅𝑀,𝑖𝑘 < 0

𝑢+𝑅𝑚,𝑖𝑘 = 𝑢𝑅𝑚,𝑖𝑘 ∣ 𝑢𝑅𝑚,𝑖𝑘 > 0

𝑢−𝑅𝑚,𝑖𝑘 = −𝑢𝑅𝑚,𝑖𝑘 ∣ 𝑢𝑅𝑚,𝑖𝑘 < 0

(13)

A velocity component is said to be unobserved if the condition in
Eq. (13) is not fulfilled. Denoting the total number of residual current
components 𝑑, an observed velocity profile thus contains 𝑑∕2 observed
velocity components and 𝑑∕2 unobserved components. The total num-
ber of residual current components is equal to 24 at Munkskjæra and
20 at Salatskjæra. As the mean current velocity is included in the tidal
current, the sample size of each residual current velocity component
𝑢+∕−𝑅𝑀,𝑖 and 𝑢+∕−𝑅𝑚,𝑖 is expected to be approximately equal to 𝑛∕2.

5.2. Marginal modelling

Marginal modelling is performed independently for each of the four
residual current components 𝑢+∕−𝑅𝑀 and 𝑢+∕−𝑅𝑚 at each depth. From now,
we denote the full set of residual current components as

{

𝑋𝑖
}𝑑
𝑖=1 =

(

𝑢+𝑅𝑀,1, 𝑢
−
𝑅𝑀,1, 𝑢

+
𝑅𝑚,1, 𝑢

−
𝑅𝑚,1, 𝑢

+
𝑅𝑀,2,…

)

and refer to 𝑢+∕−𝑅𝑀 and 𝑢+∕−𝑅𝑚 only
when needed.

Since the aim is to describe all values of 𝐗−𝑖 that can occur with
any large 𝑋𝑖, a model for the complete marginal distribution 𝐹𝑋𝑖 of
each 𝑋𝑖 is required. For this purpose, we essentially follow Heffernan
and Tawn (2004), adopting the semiparametric model by Coles and
Tawn (1991, 1994), which comprises the generalized Pareto distribu-
tion for 𝑋𝑖 above a high threshold 𝑢𝑋𝑖 and the empirical distribution
function below the threshold (such models are sometimes referred to
as mixture models). The empirical distribution function, describing the
bulk of observations, is established based on all (hourly) observations
below the threshold, while inference for the tail distribution is made
by application of the peaks over threshold (POT) method to account
for marginal temporal dependence at extreme levels. As the latter
distribution refers to events (cluster maxima) rather than individual
sequential observations, an approach is described to properly connect
the ’all observation based’ bulk distribution and the ’event based’ tail
distribution. Similar approaches have been used by for instance Mazas
et al. (2014) in connection with estimation of extreme sea levels.

The marginal model of each residual current velocity component
thus consists of:

1. A bulk distribution; describing observations below a high thresh-
old by the empirical distribution function.

2. A tail distribution; identifying cluster maxima above the thresh-
old by the peaks over threshold method and fitting these maxima
to the generalized Pareto distribution.

3. Connecting the bulk and the tail distribution to obtain the
complete marginal distribution.

Giving particular emphasis to the fitting of the tail distribution, the
points above will be outlined in the current subsection.

5.2.1. Bulk distribution
Marginally, points below the threshold 𝑢𝑋𝑖 are relatively dense, and

are therefore well described by the empirical distribution function 𝐹𝑋𝑖 ,
i.e.

𝐹𝑋𝑖 (𝑥) =
num. elem.

{

𝐱𝑖,𝑘
}𝑛𝑋𝑖
𝑘=1 ≤ 𝑥

𝑛𝑋𝑖
for 𝑥 ≤ 𝑢𝑋𝑖 (14)

where 𝑛𝑋𝑖 is the number of observations of variable 𝑋𝑖. The denom-
inator in the expression for 𝐹𝑋𝑖 is sometimes written (𝑛𝑋𝑖 + 1), the
difference being negligible here. The threshold 𝑢𝑋𝑖 for each residual
current velocity component, is decided as part of the fitting procedure
for the tail distribution.

5.2.2. Tail distribution
From univariate extreme value theory, it can be shown that the

generalized Pareto (GP) distribution arises as the limiting distribution
for excesses over thresholds (Davison and Smith, 1990) — a result
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Fig. 9. Illustrations of graphical diagnostics, here for 𝑢+𝑅𝑀 at 22 m depth at Munkskjæra. The plotted threshold ranges from the 60% to the 99.5% quantile. Grey dashed lines
are Wald type 95% confidence intervals. Red asterisks indicate the chosen threshold, corresponding to the 95% quantile.

originally due to Pickands (1975) and Balkema and de Haan (1974).1
The justification for the generalized Pareto distribution as the limiting
distribution for excesses over thresholds and subsequent parameter and
return level estimates, are based on an assumption that the exceedances
are independent. This is not a valid assumption for our hourly measured
residual current velocities. Temporal dependence is clearly observed,
particularly for the major axis velocity components, resulting in a
tendency of extremes to cluster. However, if we introduce a condition
that limits the dependence structure of the sequence, it can be shown
that the maxima of (dependent) stationary series follows the same
distributional limit laws as those for independent series (Leadbetter
et al., 1983; Coles, 2001).

The peaks over threshold (POT) method with declustering is applied
to limit marginal temporal dependence at extreme levels. Specifically,
for exceedances above the threshold 𝑢𝑋𝑖 , only the largest excess within
a cluster of exceedances is considered; the cluster peak excess, or clus-
ter maxima. The most common definition of clusters is as runs of
consecutive exceedances, with an additional temporal separation cri-
terion (Caires and Sterl, 2005). We define the cluster peak excesses
simply as the highest peaks above the threshold with a minimum peak-
to-peak separation of 𝜏 hours — a peak being defined as the highest
observation of consecutive exceedances. This cluster peak excess defini-
tion is related to the runs method described in e.g. Smith and Weissman
(1994), though we feel it is more convenient to impose the temporal
separation criterion directly on the peaks rather than on the required
’below threshold time’. It should be mentioned that such definitions are
often asymptotically equivalent (Leadbetter, 1991).

The marginal tail of 𝑋𝑖 for 𝑖 = 1,… , 𝑑, describing the distribution of
the independent cluster peak excesses 𝑋𝐶,𝑖 conditional on 𝑋𝐶,𝑖 > 𝑢𝑋𝑖 ,
is thus modelled by

𝐺𝑋𝐶,𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 +
𝜉𝑖(𝑥−𝑢𝑋𝑖 )

𝜎𝑖

)−1∕𝜉𝑖

+
𝜉𝑖 ≠ 0

1 − exp
(

−
(𝑥−𝑢𝑋𝑖 )
𝜎𝑖

)

𝜉𝑖 = 0
(15)

where 𝑢𝑋𝑖 is a high threshold for 𝑋𝑖 and 𝜉𝑖 and 𝜎𝑖 are shape and scale
parameters, respectively, with 𝜎𝑖 > 0 and the operator (𝑠)+ = max (𝑠, 0).
If 𝜉𝑖 < 0, the distribution of excesses has an upper bound of 𝑢𝑋𝑖 − 𝜎𝑖∕𝜉𝑖,
while for 𝜉𝑖 ≥ 0 the distribution as no upper limit. The case 𝜉𝑖 = 0 is
interpreted as the limit 𝜉𝑖 → 0, resulting in the exponential distribution
with mean excess 𝜎𝑖.

Before the parameters, (𝜉𝑖, 𝜎𝑖), of the generalized Pareto distribution
can be estimated, a suitable threshold 𝑢𝑋𝑖 and minimum peak-to-peak
separation time 𝜏𝑋𝑖 have to be decided for each 𝑋𝑖. The minimum peak-
to-peak separation time is usually set based on physical considerations

1 Many practitioners within engineering disciplines use the Weibull distri-
bution as an alternative (based on empirical goodness-of-fit to data); this is a
credible candidate model for our data as well.

(often related to typical storm durations for parameters causing envi-
ronmental loads), while the threshold can be more difficult to decide.
The issue of threshold selection amounts to a trade-off between bias
and variance; too low a threshold is likely to violate the asymptotic
basis of the model, leading to bias, while too high a threshold leads to
fewer excesses with which the model can be estimated, leading to high
variance (Coles, 2001).

We use the graphical diagnostics outlined by Coles (2001) and Scar-
rott and MacDonald (2012), in addition to the Anderson–Darling statis-
tic, for deciding the threshold. The so-called mean residual life plot
and the parameter stability plots are based on the fact that if the
generalized Pareto distribution is valid for (cluster peak) excesses of
the threshold 𝑢0, it should also be valid for all thresholds 𝑢 > 𝑢0.
These plots are obtained by calculating the mean of the cluster peak
excesses 𝐸 (𝑋 − 𝑢 ∣ 𝑋 > 𝑢) and estimating the GP parameters over a
range of different thresholds. Above a threshold for which the gener-
alized Pareto distribution is valid, the mean residual life plot and the
scale parameter 𝜎 should be approximately linear in 𝑢, while the shape
parameter 𝜉 should be approximately constant. The scale parameter can
alternatively be reparametrized as 𝜎∗ = 𝜎 − 𝜉𝑢, so that 𝜎∗ should also
be constant with 𝑢. The lowest threshold for which the above holds
true, taking sample uncertainty into account, is then selected. We found
(subjectively) the mean residual life plot and the shape parameter
stability plot to be the most informal; see Fig. 9 for an illustration.
Due to the large number of considered residual current components,
a suitable common threshold corresponding to a given non-exceedance
probability (as measured by 𝐹𝑋𝑖 (𝑥)) was selected; one threshold for all
the major axis components and one for the minor axis components.
The GP parameters were estimated by maximum likelihood – see,
e.g., Grimshaw (1993) – though, several alternative methods exists (de
Zea Bermudez and Kotz (2010a,b) and Mackay et al. (2011) are useful
references in this respect).

Return level plots were used to validate the threshold choices and,
more generally, the validity of the GP distribution. Such plots, where
the estimated 𝑁-year return level is plotted against 𝑁 , the latter
on logarithmic scale, are particularly convenient since the effect of
extrapolation is highlighted. For a given threshold and corresponding
estimated GP parameters, the 𝑁-year return level for variable 𝑋𝑖, 𝑥𝑖,𝑁 ,
is given by

𝑥𝑖,𝑁 = 𝑢𝑋𝑖 +
𝜎𝑖
𝜉𝑖

[

(

𝑛𝐶𝑖,1𝑦𝑁
)𝜉𝑖 − 1

]

(16)

Denoting the total number of observations by 𝑛, the theoretical possible
number of (here, hourly) observations during a year by 𝑛1𝑦 (= 8766) and
the total number of observed cluster peak excesses of variable 𝑋𝑖 by 𝑛𝐶𝑖,
it follows that the estimated average number of cluster peak excesses
per year for variable 𝑋𝑖, 𝑛𝐶𝑖,1𝑦 in Eq. (16) is given by

𝑛𝐶𝑖,1𝑦 = 𝑛𝐶𝑖
𝑛1𝑦
𝑛
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where 𝑛∕𝑛1𝑦 is the effective number of years of measurements, and
accounts for possible missing observations (gaps in the measured time
series) assuming they are missing at random.

As the graphical diagnostics discussed above can be rather subjec-
tive and sometimes difficult to interpret, the Anderson–Darling statistic
was used as an additional, objective goodness-of-fit test. This statistic
is a modification of the Cramér–von Mises static, giving more weight
to the tail of the distribution, making it particularly powerful for
detecting tail discrepancies. We found it very convenient to use this
statistic as a quick way of assessing the overall performance of the
fitted marginal models, looking at the number of model rejections at
the 5% significance level for a given choice of thresholds for all 𝑋𝑖.
Plotting the calculated value of the Anderson–Darling statistic and the
corresponding critical test value over a range of thresholds, for each
𝑋𝑖, was also helpful. Reference is made to Choulakian and Stephens
(2001) for additional details regarding the Anderson–Darling statistic
and critical test values for the generalized Pareto distribution.

An initial minimum peak-to-peak separation time 𝜏 of 30 h was
selected for all variables before the diagnostics above were utilized
to identify a suitable cumulative threshold for the major and minor
axis components. The initial separation time was decided based on
time series inspection and knowledge of typical storm durations in
the area. In addition, it seemed rational to adopt a separation time
larger than the period of the semidiurnal and diurnal tidal constituents
so that dependence introduced due to possible tidal–residual current
interaction and lack of fit of the harmonic model is limited (if inertial
oscillations were important, the inertial period at the given latitude
should probably be considered as well; see generally Wunsch (2015),
Chap. 5). Using the initial 𝜏, a threshold corresponding to the 95%
quantile for the major axis components 𝑢+∕−𝑅𝑀,𝑖 and the 94% quantile for
the minor axis components 𝑢+∕−𝑅𝑚,𝑖 were found to give reasonably stable
results at both locations. This is similar to that found by Robinson
and Tawn (1997) and Jonathan et al. (2012) (both used the 95%
quantile), though, strictly, the numbers are not directly comparable
due to differences in the involved variables. A simple assessment of the
threshold sensitivity on the estimated marginal extremes were made
by plotting the estimated 50-year return level for some of the velocity
components for a range of thresholds. These estimates were generally
surprisingly stable for a broad range of (reasonable) threshold choices.
This is reassuring, considering the subjectivity involved in the threshold
selection process.

Having decided the threshold, the final peak-to-peak separation
time was determined by considering different values of 𝜏, ranging from
12–48 h, looking at the effect changes in 𝜏 had on the mentioned
diagnostics (the return level plots were particularly informal in this
context). As with the threshold choice, the issue is a trade-off between
bias and variance. A minimum peak-to-peak separation time 𝜏 = 30
hours gave the most stable results and was thus selected. However,
the results were not particularly sensitive to the precise value of 𝜏.
This is in line with that reported in several other studies (Davison and
Smith, 1990), such as by Tawn (1988) in the case of sea levels. With
the final choice of thresholds and minimum peak-to-peak separation
time, the fitted GP models passed the Anderson–Darling test at the 5%
significance level for all 𝑋𝑖 at both locations.

A representative illustration of the mean residual life and shape
parameter diagnostics are shown in Fig. 9 for the 𝑢+𝑅𝑀 velocity com-
ponent at 22 m depth at Munkskjæra. Above the chosen threshold,
indicated by the red asterisks, the mean residual life plot is seen to be
approximately linear in 𝑢 while the shape parameter is approximately
constant, taking sampling variability into account (indicated by the
confidence intervals). The maximum likelihood estimates of the GP
parameters are given in Fig. 10(a) and 10(b) for all velocity components
at Munkskjæra and Salatskjæra, respectively. The shape parameter is
in most cases negative, indicating the existence of an upper limit for
these residual current velocity components. The goodness-of-fit of the
GP distribution and the effect of extrapolation is illustrated in the return

Fig. 10. Maximum likelihood estimates of the GP shape (𝜉) and scale (𝜎) parameters
of the major (𝑢+∕−𝑅𝑀,𝑖) and minor (𝑢+∕−𝑅𝑚,𝑖) axis components at Munkskjæra and Salatskjæra
with depth. The estimates are based on a threshold corresponding to the 95% quantile
for the major axis components, the 94% quantile for the minor axis components and
a minimum peak-to-peak separation time 𝜏 = 30 hours.

Fig. 11. Return level plot for the GP model fitted to cluster peak excesses of residual
current component 𝑢+𝑅𝑀 at 22 m depth at Munkskjæra. Grey dashed lines are 95%
confidence intervals based on profile likelihood.

level plot in Fig. 11, again for 𝑢+𝑅𝑀 at 22 m depth at Munkskjæra.
95% confidence intervals based on profile likelihood are added (see,
e.g., Coles (2001)); such intervals are usually more accurate than Wald
type intervals. Important points to note are the asymmetric confidence
intervals, reflecting the greater uncertainty about high values, and
the large uncertainties that arises once the model is extrapolated to
values well beyond the range of observations. With only 1.5–2.5 years
of observations, large uncertainty will thus inevitably be associated
with estimates of return levels corresponding to return periods ranging
from 10–100 years, typically required for design. The estimated 10 and
50 year return values for all residual current components, including
confidence intervals, are found in Table A.2 in the appendix, together
with all relevant marginal distribution parameters. It is interesting to
note the particularly wide confidence intervals seen for most of the
velocity components with a high value of the GP shape parameter.
Though, considering the physics of our problem, the most extreme
intervals appears unrealistic — in such cases better estimates could
probably be obtained by penalized maximum likelihood; see Coles and
Dixon (1999).

5.2.3. Connecting the bulk and tail distribution
The bulk distribution describes all (hourly) observations below the

thresholds for each 𝑋𝑖, 𝑖 = 1,… , 𝑑, while the tail distribution de-
scribes only the independent cluster peak excesses above the threshold.
For consistency below and above the threshold, it would therefore
be favourable to transform the tail distribution into a distribution
describing arbitrary (hourly) exceedances rather than just the cluster
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maxima. This is further motivated by our aim of characterizing instan-
taneous current profiles — during an extreme event, simultaneously
observed threshold-exceeding current components of the profile might
not necessarily all correspond to (marginal) cluster peak excesses.

The goal is to transform the distribution of the independent cluster
peak excesses into the distribution of dependent (hourly) sequential
residual current velocities above the thresholds 𝑢𝑋𝑖 , 𝑖 = 1,… , 𝑑. To
transform the distribution of the independent cluster peak excesses into
the distribution of all (hourly) excesses, it is necessary to introduce
the so-called extremal index, 𝜃, which lies in the interval [0, 1] (see,
e.g., Beirlant et al. (2004), Chavez-Demoulin and Davison (2012)). The
extremal index has a physical and intuitively appealing interpretation
due to Leadbetter (1983) as the inverse of the (limiting) mean cluster
size. If 𝜃 = 1, exceedances of an increasing threshold occur singly in the
limit, while if 𝜃 < 1, exceedances tend to cluster in the limit. The finite
sample approximation of 𝜃 due to Tawn and Vassie (1989), 𝜃𝑥, is an
index varying with the level 𝑥. For large 𝑥, the physical interpretation
of 𝜃 holds for 𝜃𝑥, and its inverse can thus be calculated as

�̂�−1𝑥 (𝑥) = number of exceedances of 𝑥
number of cluster maxima exceeding 𝑥 (17)

The above equation can however not be used to directly calculate
𝜃−1𝑥 (𝑥) for 𝑥 beyond the range of the data, and the uncertainty of the
empirical estimates of �̂�−1𝑥 (𝑥) increases for increasing 𝑥. Also, inevitably,
�̂�−1𝑥 (𝑥) → 1 as 𝑥 approaches the highest observation of the sample.

Denoting the extremal index obtained at the marginal threshold 𝑢
as 𝜃𝑢, Tawn (1990) notes that the distribution function of an arbitrary
exceedance is influenced by the factor 𝜃𝑢𝜃−1𝑥 . Following a similar no-
tation as in Eastoe and Tawn (2012), conditional on 𝑥 > 𝑢, we then
have the following (subasymptotic) relation between quantiles of the
distribution function of an arbitrary exceedance, 𝐺𝑋 (𝑥), and that of an
independent cluster peak excess, 𝐺𝑋𝐶 (𝑥):

1 − 𝐺𝑋 (𝑥) = 𝜃𝑢𝜃
−1
𝑥 (𝑥)

[

1 − 𝐺𝑋𝐶 (𝑥)
]

given 𝑥 > 𝑢 (18)

𝜃𝑢 can be interpreted as a scale factor to account for the increased
sample size of all excesses relative to the cluster peak excesses, while
𝜃−1𝑥 (𝑥) accounts for the increased probability of observing an arbitrary
exceedance above 𝑥 due to dependence relative to if all exceedances
above the level were independent cluster peak excesses.

The complete marginal distribution 𝐹𝑋𝑖 of each 𝑋𝑖 can thus be taken
as

𝐹𝑋𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1 − 𝑝𝑢𝑋𝑖 𝜃𝑢𝑋𝑖 𝜃
−1
𝑥𝑖
(𝑥)

[

1 − 𝐺𝑋𝐶,𝑖 (𝑥)
]

for 𝑥 > 𝑢𝑋𝑖
𝐹𝑋𝑖 (𝑥) for 𝑥 ≤ 𝑢𝑋𝑖

(19)

where 𝐺𝑋𝐶,𝑖 (𝑥) is the generalized Pareto distribution given by Eq. (15),
𝐹𝑋𝑖 (𝑥) is the empirical distribution function, and 𝑝𝑢𝑋𝑖 = 1 − 𝐹𝑋𝑖 (𝑢𝑋𝑖 ) is
the probability of exceeding the threshold 𝑢𝑋𝑖 .

Clearly, an estimate of 𝜃−1𝑥 (𝑥) is required beyond the range of the
data. A rational approach would then be to estimate 𝜃−1𝑥 by Eq. (17)
at regularly spaced levels, fit a function to these estimates, and ex-
trapolate. As commented in Tawn and Vassie (1989), the choice of
an appropriate function is not immediately obvious, but results from
extreme value theory (Leadbetter, 1983) suggest that in the limit, a
constant is the correct function.

Denoting the (asymptotic) limiting extremal index 𝜃𝑙𝑖𝑚 and the
associated level 𝑥𝑙𝑖𝑚 for which 𝜃𝑥(𝑥) = 𝜃𝑙𝑖𝑚 for all 𝑥 ≥ 𝑥𝑙𝑖𝑚, we
have tested three different approaches for estimating 𝜃𝑙𝑖𝑚 and 𝑥𝑙𝑖𝑚, in
addition to 𝜃𝑥(𝑥) on the intermediate range 𝑢 ≤ 𝑥 ≤ 𝑥𝑙𝑖𝑚:

1. Simply take 𝜃𝑥(𝑥) = 𝜃𝑢 for all 𝑥 ≥ 𝑢 (implying 𝜃𝑙𝑖𝑚 = 𝜃𝑢). From
Eq. (18) it can be seen that this is equivalent to assuming that
the distribution function of an arbitrary exceedance equals that
of an independent cluster maxima.

2. Using an approach inspired by Mazas et al. (2014), taking 𝜃𝑙𝑖𝑚 =
1 and having 𝜃−1𝑥 (𝑥) varying linearly from 𝜃−1𝑢 at 𝑥 = 𝑢 to 1 at
𝑥 = 𝑥𝑙𝑖𝑚, where 𝑥𝑙𝑖𝑚 is the lowest level 𝑥 for which Eq. (17) gives
�̂�−1𝑥 = 1.

3. Following Tawn and Vassie (1989), estimating 𝜃−1𝑥 by Eq. (17)
at regularly spaced levels for 𝑢 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, where 𝑥𝑚𝑎𝑥 is the
highest observation, and using simple weighted least squares to
estimate 𝜃−1𝑙𝑖𝑚. The same approach can be used to estimate 𝑥𝑙𝑖𝑚.
We adopted the estimators

�̂�−1𝑙𝑖𝑚 =
∑

√

𝑘𝑗 �̂�−1𝑥 (𝑥𝑗 )
∑

√

𝑘𝑗
(20)

�̂�𝑙𝑖𝑚 =
∑

√

𝑘𝑗𝑥𝑗
∑

√

𝑘𝑗
(21)

where 𝑘𝑗 is the number of cluster maxima above the level 𝑥𝑗 .
On 𝑢 ≤ 𝑥 ≤ �̂�𝑙𝑖𝑚, 𝜃−1𝑥 (𝑥) is taken to vary linearly between 𝜃−1𝑢 at
𝑥 = 𝑢 and �̂�−1𝑙𝑖𝑚 at 𝑥 = �̂�𝑙𝑖𝑚.

The resulting estimates of 𝜃−1𝑥 (𝑥) are displayed in Fig. 12(a) for
residual current component 𝑢+𝑅𝑀 at 4 m depth at Munkskjæra, high-
lighting the differences between the three considered approaches. In
Fig. 12(b), using Eq. (19), the resulting survival function 𝐹 (𝑥) = 1−𝐹 (𝑥)
is plotted against the empirical ’all observation’ estimates. In line with
results in Eastoe and Tawn (2012), approach 1 fits the empirical esti-
mates poorly, overpredicting the probability of exceeding a particular
level 𝑥. Overall, approach 2 (Mazas et al.) and approach 3 (Tawn and
Vassie) performed more or less equally well. However, as approach 3
has a better theoretical underpinning when extrapolating beyond the
range of observations, this is our preferred approach. The complete
marginal distribution function, described by Eq. (19) for each residual
current component 𝑋𝑖, is thus calculated with 𝜃−1𝑥𝑖 (𝑥) as determined by
approach 3.

As an anecdote to the above discussion, it is worth mentioning
that we performed the dependence modelling and the conditional
simulations described in the following subsections using all the three
approaches described above for estimation of 𝜃−1𝑥 (𝑥). Somewhat sur-
prisingly, at both considered locations, only small differences were
observed in the resulting predicted extreme current velocity profiles.
This seems to suggest that, provided the same approach is used to
estimate 𝜃−1𝑥𝑖 (𝑥) for all 𝑋𝑖, accurate estimation of the extremal index
is not the most critical step in the current statistical model.

5.3. Dependence modelling

We now turn to the modelling of the extremal dependence between
the residual current velocity components. Most of the details have
already been described in Section 4, however, some modifications to
the original model (Heffernan and Tawn, 2004) are needed to allow
modelling of ‘instantaneously’ observed mean current velocity profiles.

The conditional extremes model by Heffernan and Tawn concerns
the estimation of functionals of the conditional distribution of 𝐗−𝑖|𝑋𝑖 >
𝑣𝑋𝑖 . As originally formulated, each observation of 𝐗 is assumed to
be independent and with no components of 𝐗 missing. Both these
assumptions are violated for our data, calling for an extension of the
original model. Solutions to similar problems were given by Keef et al.
(2009), however, due to differences in the involved variables, the
proposed methods are unfortunately not applicable to our data. More
specifically, the issues which needs to be addressed are:

1. The hourly recorded current velocity profiles displays temporal
dependence, requiring a condition to be introduced to limit
the effect of dependence. Owing to the multidimensionality of
the problem, it is however difficult to introduce a very strict
condition to reduce dependence (as the observed individual
residual current components do not necessarily peak at the same
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Fig. 12. (a) Estimated inverse extremal index 𝜃−1𝑥 (𝑥) by the three considered approaches plotted against the empirical estimates �̂�−1𝑥 (𝑥) for residual current component 𝑢+𝑅𝑀 at 4 m
depth at Munkskjæra. The number of cluster maxima above each labelled level 𝑥 is indicated on the upper axis. (b) The resulting survival function 𝐹 (𝑥) = 1 −𝐹 (𝑥) plotted against
the empirical ’all observation’ estimates in the upper tail 𝑥 ≥ 𝑢.

time during an event with strong consecutive currents, it is,
as opposed to for univariate peaks over threshold modelling,
difficult to decide which of the observed current profiles that
should be considered as the ‘peak’ observation).

2. The 𝑑-dimensional vector of simultaneously observations 𝐗 in-
cludes 𝑑∕2 observed and 𝑑∕2 unobserved residual current com-
ponents. This is not an issue of missing values due to measure-
ment malfunction, but simply a consequence of how the current
components are defined (cf. Section 5.1).

The dependence model is applied to the data after transformation
to Laplace margins. The original vector variable 𝐗 with marginal
distributions defined by Eq. (19), is thus transformed componentwise
by transformation (5) to a vector variable 𝐘 with Laplace distributed
marginals.

Point 1 above is taken care of marginally by application of the peaks
over threshold method in the same way as when fitting the marginal
tail distributions in Section 5.2.2. This means that the semiparametric
regression model (10), which for large 𝑌𝑖 describes the behaviour of the
remaining components in 𝐘, is only fitted to observations of 𝐘|𝑌𝑖 > 𝑢𝑌𝑖
where 𝑌𝑖 corresponds to a cluster peak excess. For each conditioning
variate 𝑌𝑖, 𝑖 = 1,… , 𝑑, of independent cluster peak excesses, the
resulting observations 𝐘|𝑌𝑖 can then also be considered independent.
The minimum peak-to-peak separation time 𝜏𝑌𝑖 is set equal to the
marginal minimum peak-to-peak separation time 𝜏𝑋𝑖 (here, 30 h). The
dependence thresholds 𝑢𝑌𝑖 , which does not need to equal the marginal
thresholds 𝑢𝑋𝑖 in the sense that 𝐹𝑌𝑖 (𝑢𝑌𝑖 ) = 𝐹𝑋𝑖 (𝑢𝑋𝑖 ), can be decided
based on assessing the stability of the estimates of (𝜶

|𝑖, 𝜷|𝑖) for a range of
thresholds and examining the independence of 𝐙

|𝑖 and 𝑌𝑖 (see Heffernan
and Tawn (2004) for further details regarding diagnostics).

Point 2 constitutes an issue for structure and consistency in the
system of equations and for the construction of, and simulation from,
the distribution function 𝐺

|𝑖. Consistency in the system of equations can
be obtained by careful vector treatment, ensuring that the conditional
model (10) is fitted only to the components 𝑌𝑗|𝑖 of 𝐘−𝑖 which were
observed simultaneously as 𝑌𝑖. In the construction of 𝐺

|𝑖(𝐳|𝑖) we take
advantage of the lack of imposed structure on 𝐺

|𝑖 in Heffernan and
Tawn (2004) and the (false) assumption that the components of 𝐙

|𝑖 are
mutually independent and Gaussian distributed during inference. The
independence assumption renders possible componentwise estimation
of the vector constants in Eq. (10). This makes it easier to allow
for a few difficulties that arises because of how the residual current
components making up 𝐘 are defined (Eq. (13)).

Specifically, for a given conditioning variate 𝑌𝑖 corresponding to a
cluster peak excess, there are certain restrictions on which components
in 𝐘−𝑖 that can be observed simultaneously as 𝑌𝑖. For instance, if 𝑌𝑖
corresponds to a positive major axis velocity component at a particular

depth, it is not possible to simultaneously observe a negative major axis
velocity component at the same depth and vice versa. Also, due to spa-
tial dependence, there will generally be other combinations of (𝑌𝑖, 𝑌𝑗|𝑖),
𝑗 ≠ 𝑖, that are highly unlikely to occur together — physically, it is quite
intuitive that given an extreme current velocity in a particular direction
at one depth, the current would be expected to flow in approximately
the same direction at adjacent depths. The practical consequence of
this is that for some 𝑌𝑗|𝑖 we have no, or very few, observations to
estimate the corresponding dependence parameters (𝛼𝑗|𝑖, 𝛽𝑗|𝑖). For the
𝑌𝑗|𝑖 with no observations this is not an issue; 𝐺

|𝑖 is modelled by its
empirical distribution function, so for a given 𝑌𝑖, such 𝑌𝑗 will have zero
probability of occurrence, making dependence modelling redundant.
For the 𝑌𝑗|𝑖 with just a few observations, estimates of (𝛼𝑗|𝑖, 𝛽𝑗|𝑖) will be
unreliable due to the small sample size. After careful inspection of the
data at the two considered locations, it was found that such 𝑌𝑗|𝑖 always
corresponded to velocity components in the opposite direction2 of 𝑌𝑖
at adjacent depths. Physical considerations suggests that these pairs
(𝑌𝑖, 𝑌𝑗 ) are negatively dependent. Denoting the number of observations
of 𝑌𝑗|𝑖 by 𝑛𝑌𝑗|𝑖 , we therefore set (𝛼𝑗|𝑖, 𝛽𝑗|𝑖) = (−1, 0), corresponding to neg-
ative asymptotic dependence, for all 𝑌𝑗|𝑖 with just a few observations.3
For the data at hand we defined ’a few’ as 𝑛𝑌𝑗|𝑖 ≤ 12.

The remaining 𝛼𝑗|𝑖 and 𝛽𝑗|𝑖 (and nuisance parameters 𝜇𝑗|𝑖 and 𝑠𝑗|𝑖)
are estimated by numerical minimization of the negative of the compo-
nents 𝑄𝑗|𝑖 of the objective function (11) over the parameter space of the
model, only summing over the 𝑦𝑖|𝑖 and 𝑦𝑗|𝑖 observed simultaneously. For
both computational efficiency and stability, it was found favourable to
first perform the minimization without imposing the constraints in Keef
et al. (2013), and then, using the resulting estimates as a starting point,
run the minimization again with the additional constraints in Keef et al.
(2013). The constraints were imposed on 𝑦𝑖 > 𝑣, where for each 𝑌𝑖, 𝑣
was taken equal to the estimated marginal 50-year return level of 𝑌𝑖. As
found in Keef et al. (2013), the results showed little sensitivity to the
precise choice of 𝑣 as long as 𝑣 was taken above the maximum observed
value of 𝑌𝑖.

Based on the point estimates (�̂�
|𝑖, �̂�|𝑖), the observations �̂�

|𝑖 of the
random normalized residual 𝐙

|𝑖 are given by Eq. (12). The number
of observations of �̂�

|𝑖 is equal to the number of cluster peak excesses
of 𝑌𝑖, denoted 𝑛𝑌𝑖 , and provide a sample from 𝐺

|𝑖. Since each 𝐘−𝑖
formally contains (𝑑∕2 − 1) observed and 𝑑∕2 unobserved components,
so will �̂�

|𝑖. The dependence between the components, partly in terms

2 If, for instance, 𝑌𝑖 corresponds to a positive major axis component,
we mean by ’opposite direction’, 𝑌𝑗|𝑖 corresponding to negative major axis
components.

3 If found to be unimportant for extremes, an alternative can be to simply
neglect/ignore these observations.
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of magnitude, but more importantly in terms of which components are
simultaneously observed and which are unobserved, is taken care of by
modelling 𝐺

|𝑖 by its empirical distribution function �̂�
|𝑖. The probability

of observing a given component 𝑍𝑗|𝑖 from �̂�
|𝑖 is equal to 𝑛𝑌𝑗|𝑖∕𝑛𝑌𝑖 . When

sampling from �̂�
|𝑖 in the subsequent conditional simulation, the number

of observed 𝑍𝑗|𝑖 (and 𝑌𝑗|𝑖) will thus follow a binomial distribution.
By conditioning on the cluster peak excesses of each of the 𝑑

variates in turn, the dependence model was estimated. As in Jonathan
et al. (2012), and for many of the parameters examined in Heffernan
and Tawn (2004), it was found that conditional thresholds equalling
the marginal thresholds (in terms of quantiles) gave reasonable stable
results. A dependence threshold equivalent to the 95% quantile for 𝑌𝑖
corresponding to major axis components and the 94% quantile for 𝑌𝑖
corresponding to minor axis components was thus selected.

The resulting estimates of the dependence parameters 𝛼𝑗|𝑖 and 𝛽𝑗|𝑖
when conditioning on 𝑌1 and 𝑌3 at Munkskjæra, are shown in Fig. 13,
including the effect of imposing the Keef et al. (2013) constraints. For
conditioning variate 𝑌1, corresponding to the major axis velocity com-
ponent 𝑢+𝑅𝑀,1, strong dependence is seen with 𝑢+𝑅𝑀 at all other depths.
Weaker dependence is seen with minor axis components. There are
no observations of simultaneously reversing currents at other depths
(𝑢−𝑅𝑀 ) except one low-velocity observation (< 1cm/s) at depth number
3 (16 m), indicated by the single black dot with (𝛼

|1, 𝛽|1) = (−1, 0)
in Fig. 13(a). For conditioning variate 𝑌3, corresponding to the minor
axis component 𝑢+𝑅𝑚,1, strong dependence is seen for other 𝑢+𝑅𝑚, getting
weaker with depth. Only weak dependence with other components is
seen. Current reversals occur relatively frequent from depths 3–6 (𝑢−𝑅𝑚),
the frequency increasing with depth. Qualitatively similar results as in
Fig. 13 were observed when conditioning on other major and minor
axis components at Munkskjæra.

It is noticeable that the estimated dependence parameters are gen-
erally smoother with depth for velocity components with strong depen-
dence (e.g. for 𝑢+𝑅𝑀 in Fig. 13(a)) than for those with weak dependence.
As the estimated parameters are expected to vary relatively smoothly
with depth, this indicates that it can be more challenging to accurately
estimate the dependence parameters for velocity components with
weak association. In addition, the estimated 𝛼 are usually smoother
than those for 𝛽; Jonathan et al. (2010, 2014) notes that there are some
redundancy between 𝛽 and the nuisance parameters 𝜇 and 𝑠, which
can probably help explain this. As a consequence, it is observed that
the non-smooth parameter estimates are, to some extent, compensated
by the residuals 𝑍𝑗|𝑖 in the conditional simulation, yielding smoother
simulated current profiles.

An illustration of the fitting of the dependence model (10) by
log-likelihood (11) is shown in Fig. 14. Simultaneous observations of
𝑌13, corresponding to 𝑢+𝑅𝑀,4, and cluster peak excesses of conditioning
variate 𝑌1, corresponding to 𝑢+𝑅𝑀,1, are displayed together with the
fitted mean and standard deviation of 𝑌13 as a function of 𝑌1. The
estimated near asymptotic dependence between these two variables,
as indicated in Fig. 13(a), is seen to be well supported by the data. In
Fig. 14(b), the resulting normalized residuals ẑ13|1 plotted against 𝑌1 are
shown. Such plots, where the independence of 𝑍𝑗|𝑖 and 𝑌𝑖 is examined
(independence is a modelling assumption), are part of the diagnostics
to assess model fit. No obvious dependence between 𝑍13|1 and 𝑌1 is
seen.

5.4. Conditional simulation

As previously mentioned, estimates of various extremal statistics
must be acquired by simulation. The simulation is performed using the
Monte Carlo sampling algorithm described in Section 4.4. To account
for temporal dependence, a slight modification of how to determine
the number of times which to condition on each variable has to be
made compared to that proposed by Jonathan et al. (2012). Following
the methodology from the marginal and dependence modelling, we
consider only the marginal cluster peak excesses of each 𝑋𝑖, 𝑖 = 1,… , 𝑑.

Fig. 13. Estimated dependence parameters 𝛼𝑗|𝑖 and 𝛽𝑗|𝑖 when conditioning on (a) 𝑌1,
corresponding to 𝑢+𝑅𝑀,1, and (b) 𝑌3, corresponding to 𝑢+𝑅𝑚,1, at Munkskjæra. Red lines
show the estimated dependence parameters without imposing the constraints in Keef
et al. (2013); darker red lines correspond major axis components and lighter red lines
to minor axis components. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Transformed to Laplace distributed variables 𝑌𝑖, the yearly number of
times which to condition on each 𝑌𝑖 is then determined by the number
of times which 𝑌𝑖 is the only or the largest simultaneously observed 𝑌
corresponding to a cluster peak excess, divided by the effective number
of years of observations. We thus ensure that the number of simulated
current profiles per year is equal to the average number of yearly
observed residual current profiles with at least one velocity component
corresponding to a (marginal) cluster peak excess.

When performing the conditional simulation, a critical point has to
be made clear in order to ensure consistency regarding how to deter-
mine which components of the simulated 𝐘−𝑖 that should be observed
and which should not. The key point is that subsequent to having
simulated a value of the conditioning variate 𝑌𝑖, we sample 𝐙

|𝑖 by
randomly drawing (with replacement) one of the 𝑛𝑌𝑖 observed vectors
�̂�
|𝑖 making up �̂�

|𝑖. The (𝑑∕2 − 1) observed components of the drawn
�̂�
|𝑖 then determines which components of the simulated vector 𝐘−𝑖,

obtained by Eq. (10), that are observed and which are not. In that way,
the (generally strong) dependence between the components in terms
of which are simultaneously observed are taken care of. Physically,
this ensures that the directional misalignment of the current velocity
at different depths for a simulated current profile is approximately
within the range observed in the measurements. The components of
�̂�
|𝑖 can thus not be modelled as being independent (i.e. �̂�

|𝑖(𝐳|𝑖) ≠
∏

𝑗≠𝑖 �̂�𝑗|𝑖(z𝑗|𝑖)). A simplification involved using this approach is that
the probability of observing a particular 𝑌𝑗|𝑖 does not depend on the
magnitude of the simulated value of 𝑌𝑖. Though quite laborious, it
would be possible to also model such dependence, but as long as the
conditional threshold is set sufficiently high, it does not appear to affect
the results in any critical way.

A simulated total current profile is obtained by adding a simulated
residual current profile and a predicted tidal current profile, assuming
the residual and tidal current to be independent. Since the tidal cur-
rent for practical purposes can be considered as periodic with period
18.6 years (the nodal cycle), predicting hourly tidal current profiles
over this period is sufficient to fully describe the distribution of the tidal
current profiles. The predictions are made by the harmonic analysis
described in Section 3.2, and the tidal current profiles are drawn at
random from the resulting sample of size 18.6 × 8766 (the number of
hourly observations during 18.6 years).

Having decided the yearly number of times which to condition
on each 𝑌𝑖, 𝑖 = 1,… , 𝑑, the full sampling algorithm for each 𝑌𝑖 for
simulating total current velocity profiles over a desired period is as
follows:
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Fig. 14. (a) Fitting of the dependence model to simultaneous observations of 𝑌13, corresponding to 𝑢+𝑅𝑀,4 and cluster peak excesses of conditioning variate 𝑌1, corresponding to
𝑢+𝑅𝑀,1. E[𝑌13|1(𝑦1)] = 𝛼13|1𝑦1 + 𝜇13|1𝑦

𝛽13|1
1 is the fitted mean value of 𝑌13|1 and SD[𝑌13|1(𝑦1)] = 𝑠13|1𝑦

𝛽13|1
1 is the standard deviation. (b) The resulting normalized random residuals ẑ13|1

displays no obvious dependence with 𝑌1.

1. Simulate a cluster peak excess of 𝑋𝑖 (> 𝑢𝑋𝑖 ) from the generalized
Pareto distribution, Eq. (15). Transformation (5) (via Eq. (19))
yields a simulated 𝑌𝑖.

2. Sample 𝐙
|𝑖 by drawing (with replacement) one of the 𝑛𝑌𝑖 ob-

served vectors �̂�
|𝑖.

3. Obtain 𝐘−𝑖 = �̂�
|𝑖𝑌𝑖 + 𝑌

�̂�
|𝑖

𝑖 �̂�
|𝑖. The (𝑑∕2 − 1) observed components

of �̂�
|𝑖 determines which components of 𝐘−𝑖 that are observed and

which are not.
4. Transform 𝐘 = (𝐘−𝑖, 𝑌𝑖) to 𝐗 using the inverse of transforma-

tion (5) to obtain a simulated residual current velocity profile.
5. Draw (with replacement) a tidal current velocity profile from the

sample of 18.6 years of predicted tidal current profiles.
6. Add the realizations of residual and tidal current profiles to

obtain a simulated total current velocity profile.

Due to the introduction of an extremal index varying with level
𝑥 in Eq. (19), the inverse of transformation (5) in step 4 above,
used to transform 𝐘 to the original scale 𝐗, cannot always be solved
analytically. To avoid the use of time-consuming numerical solvers in
the simulation procedure, it is favourable to, in advance, fit a higher
order polynomial to describe the relationship between 𝑋𝑖 and 𝑌𝑖 on the
range 𝑢𝑋𝑖 ≤ 𝑥 ≤ 𝑥𝑙𝑖𝑚,𝑖 (the range for which 𝜃−1𝑥𝑖 (𝑥) is not a constant).

If interest is in submodels, obvious modifications to the simulation
procedure must be made.

5.5. Simulated current profiles

With the estimated marginal and conditional extremes models, ar-
bitrary long time series of extreme current velocity profiles can be
simulated by the sampling algorithm described in Section 5.4. To illus-
trate some results, we have simulated 1000 years of extreme current
profiles at both Munkskjæra and Salatskjæra.4 Particular focus will be
placed on the residual current profiles as it is only the residual current
that is described by the conditional extremes model.

In Fig. 15 and 16, the resulting simulated median marginal 10-
year return values for all four residual current components at each
depth are illustrated for Munkskjæra and Salatskjæra, respectively. The
median 10-year return values and the quantile intervals are found by
splitting the 1000 years of simulated residual current profiles into 10-
year periods, extracting componentwise maxima, fitting a generalized
extreme value (GEV) distribution to the resulting 100 block maxima
for each variable, and extracting the 2.5%, 50% and 97.5% quantiles
from the GEV distributions.5 For comparison and partial validation of

4 The single-core computational time was between 15 and 20 min on an
Intel i7 (3 GHz) processor for each location.

5 Simple empirical quantile estimates gave almost identical results.

Fig. 15. Median marginal 10-year return values for all residual current components
at Munkskjæra estimated from the conditional simulation (solid black) and from the
fitted marginal models (solid grey). Dashed black lines are 2.5% and 97.5% quantiles
from the simulations, dashed grey lines are 95% confidence intervals based on profile
likelihood from the fitted marginal models.

the dependence modelling and simulation procedure, the median 10-
year return values and corresponding 95% profile likelihood confidence
intervals calculated from the fitted marginals from Section 5.2 are also
shown (note that the calculated median 10-year return values from the
fitted marginals are not equal to the 10-year return values estimated
by Eq. (16) as the latter correspond to ≈ 37% quantiles). The simulated
median return values are seen to closely follow those calculated from
the fitted marginals; the simulated values consistently being slightly
higher. The tendency of a small positive bias is primarily related to the
choice of only accounting for temporal dependence marginally when
determining the number of current profiles to be simulated per year.
Though, compared to the confidence intervals of the fitted marginals,
the difference is generally negligible. The tighter confidence intervals
from the simulations are a natural consequence of the parametric
bootstrap procedure used to obtain them.

Emphasizing the stochastic nature of the plots, simulated and ob-
served residual, tidal and total current velocities at 4 m depth at
both Munkskjæra and Salatskjæra are illustrated in Fig. 17 (note that
the velocities have been transformed back to eastward and northward
components). Only the first 10-year period of the simulated velocities
are shown. To resemble the simulated velocities, only observations
from the measurements where at least one of the residual current
components of the velocity profile corresponds to a marginal cluster
peak excess, are plotted. The simulated residual current velocities,
based on the conditional extremes model, are seen to closely follow
the trends of the observations. Looking at the simulated total currents,
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Fig. 16. Median marginal 10-year return values for all residual current components
at Salatskjæra estimated from the conditional simulation (solid black) and from the
fitted marginal models (solid grey). Dashed black lines are 2.5% and 97.5% quantiles
from the simulations, dashed grey lines are 95% confidence intervals based on profile
likelihood from the fitted marginal models.

they are also seen to match the observed total currents quite well, par-
ticularly at Munkskjæra. At Salatskjæra (Fig. 17(f)), there are apparent
evidence of some interaction between the tidal and the residual current;
the main effect being suppression of total current velocities in the
northeastern direction. Similar interaction (though less pronounced) is
apparent in the eastward direction at Munkskjæra. Such interactions
are not captured by the statistical model as independence between
the tidal and the residual current is an inherent assumption. However,
when including all observations from the measurements in the plot
(not shown), the interaction is less pronounced at Salatskjæra. In the
context of extreme value analysis, it is reassuring that the most extreme
simulated total current velocities, both in terms of magnitude and
direction, coincide reasonably well with those from the observations.
Similar agreement between simulated and observed velocities are seen
at all other considered depths.

So far, only marginal and single-depth results have been presented.
In isolation, these results are of limited interest as our main objective
is to characterize instantaneous extreme current velocity profiles with
depth. Presenting such multivariate data in a visually appealing manner
is however challenging, and we therefore present the instantaneous
current profile results in terms of integrated variables. Since we are
usually interested in the resulting force vector due to the current veloc-
ity profile for design of coastal and ocean structures, such a measure
is considered to be the most informal two-dimensional summary of the
current velocity profiles.

Let us consider the resulting force on a fixed, surface piercing,
vertical circular cylinder with diameter 𝐷 = 1 m and submerged length
ℎ. The length ℎ is taken equal to 35 m for Munkskjæra and 30 m for
Salatskjæra, so that the bottom of the cylinder is at a depth slightly
lower than the deepest measurement point at the respective locations
(34 m and 28 m). The resulting Cartesian force components, or loads,
𝐿𝑒 and 𝐿𝑛 in the eastward and northward direction, respectively, are
given by the quadratic drag equation, which for a vertical cylinder
exposed to a horizontal current takes the form

𝐿𝑒 =
1
2𝜌𝐶𝑑𝐷 ∫

0

−ℎ
𝑢𝑒(𝑧)

√

𝑢𝑒(𝑧)2 + 𝑢𝑛(𝑧)2 d𝑧

𝐿𝑛 =
1
2𝜌𝐶𝑑𝐷 ∫

0

−ℎ
𝑢𝑛(𝑧)

√

𝑢𝑒(𝑧)2 + 𝑢𝑛(𝑧)2 d𝑧
(22)

where we take the water density 𝜌 = 1000 kg/m3 and the drag
coefficient 𝐶𝑑 = 1. The eastward and northward velocities 𝑢𝑒 and 𝑢𝑛
are functions of the vertical coordinate 𝑧 (𝑧 = 0 at the sea surface).
A two-dimensional illustration is shown in Fig. 20. For all observed
and simulated current velocity profiles, Eq. (22) is solved by numerical

integration over the length of the cylinder, assuming a linear veloc-
ity profile between the discrete measurement points (and a constant
velocity above the highest and below the lowest measurement point).
By applying bivariate kernel density estimation (see, e.g., Silverman
(1986)), a smooth, empirical estimate of the joint probability density
function 𝑓𝐿𝑒𝐿𝑛

(

𝑙𝑒, 𝑙𝑛
)

can be obtained. The resulting joint probability
densities are then transformed to polar coordinates (force magnitude
𝐿 and direction 𝛷). The conditional cumulative distribution function
of force given direction, 𝐹𝐿|𝛷(𝑙|𝜙), can then be estimated, allowing for
estimation of extreme quantiles of the resulting force given direction.

In Fig. 18, estimates of the 0.95, 0.99 and 0.995 quantiles of the con-
ditional distribution of force given direction due to the residual current
and total current velocity profiles at Munkskjæra are presented, both
from the simulations and the observations. The observation samples are
also plotted (again, only observations where at least one of the residual
current components of the velocity profile corresponds to a cluster peak
excess are considered). Fig. 19 displays a similar plot for Salatskjæra. At
both sites, the quantiles of the forces from the simulated current profiles
are seen to follow the trends of the observations well — particularly
the residual current forces. The estimates of the 0.95 quantile residual
current forces are very similar, as is expected. Due to the limited sample
size, the higher quantiles estimated from the observations are expected
to be poorly estimated empirically, and are dominated by outlying data
and the choice of kernel bandwidth parameter — however, in terms of
both magnitude and direction, the observed and simulated quantiles are
still in reasonable agreement. The slightly ‘rough’ quantile curves from
the simulations are a consequence of the semiparametric nature of the
conditional extremes model (though, smoother estimates can obviously
be obtained by increasing the kernel bandwidth). The additional dis-
crepancies for the total current forces compared to the residual current
forces alone, are primarily related to the increased variability (random-
ness) introduced when combining residual and tidal current profiles
and residual–tidal current interaction. At Munkskjæra (Fig. 18(b)),
there are some evidence of interaction between the tidal and residual
current in the eastward direction, making the independence assumption
appear slightly conservative. At Salatskjæra (Fig. 19(b)), similar effects
are seen in the northeastern direction, in addition to an apparent clus-
tering of extreme total current forces in the eastward direction (both
these effects can be also be seen in Fig. 17(f)). Notwithstanding these
effects, the simulated total current forces are generally in reasonable
agreement with those from the measurements.

As it has already been demonstrated that the simulated current
velocity components are consistent, both marginally and jointly at each
depth, the agreement between simulated and observed resulting forces
suggests that the simulated current velocity profiles are also consistent.

6. Design current velocity profiles

From a structural design perspective, the key output from a statisti-
cal analysis of current profiles is so-called design current velocity profiles.
In principle, such design profiles should not be estimated in isolation
of other relevant environmental parameters. However, as the focus of
this paper is on current velocity profiles only, we do not consider the
additional effect of other environmental phenomena (such as waves and
wind) when deciding these. Reference is made to offshore standards
and recommended practices such as ISO (2015) and DNV (2014) for
important joint environmental and structure-specific considerations.
An example of a pragmatic way of accounting for the effect of the
additional wave-induced fluid velocity, is found in Winterstein et al.
(2011), resulting in increased importance (weighting) of near-surface
currents.

When designing coastal or ocean structures, design values of impor-
tant metocean parameters are required to ensure that the structure in
question can withstand the extreme environmental conditions expected
to occur at the location(s) where it is to be operated. The required
design values are usually specified in terms of return periods or annual
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Fig. 17. 10 years of simulated (grey) residual, tidal, and resulting total current velocities at 4 m depth at Munkskjæra (upper) and Salatskjæra (lower) compared to the observations
(red). Only observations where at least one of the residual current components of the velocity profile corresponds to a marginal cluster peak excess are plotted. The stochastic
nature of the residual and total current velocity plots is emphasized.

Fig. 18. 0.95, 0.99 and 0.995 quantiles of the conditional distribution of radial resulting force given direction for residual and total current profiles at Munkskjæra: ( )
simulations; ( ) observations. The black dots show the sample which the observation quantiles are based on, and correspond to the resulting force from the observations where
at least one residual current component of the velocity profile is a marginal cluster peak excess. The direction is measured clockwise from north.

Fig. 19. 0.95, 0.99 and 0.995 quantiles of the conditional distribution of radial resulting force given direction for residual and total current profiles at Salatskjæra: ( )
simulations; ( ) observations. The black dots show the sample which the observation quantiles are based on, and correspond to the resulting force from the observations where
at least one residual current component of the velocity profile is a marginal cluster peak excess. The direction is measured clockwise from north.

probabilities of occurrence (the reciprocal of the return period). For
a univariate metocean parameter, the value corresponding to a given
return period is uniquely defined once its marginal distribution has
been established. In the case of multivariate metocean data – like
current velocity profiles – this is not so, however, and some sort of
sub-ordering principle (see Barnett (1976) for an overview) is useful

to employ for easier identification of multivariate (extreme) design
values. In the context of structural design, sub-ordering of multivariate
environmental phenomena is usually achieved through a generic load
model that effectively combines the environmental variables into a
relevant response (Tromans and Vanderschuren, 1995).
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Fig. 20. Two-dimensional illustration of the resulting force, 𝐿, due to a current velocity
profile, 𝑢(𝑧), acting on a vertical circular cylinder. The arrows of the profile indicate
the considered depths at the Munkskjæra site with ℎ = 35 m.

The resulting total drag force on the structure in question is among
the most informal summary variables of the effect of the current
velocity profiles on a wide range of marine structures. Since the current
can usually be considered as a steady flow field where the velocity
vector is only a function of depth (ISO, 2015; DNV, 2014), this force
can usually be calculated without much effort — at least within the
degree of accuracy required here. The first step in our approach for
deciding design current velocity profiles therefore involves calculating
the total drag force (or another relevant response function) due to the
simulated current velocity profiles. We outline the approach below by
considering a simple example. It should however be mentioned that,
due to the flexibility of the conditional extremes model, a range of
alternative strategies will also be applicable besides the one presented
here.

6.1. Example — Design current velocity profiles on a vertical circular
cylinder

Following the example in Section 5.5, we consider the total drag
force vector due to the current velocity profiles, acting on a vertical
circular cylinder with diameter 𝐷 = 1 m and submerged length ℎ; see
Fig. 20 for a two-dimensional illustration. Again, ℎ is taken equal to
35 m for Munkskjæra and 30 m for Salatskjæra. This is a simplified,
but representative example of a floating (moored) structure exposed to
currents. For all the simulated ‘extreme’ total current velocity profiles,
covering the 1000 year simulation period, the Cartesian total drag force
components are obtained by solving Eq. (22) by numerical integration
over the length of the cylinder. At the Munkskjæra site, this means
calculating the resulting force due to approximately 755000 current
profiles (on a state-of-the-art laptop, this required only a few minutes
of CPU time when using a discrete step size d𝑧 = 1 m in the nu-
merical integration). The Cartesian force components are conveniently
transformed to polar coordinates, yielding force magnitudes, 𝐿, and
associated directions, 𝛷.

By looking at the resulting response (the total drag force vector) in-
stead of the current velocity profiles directly, our multivariate problem
has effectively been reduced to a two-dimensional one.6 𝑁-year design
current velocity profiles can then be obtained by first estimating the 𝑁-
year drag force (favourably as a function of direction) and subsequently
deriving corresponding current velocity profiles, yielding an equivalent
force.

6 The entire extreme value analysis could indeed have been performed on
the structural response/load directly (as opposed to the current profiles), but
this would have left us with little knowledge about the actual shape of the
current velocity profiles causing the extreme responses.

6.1.1. Estimating design drag forces
Robinson and Tawn (1997) describe various ways of estimating

design values of a two-dimensional vector variable (with a magnitude
and a direction). Applying these methods, both omni-directional and
directional return values of the (simulated) drag forces can be obtained.
Two aspects greatly simplifying this step are; (1) since temporal de-
pendence has already been (partly) accounted for in the Monte Carlo
sampling algorithm, the simulated drag forces can be considered as
independent; (2) provided the simulation period is substantially longer
than the return periods of interest (say, at least 10–20 times longer),
return values can be estimated directly from the simulated sample
without the need of first fitting a parametric probability distribution.

Denoting the yearly number of simulated current velocity profiles
𝑛𝑆,1𝑦, the estimated omni-directional 𝑁-year return value of the drag
force, 𝑙𝑁 , is obtained by solving for the load that satisfies

𝐹𝐿(𝑙𝑁 ) = 1 − 1
𝑛𝑆,1𝑦𝑁

(23)

As we only consider return periods, 𝑁 , that are substantially shorter
than the simulation period, the distribution function of the drag load,
𝐹𝐿(𝑙), can conveniently be approximated by its empirical distribution
function.

Directional return values can be obtained by looking at the probabil-
ity that the drag load is exceeded in a particular direction, providing in-
formation on the required directional structural strength. Following the
discussion in Robinson and Tawn (1997), each simulated observation
of (𝐿,𝛷) has a resolved drag load in every non-orthogonal direction;
i.e. the observation (𝑙, 𝜙) has a resolved load 𝑙(𝜓) = 𝑙 cos (𝜙 − 𝜓) in each
direction 𝜓 ∈ (0, 2𝜋]. For regularly spaced directions 𝜓𝑗 , the resolved
load 𝑙(𝜓𝑗 ) can be calculated for all the simulated observations (𝐿,𝛷).
The 𝑁-year return value, 𝑙𝑁 (𝜓𝑗 ), for the resolved loads in direction 𝜓𝑗 ,
are then calculated by solving

𝐹
(

𝑙𝑁 (𝜓𝑗 )
)

= 1 − 1
𝑛𝑆,1𝑦𝑁

(24)

with 𝐹
(

𝑙(𝜓𝑗 )
)

approximated by its empirical distribution function.
Instead of resolved loads, one might be interested in the load 𝑙∗𝑁 (𝜓𝛿)

which is exceeded, on average, once every 𝑁 years, conditional on the
direction being in sector 𝜓𝛿 ; 𝜓𝛿 being a sector of width 𝛿 centred on
𝜙 = 𝜓 . Such estimates will depend on the sector width 𝛿, which should
be decided taking both the structure and the directional variation of
the load into consideration. Note that the sectors do not need to be
equal in size, but for design, ISO 19901–1 recommends that the sector
width should not be smaller than 45◦ to avoid ’over-optimization’ (ISO,
2015). To decide 𝑙∗𝑁 (𝜓𝛿), the conditional distribution of 𝑙∗(𝜓𝛿) given 𝜓𝛿
is required, i.e.

𝐹
(

𝑙∗(𝜓𝛿) ∣ 𝜓𝛿
)

= ∫

𝑙∗(𝜓𝛿 )

0 ∫

𝜓+𝛿∕2

𝜓−𝛿∕2
𝑓𝑅,𝛷(𝑟, 𝜙) d𝜙 d𝑟∕𝑝𝜓𝛿 (25)

where 𝑝𝜓𝛿 is the probability of being in sector 𝜓𝛿 . Both 𝑝𝜓𝛿 and
𝐹
(

𝑙∗(𝜓𝛿)|𝜓𝛿
)

can be estimated empirically. Particularly for small 𝛿,
a bivariate kernel density estimate of 𝑓𝑅,𝛷(𝑟, 𝜙) can provide smoother
directional estimates. Finally, the return level 𝑙∗𝑁 (𝜓𝛿) can be estimated
by solving

𝐹
(

𝑙∗𝑁 (𝜓𝛿)|𝜓𝛿
)

= 1 − 1
𝑛𝑆,1𝑦𝑁𝑝𝜓𝛿

(26)

Applying the three approaches described above, Figs. 21 and 22
shows estimates of extreme drag forces corresponding to return periods
𝑁 = 10, 50 and 100 years at Munkskjæra and Salatskjæra, respectively.
At Munkskjæra, the critical directions are clearly bounded to the east
and west. Looking at the resolved force estimates, 𝑙𝑁 (𝜓), we note that
the 10-year force is approximately of equal magnitude in the eastward
and westward direction, however, for increasing 𝑁 , the difference
magnifies, reflecting the long tail (higher GP shape parameter) of the
westward flowing current components; cf. Fig. 10(a). At Salatskjæra,
the critical direction is in a quite wide sector to the southeast. An
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Fig. 21. Munkskjæra: 𝑁-year return value force estimates due to the simulated current
velocity profiles for 𝑁 = 10, 50 and 100 years. ( ) omni-directional force 𝑙𝑁 ; ( )
resolved forces 𝑙𝑁 (𝜓); ( ) forces conditional on direction 𝑙∗𝑁 (𝜓𝛿 ). The red dots show
the simulated 1000 year sample which the estimated return values are based on. Black
crosses are the two samples which the 10-year design profiles in Fig. 23 are based on.

Fig. 22. Salatskjæra: 𝑁-year return value force estimates due to the simulated current
velocity profiles for 𝑁 = 10, 50 and 100 years. ( ) omni-directional force 𝑙𝑁 ; ( )
resolved forces 𝑙𝑁 (𝜓); ( ) forces conditional on direction 𝑙∗𝑁 (𝜓𝛿 ). The red dots show
the simulated 1000 year sample which the estimated return values are based on. Black
crosses are the two samples which the 10-year design profiles in Fig. 24 are based on.

interesting feature is the local force-minima at approximately 135◦, seen
for the conditional force estimates, 𝑙∗𝑁 (𝜓𝛿). This local minima is also
apparent in the measurements (Fig. 19(b)), and is probably related to
the presence of a few small islands and skerries upstream for flow in this
direction. It is pleasing to observe that the proposed statistical model
is able to capture such complex directional behaviour.

The estimates of 𝑙∗𝑁 (𝜓𝛿) (force conditional on direction) have similar
directional characteristics as those of the resolved forces 𝑙𝑁 (𝜓), but
are smaller in magnitude because large forces in other directions can
have resolved forces which exceed observed forces in direction sector
𝜙𝛿 . Also, the estimates of 𝑙∗𝑁 (𝜓𝛿) have been made with a sector width
𝛿 = 1◦ to better illustrate the shape of the simulated sample. Using
such a small sector width as environmental criteria for design is highly
unconservative (see, e.g., Forristall (2004) for a discussion on the use of
directional environmental criteria).

6.1.2. Estimating design current velocity profiles
Taking advantage of the large sample size (1000 years), a simple

and pragmatic way of obtaining 𝑁-year design current velocity profiles
is to identify a subsample of observations in proximity of a prescribed
𝑁-year force level and direction, and then use the corresponding
subsample of current velocity profiles directly to construct a design
profile. Focusing on critical directional sectors along the 10-year return
value line of the resolved forces, 𝑙𝑁 (𝜓), this approach is used below
to obtain estimates of 10-year design current velocity profiles at both
Munkskjæra and Salatskjæra. From Fig. 21 and 22 it is noted that,
at least for 𝑁 > 50, a longer simulation period would generally be

required so that the number of observations at such extreme levels is
increased.

At Munkskjæra, we concentrate on the eastward sector (60◦, 100◦)
and the westward sector (255◦, 280◦). In both sectors, 21 simulated force
observations have been identified near the respective peaks of the 10-
year return level of 𝑙𝑁 (𝜓) as indicated by the black crosses in Fig. 21.
We thus have a sample of 21 current velocity profiles in each sector,
all of which (approximately) give rise to the same total drag force
in the same directional sector. To decide the design profiles, we first
resolve the current velocity at each depth of each profile into a velocity
component in the same direction as the resulting drag force of the
profile, the longitudinal current velocity, and a component orthogonal to
the direction of this force, the orthogonal current velocity. The median
longitudinal current velocity at each depth then serves as a reasonable
two-dimensional estimate of the 10-year design current velocity profile
in the respective sectors (we preferred the median over the mean as
it is less sensitive to outliers). If a three-dimensional profile is desired,
the same operation can be performed on the orthogonal current com-
ponents as well. Even though the resulting, vertically integrated, force
due to the orthogonal current profiles is zero, their local effect might be
of importance. In Fig. 23, the resulting 10-year design current velocity
profiles are shown for both directional sectors together with empirical
10% and 90% quantiles of the velocity components at each depth,
obtained from the respective samples of 21 current velocity profiles.
As a simple way of validating if the shape of the profiles appears
reasonable, the velocity profiles from the measurements causing the 5
largest forces in the two sectors are also included. Though one should
be careful not to put too much weight on such a validation, it is
reassuring that the shape of the design current profiles is in agreement
with the measurements. In sector (60◦, 100◦), the median longitudinal
velocity profile (in the total force direction) in Fig. 23(a) is seen to
be relatively uniform with depth. It is somewhat surprising that the
lowest velocity of the profile is at the top bin (4 m), however, this
is actually supported by the measurements. The orthogonal velocity
components in Fig. 23(b) are generally of minor importance, indicating
an approximately unidirectional flow. In sector (255◦, 280◦), the median
longitudinal velocity profile in Fig. 23(c) peaks with a velocity of 1
m/s at depth 10 m, decreasing for deeper levels. Again, the orthogonal
velocity components in Fig. 23(d) are of minor importance.

At Salatskjæra, the focus is on the main critical sector (95◦, 130◦).
In addition, we investigate sector (145◦, 170◦) to see if there is any
particular difference in the shape of the current profiles south of the
local minima at 135◦. As for Munkskjæra, 21 current velocity profiles
have been identified in each sector in proximity of the 10-year return
level of 𝑙𝑁 (𝜓); see Fig. 22. Following the same procedure of resolving
the velocity components at each depth into longitudinal and orthogonal
velocity components relative to the total drag force, the resulting 10-
year design current profiles for both sectors are shown in Fig. 24. In
sector (95◦, 130◦), the longitudinal design profile in Fig. 24(a) contains
its highest velocities at intermediate depths, a shape that is supported
by the measurements. A minor anticlockwise rotation is seen for the
orthogonal profile in Fig. 24(b). For sector (145◦, 170◦), the highest
velocities of the longitudinal design profile in Fig. 24(c) is found at
the deepest levels — a consequence of the high GP shape parameters
of the positive major axis components at these depths, cf. Fig. 10(b).
This shape is not fully supported by the measurements, however, there
seems to be a trend of the lower level velocities increasing more
than those at the upper levels, so, as we are extrapolating beyond
the measurements, it does not appear unrealistic either. Compared
to sector (95◦, 130◦), both the design profile and the measurements
indicate a decrease in the upper level velocities, increasing the relative
importance of the lower level velocities.

Overall, the performance of the proposed statistical model and the
approach for deriving design current velocity profiles appears to be
satisfactory, both at Munkskjæra and Salatskjæra.
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Fig. 23. Munkskjæra; median 10-year design current velocity profiles in the two considered critical directional sectors (solid black) based on the velocity profiles corresponding
to the two subsample indicated in Fig. 21. Dashed black lines are 10% and 90% quantiles of the simulated velocity at each depth. Thin grey lines are the velocity profiles from
the measurements causing the 5 largest forces in the respective sectors. The longitudinal current velocity is the velocity profile in the direction of the resulting drag force, while
the orthogonal current velocity is the velocity profile orthogonal to the resulting drag force.

Fig. 24. Salatskjæra; median 10-year design current velocity profiles in the two considered critical directional sectors (solid black) based on the velocity profiles corresponding to
the two subsample indicated in Fig. 22. Dashed black lines are 10% and 90% quantiles of the simulated velocity at each depth. Thin grey lines are the velocity profiles from the
measurements causing the 5 largest forces in the respective sectors. The longitudinal current velocity is the velocity profile in the direction of the resulting drag force, while the
orthogonal current velocity is the velocity profile orthogonal to the resulting drag force.

7. Conclusions and discussion

In this paper we have described a method for statistical modelling of
extreme vertical current velocity profiles. The method is based on the
conditional extremes model by Heffernan and Tawn (2004), arguably
providing the most useful and flexible current approach for modelling
extremes in high dimensions.

As illustrated in Fig. 1, we consider current velocity components
resolved along major and minor axes at each depth, and decompose the
total current into tidal and residual currents using harmonic analysis. A
complete marginal model for each of the (both positive and negative)
residual current components is then constructed, and the dependence
structure is characterized using the conditional extremes model. Esti-
mates for various extremal statistics are acquired by simulating under
this model, and extreme total current velocity profiles can be obtained
by randomly adding predicted (deterministic) tidal current profiles to
realizations of (stochastic) extreme residual current profiles. As imple-
mented, these steps accounts for directionality, spatial and temporal
dependence, and non-stationarity introduced by the tide. Based on a
long period of simulated current velocity profiles, a simple approach
for deriving design current velocity profiles is also proposed.

The statistical method has been tested using ADCP data from two
coastal locations in Norway. We have shown that the method pro-
vides good extrapolations at both locations. This is confirmed both

marginally for each velocity component, jointly for the velocity com-
ponents at each depth, and for the full velocity profiles — the latter
is primarily illustrated in terms of integrated variables (resulting force
vector on a circular cylinder due to the current profiles). Compared to
the most extreme velocity profiles observed from the measurements,
the derived 10-year design current velocity profiles appear realistic,
both considering their shape, magnitude, and direction. Even though
we have only considered the upper part of the water column, significant
change in the velocity as a function of depth is seen for most of
the design profiles. The shape of the design profiles is also found to
be quite different in the two considered critical directional sectors
at both locations. We believe that the proposed method represents
a valuable addition to existing methods for deriving extreme current
velocity profiles. As the vertical current structure is expected to be more
variable in deeper and/or stratified waters, the proposed method will
be even more beneficial to apply there.

As presented here, the method makes a number of assumptions
which should be commented upon. For instance, the residual current
velocities are assumed to be stationary processes. For the data at hand,
this is a reasonable assumption, however, at other locations this might
not be the case. If there are important seasonal changes, a separate
model might be specified for each season (as in Heffernan and Tawn
(2004)), with the obvious drawback that each model has less available
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Table A.2
Estimated residual current marginal distribution parameters and return levels. The generalized Pareto shape (𝜉𝑖) and scale (𝜎𝑖) parameters are estimated by maximum likelihood.
The threshold 𝑢𝑋𝑖

corresponds to the 95% quantile for the major axis components (M) and the 94% quantile for the minor axis components (m). 𝑥𝑖,10𝑦 and 𝑥𝑖,50𝑦 are the estimated
10- and 50-year return levels, respectively, with profile likelihood based 95% confidence intervals in parenthesis. All parameters have been estimated with a minimum peak-to-peak
separation time 𝜏 = 30 hours. 𝑛𝐶𝑖 is the number of observed cluster peak excesses.

Parameter 𝑖 𝑛𝐶𝑖 [–] 𝑢𝑋𝑖
[cm/s] 𝜉𝑖 [–] 𝜎𝑖 [cm/s] 𝑥𝑖,10𝑦 [cm/s] 𝑥𝑖,50𝑦 [cm/s] 𝑛𝐶𝑖 [–] 𝑢𝑋𝑖

[cm/s] 𝜉𝑖 [–] 𝜎𝑖 [cm/s] 𝑥𝑖,10𝑦 [cm/s] 𝑥𝑖,50𝑦 [cm/s]

Munkskjæra Salatskjæra

𝑢+𝑅𝑀,1 1 74 27.2 −0.36 12.6 58 (55, 70) 60 (57, 76) 67 16.7 −0.08 6.4 48 (40, 80) 54 (44, 113)
𝑢−𝑅𝑀,1 2 74 26.2 −0.12 8.4 62 (54, 99) 69 (58, 136) 89 14.4 −0.09 4.8 38 (32, 59) 42 (34, 79)
𝑢+𝑅𝑚,1 3 149 11.7 −0.22 4.5 28 (26, 33) 29 (27, 36) 70 18.0 −0.33 10.6 46 (42, 61) 47 (43, 69)
𝑢−𝑅𝑚,1 4 111 13.7 −0.28 6.3 32 (30, 41) 34 (31, 45) 110 12.4 −0.04 4.7 40 (34, 59) 45 (37, 79)

𝑢+𝑅𝑀,2 5 59 31.5 −0.39 16.4 69 (65, 86) 71 (67, 95) 51 18.0 −0.14 8.6 53 (45, 94) 58 (48, 133)
𝑢−𝑅𝑀,2 6 67 23.5 −0.03 11.3 85 (68, 165) 100 (74, 267) 77 13.4 0.01 5.2 47 (37, 90) 56 (42, 142)
𝑢+𝑅𝑚,2 7 130 9.9 0.04 3.8 38 (30, 68) 47 (33, 107) 50 18.4 −0.36 13.5 51 (47, 71) 53 (49, 81)
𝑢−𝑅𝑚,2 8 107 11.7 −0.34 8.0 32 (30, 39) 33 (31, 42) 112 10.5 −0.03 4.4 37 (29, 66) 43 (31, 95)

𝑢+𝑅𝑀,3 9 57 30.3 −0.39 17.3 70 (66, 87) 72 (69, 97) 51 15.1 −0.01 7.1 56 (42, 151) 66 (46, 290)
𝑢−𝑅𝑀,3 10 79 19.9 0.08 7.2 76 (58, 147) 96 (67, 255) 83 11.6 −0.04 4.1 35 (29, 62) 40 (32, 91)
𝑢+𝑅𝑚,3 11 131 8.4 0.11 3.2 39 (28, 74) 50 (33, 126) 51 15.4 −0.27 13.1 54 (48, 85) 57 (51, 106)
𝑢−𝑅𝑚,3 12 126 9.6 −0.09 5.1 34 (29, 51) 39 (31, 67) 113 8.8 −0.05 3.5 29 (24, 46) 33 (26, 63)

𝑢+𝑅𝑀,4 13 55 29.2 −0.34 17.4 73 (68, 92) 76 (71, 104) 60 13.4 0.19 4.5 63 (41, 218) 89 (48, 546)
𝑢−𝑅𝑀,4 14 80 17.9 0.08 5.9 64 (50, 120) 80 (57, 204) 91 10.6 −0.21 3.9 24 (22, 31) 26 (23, 36)
𝑢+𝑅𝑚,4 15 162 7.6 0.08 2.7 32 (25, 53) 40 (28, 81) 61 13.2 −0.08 8.9 56 (44, 122) 64 (48, 196)
𝑢−𝑅𝑚,4 16 138 8.8 −0.16 5.1 29 (26, 40) 32 (28, 48) 130 7.7 −0.14 2.8 20 (17, 28) 21 (18, 34)

𝑢+𝑅𝑀,5 17 55 27.9 −0.34 17.3 71 (66, 93) 74 (69, 106) 64 13.3 0.13 4.8 58 (40, 176) 77 (45, 393)
𝑢−𝑅𝑀,5 18 88 17.2 0.08 5.1 57 (44, 110) 71 (50, 187) 93 11.4 −0.16 3.7 26 (23, 38) 28 (24, 46)
𝑢+𝑅𝑚,5 19 189 7.2 −0.10 2.8 21 (19, 27) 24 (20, 33) 71 11.8 −0.01 6.8 53 (40, 115) 63 (44, 191)
𝑢−𝑅𝑚,5 20 142 8.6 −0.19 4.8 27 (24, 34) 29 (26, 39) 128 7.1 −0.20 2.8 18 (16, 23) 19 (16, 27)

𝑢+𝑅𝑀,6 21 59 26.6 −0.31 15.5 68 (62, 96) 71 (64, 114)
𝑢−𝑅𝑀,6 22 96 16.8 0.09 4.3 53 (41, 100) 66 (47, 171)
𝑢+𝑅𝑚,6 23 209 6.9 −0.13 2.8 20 (18, 26) 21 (19, 30)
𝑢−𝑅𝑚,6 24 156 8.7 −0.11 4.2 29 (25, 39) 32 (27, 47)

data for inference. Important aspects regarding modelling of extremes
of non-stationary sequences can be found in Coles (2001), Chap. 6.

Further, we have assumed that tidal and residual currents are inde-
pendent. Albeit this appeared reasonable for our data, independence
might be a conservative assumption, particularly in shallow water.
If tidal–residual current interaction is evident, analogous methods as
when estimating extreme sea-levels could probably be applied to ac-
count for this (see Tawn (1992), Dixon and Tawn (1999) and Mazas
et al. (2014)). Due to the increased dimensionality of the data and the
additional dependence modelling, this is however expected to be more
challenging to implement for current profiles than for sea-levels.

Inference for marginal and dependence structure has been under-
taken (componentwise) using the conventional peaks over threshold
method to account for temporal dependence. A major problem for esti-
mation of extreme currents is often to obtain data of adequate length,
so using only the cluster peak excesses might seem rather wasteful of
data. Fawcett and Walshaw (2007, 2012) argue that more accurate and
precise parameter and return level estimates can be obtained by using
all threshold excesses. This could provide an interesting alternative
to the peaks over threshold method used here, and it would also
remove the complication of connecting the bulk and tail distribution
(cf. Section 5.2.3). It should be noted that temporal dependence still
needs to be accounted for when constructing confidence intervals and
estimating return levels — this is relatively straightforward in the
univariate case, but might prove more defiant for multivariate data
such as current profiles. Also, we do not know how this affects the
performance of the conditional extremes model.

Another aspect, both relevant for the marginal and the dependence
modelling, is the possibility of applying joint estimation instead of
componentwise parameter estimation. This is a valuable alternative
when there are constraints between the parameters, enabling inferential
efficiency to be gained (Heffernan and Tawn, 2004). For instance, one
might expect the tail behaviour of a particular velocity component
(e.g. positive major axis components) at adjacent depths to display

similar tail behaviour. This is equivalent to saying that the gener-
alized Pareto parameters of the velocity component varies relatively
smoothly with depth. Similarly, the dependence parameters for a given
velocity component are also expected to vary relatively smoothly with
depth. Treating depth as a covariate, parameter smoothness could for
instance be controlled within a penalized likelihood framework (see,
e.g., Chavez-Demoulin and Davison (2005), Jonathan et al. (2014)). In
this respect, ideas from the piecewise stationary extreme value model
of Ross et al. (2018) seems particularly interesting to use together
with the modelling strategy proposed herein (though, clearly adding
complexity to the analysis).

Threshold selection is an important step in the proposed method,
both when fitting the marginal tail model and the dependence model.
Due to the large number of considered residual current components, a
suitable common threshold corresponding to a given non-exceedance
probability was selected in the present work; one for the major axis
components and one for the minor axis components. Common threshold
selection (or other automated procedures) is inevitable due to the
large number of possible threshold choices. Still, as also commented
by Jonathan et al. (2012), a more satisfactory procedure than the
one presented here would generally be desirable. Estimating models
for different threshold levels, and then averaging over the models
to incorporate uncertainty in threshold selection, is a possible (but
comprehensive) solution; see, e.g., Northrop et al. (2016) or Ross et al.
(2017).

In the conditional simulation (cf. Section 5.4), there is one as-
sumption which should be mentioned in particular. Subsequent to
having simulated a value of the conditioning variate 𝑌𝑖, it concerns
how to determine which components of the remaining profile 𝐘−𝑖 that
should be observed and which should not. We have assumed that it
is appropriate to determine this by drawing an arbitrary �̂�

|𝑖 and let
the (𝑑∕2 − 1) observed components of �̂�

|𝑖 control which components of
𝐘−𝑖 that are observed. As commented in Section 5.4, a simplification
involved here is that the probability of observing a particular 𝑌𝑗|𝑖



Ocean Engineering 186 (2019) 106055

21

P.T. Bore et al.

does not depend on the magnitude of the simulated 𝑌𝑖 (the number
of observed 𝑌𝑗|𝑖 in the conditional simulation thus follows a binomial
distribution). It is therefore important that the conditional threshold is
set sufficiently high in the dependence modelling. For the data at hand,
this assumption did not affect the results in any critical way. However,
we expect that the robustness of the method could be improved by
also modelling this type of dependence — this is probably easier to
accommodate if the current direction is explicitly considered as a
covariate in the statistical model.
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Appendix A. Residual current marginal distribution parameters
and return levels

Estimated residual current marginal distribution parameters and
return levels are given in Table A.2.
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