

Available online at www.sciencedirect.com

Energy Procedia 114 (2017) 72 - 80

13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

Membrane-assisted CO₂ liquefaction: performance modelling of CO₂ capture from flue gas in cement production

Richard Bouma^a*, Frank Vercauteren^a, Peter van Os^a, Earl Goetheer^a, David Berstad^b, Rahul Anantharaman^b

> ^aTNO, PO Box 6012, NL-2600 JA Delft, The Netherlands ^bSINTEF Energy Research, PO Box 4761, 7465 Trondheim, Norway

Abstract

CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO₂ capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO₂ liquefaction as a possible retrofit application for post combustion CO₂ capture. For the relatively large CO₂ concentrations that are typical for the flue gas in conventional cement kilns, it may be possible to capture CO₂ by combining a single membrane unit for bulk separation and a CO₂ liquefaction train in which the waste stream is recycled and mixed with the feed to the membrane system. The required membrane surface area is strongly correlated with the CO₂ concentration in the cement kiln flue gas, as well as targeted CO₂ recovery, pressure ratio across the membrane, membrane separation factor and CO₂ permeance. Specifications for flue gas pre-conditioning and an overall techno-economic evaluation are planned to follow the evaluation of experimental results for membrane performance under realistic conditions, as well as for CO₂ liquefaction performance.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of GHGT-13.

Keywords: CO₂ capture, gas separation, membrane, liquefaction

* Corresponding author. Tel.: +31-888661420 *E-mail address:* richard.bouma@tno.nl

1. Introduction

CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO_2 capture in the European cement industry [1]. The four technologies studied are oxyfuel combustion, retention of CO_2 from fluegas in a chilled ammonia solution, calcium looping where CO_2 from flue gas reacts with CaO particles to form CaCO₃, and membrane-assisted CO₂ liquefaction. Assessment of pilot-scale test results and the iteration of experimental and analytical research for these technologies will provide a strategic techno-economic decision basis for CO_2 capture in the European cement industry.

Membrane-assisted CO_2 liquefaction is based on the principle of combining two different separation technologies, both of which are not perfectly suited for stand-alone capture of CO_2 at low concentration in flue gases. In the combined separation process, each technology can carry out a partial separation within its favorable regime of operation. Polymeric membranes are generally suited for bulk separation of CO_2 with moderate product purity. The low-temperature separation is very well suited for purification of CO_2 from a gas stream with moderate to relatively high CO_2 concentration in order to obtain a high-purity CO_2 product stream through condensation of CO_2 and removal of the volatile components nitrogen, oxygen etc. by phase-separation. A significant advantage for the principle of membrane-assisted CO_2 liquefaction is that there is no requirement for process steam, which is normally unavailable in cement factories. The process will in principle depend on electric power only, which is readily available in most cases.

In the present work the performance modelling effort related to membrane-assisted CO₂ liquefaction, the interaction between the membrane separation system and CO₂ liquefaction, and the optimization of process conditions and the system requirements, are presented. A general overview of the post-combustion technology of membrane-assisted CO₂ liquefaction is given in figure 1. The flue gas from a conventional cement kiln has a CO₂ concentration typically in the range of 14-35 % [2] and is available at atmospheric pressure and elevated temperature. The flue gas is pre-conditioned before entering the membrane system. With a CO₂ selective membrane system, the exhaust is depleted in CO₂, and the concentration in the permeate is increased to a level sufficient for recovery and purification by liquefaction. After liquefaction the captured CO₂ is in liquid phase at high purity, and can thus be pumped to dense-phase transport pressure.

Fig. 1. Simplified process scheme for membrane-assisted CO₂ liquefaction.

First the modelling results of the membrane separation and liquefaction as stand-alone processes are presented, followed by the iterative modelling results where the purged gas from the liquefaction is added to the feed stream entering the membrane system.

Nomenclature	
f	CO ₂ mole fraction in feed towards liquefaction unit
р	pressure, Pa
х	mole fraction at feed side membrane, -
x	average mole fraction at feed side membrane, -
х	mole fraction at permeate side membrane,
А	membrane area, m ²
CCR	CO ₂ capture ratio, -
L	membrane thickness, m
Р	permeability, m ³ (STP)m/(m ² sPa)
P/L	permeance, m ³ (STP)/(m ² sPa)
Q	flow, m ³ /s
Х	CO ₂ mole fraction liquid phase in phase separation
Y	CO ₂ mole fraction vapour phase in phase separation
$\alpha_{CO2/N2}$	ideal separation factor of CO ₂ and N ₂ , -
φ	pressure ratio, -
Indices	
f	feed
р	permeate
r	retentate

2. Membrane separation

The membrane system in this retrofit cement manufacture application is modelled as a single module to preconcentrate the CO₂ for liquefaction, see Fig 2. The system is characterized by feed conditions (exhaust flow Q_f and CO₂ concentration from cement plant $x_{CO2,f}$), membrane performance (ideal separation factor $\alpha_{CO2/N2}$ and permeance P/l), system parameters (feed pressure p_f and permeate pressure p_p, and membrane area A). Here the flue gas is assumed to consist of only CO₂ and N₂. The presence of other components in the flue gas and above all the effect of relative humidity is acknowledged and will influence the membrane separation. However, sufficient and reliable permeability data at conditions for the intended application are not available from literature and therefore results from this study will be used to set the conditions for experimental determination of CO₂, N₂ and H₂O permeabilities at relevant range of feed compositions, pressure and temperature.

Fig. 2. Schematic of membrane system showing the base case for retrofit application.

Membrane performance data related to separation of carbon dioxide and nitrogen and a so-called "upper bound" correlation of ideal separation factor and permeability are presented in "Robeson plots" [3]. The ideal separation factor [4] $\alpha_{CO2/N2}$ is defined as the ratio of CO₂ and N₂ permeabilities, and relates the mole fractions y in the permeate to the mole fractions x in the feed, in case of a perfect vacuum at the permeate interface of the membrane.

The pressure on the feed side will be at atmospheric pressure or above, and on the permeate side near vacuum. The actual separation performance is constrained by upward practical feed-to-permeate pressure ratio (ϕ) levels, and is evaluated by the Rautenbach model in equation (1), see [5].

$$y_{CO2} = \frac{1}{2} \left(1 + \phi \cdot \left(x_{CO2} + \frac{1}{\alpha_{CO2/N2} - 1} \right) \right) - \sqrt{\left(\frac{1}{2} \left(1 + \phi \cdot \left(x_{CO2} + \frac{1}{\alpha_{CO2/N2} - 1} \right) \right) \right)^2 - \frac{\alpha_{CO2/N2} \cdot \phi x_{CO2}}{\alpha_{CO2/N2} - 1}}.$$
 (1)

Figure 3 are shows the minimum requirements for the CO_2/N_2 ideal separation factor and membrane pressure ratio, for indicated CO_2 mole fractions in the feed representative of flue gases in cement industry (0.15, 0.25 and 0.35) and in the permeate as expected to be near the optimum for follow-on liquefaction (0.55, 0.65 and 0.75). It is concluded from this figure that a membrane material with a CO_2/N_2 separation factor >> 10 is required, and the membrane separation process is carried out at a pressure ratio of at least 5 and preferably more than 10. According to [3], membrane materials are available that comply with the ideal separation factor criterion with the majority of membranes having α_{CO2/N_2} in the range 10 to 40. Note that the Rautenbach model applies to the local conditions on both sides of the membrane, and does not consider depletion of the CO_2 along the membrane module.

Fig. 3. Minimum requirement for membrane ideal separation factor and pressure ratio, according to Rauthenbach model. Curves are representative for fixed feed and permeate molar CO₂ fractions.

The performance of the membrane system in figure 2 is fully described by the Rautenbach model and the following equations (2), (3) and (4). The requirement for CO_2 recovery of the membrane system is now accounted for as well as the non-constant driving for permeation along the length of the membrane module, which directly influences the minimum membrane area A. The logarithmic mean mole fraction is used to describe the effective feed concentration for the cross-flow module assuming a well-mixed permeate [6].

$$Q_{CO2,r} = \left(1 - \frac{\text{desired CO2 recovery}}{100\%}\right) Q_{CO2,f}.$$
(2)

$$\bar{x}_{CO2,f} = \frac{x_{CO2,f} - x_{CO2,r}}{\ln(x_{CO2,f}/x_{CO2,r})}.$$
(3)

$$A = \frac{Q_{CO2,p}}{(P/L)_{CO2}(\bar{x}_{CO2,f}p_f - y_{CO2}p_p)}.$$
(4)

3. Liquefaction

The stand-alone CO_2 capture ratio (CCR) for the CO_2 liquefaction unit follows from CO_2/N_2 vapour-liquid equilibrium data and depends strongly on the pressure and temperature in phase separation. Typical conditions in liquefaction are 20-40 bar and temperatures down to around -55°C. The base case process configuration is shown in figure 4. After vacuum pumping the permeate is assumed to undergo three-stage compression with intercooling and water knock-out after each compression stage, and a final mol sieve polishing stage for dehydration. Further, the gas is assumed to be cooled by internal heat recuperation and auxiliary refrigeration, resulting in partial CO_2 condensation. The liquid CO_2 is separated from the CO_2 -depleted gas phase by phase separation and is subsequently pressurized by CO_2 pumping.

Fig. 4. Base configuration for low-temperature CO₂ condensation.

The vapour-liquid equilibrium for the binary CO_2/N_2 mixture is shown in figure 5. The CCR is calculated from the CO_2 mole fraction X and Y in liquid and vapour phase respectively, and f the mole fraction in the feed towards the liquefaction unit, see equation (5). Figure 6 shows the separation pressure required to achieve a certain CCR at a condensation temperature of -55 °C, and for CO_2 feed fractions in the range 0.50 to 0.65.

$$CCR = \frac{X}{f\left(1 + \frac{X - f}{f - Y}\right)}.$$
(5)

The specific work to capture CO_2 by liquefaction is calculated for various CCR and different CO_2 feed concentrations, see figure 7. It is obvious that the specific work decreases with increasing CO_2 feed concentration. There is however a minimum in specific work, and this minimum shifts towards higher CCR with increase in CO_2 feed concentration, leaving room for optimization by recycling CO_2 to the membrane separation unit.

Fig. 5. CO₂/N₂ vapour-liquid equilibrium.

Fig. 6. Separation pressure versus CO2 capture ratio at -55 °C and indicated feed concentrations of the liquefaction unit.

Fig. 7. Specific power versus CO₂ capture ratio for the condensation unit, assuming 1 atm feed pressure and 150 bar CO₂ delivery pressure, and for indicated CO₂ feed fractions, i.e. membrane system CO₂ permeate fractions.

4. Membrane-assisted CO₂ liquefaction

In the model of membrane-assisted CO_2 liquefaction the CO_2 recovery module of figure 2 and liquefaction unit of figure 4 are applied. The purged gas stream from the liquefaction unit is recycled to the membrane feed flue gas stream in order to enhance system performance. At the present the membrane separation and the liquefaction are modelled independently and calculations are performed iteratively as the feed flow and CO_2 concentration vary due to the recycle stream. The calculations are converging in just a few iteration steps. The recycle stream contains both CO_2 and N_2 , and thus the average CO_2 concentration in the membrane system deviates from equation (3) is evaluated using

$$\bar{x}_{CO2,f} = \frac{\frac{Q_{CO2,f,including} \, liquefaction \, recycle}{Q_{f,including} \, liquefaction \, recycle} x_{CO2,r}}{\ln\left(\left(\frac{Q_{CO2,f,including} \, liquefaction \, recycle}{Q_{f,including} \, liquefaction \, recycle}\right)/x_{CO2,r}\right)}.$$
(6)

Calculations are made with a permeate pressure of 0.2 bar, CO_2 permeance of $7.5 \cdot 10^{-9}$ m³(STP)/(m²sPa), and as a baseline a liquefaction pressure of 33.5 bar and a membrane separation factor of 40. Figure 8 presents the membrane area per unit flow versus feed pressure for a feed flow containing 20% CO2. The recycle flow from the liquefaction unit raises this concentration 20.2 - 20.4% for 60% CO₂ recovery and 20.4 - 20.9% for 80% CO₂ recovery. The CO₂ concentration in the permeate is 60 - 67% for 60% CO₂ recovery and from 46 - 65% for 80% CO₂ recovery. The effect of membrane separation factor is only observed at low pressure ratios of the membrane system, see figure 9. The liquefaction pressure has hardly any effect on the membrane system performance, see figure 10.

Fig. 8. Membrane area per unit feed flow versus feed pressure at indicated CO₂ recovery at indicated CO₂ recovery. Permeate pressure is 0.2 bar, liquefaction pressure is 33.5 bar, and CO₂ concentration in the feed flow is 20%.

Fig. 9. Membrane area per unit feed flow versus pressure ratio for 3 membrane separation factors. Permeate pressure is 0.2 bar, liquefaction pressure is 33.5 bar, CO₂ concentration in the feed flow is 20% and CO₂ recovery 60%.

Fig. 10. Membrane area per unit feed flow versus liquefaction pressure. Permeate pressure is 0.2 bar, feed pressure of the membrane system is 1.2 or 1.4 bar, CO₂ concentration in the feed flow is 20% and CO₂ recovery 60%.

5. Discussion and conclusions

The following conclusions are drawn from the performed calculations.

- The required membrane surface area is a strong function of CO₂ concentration in the flue gas from the cement kiln, desired CO₂ recovery, pressure ratio across the membrane, membrane separation factor and CO₂ permeance.
- The membrane-assisted CO₂ liquefaction with a single membrane unit requires a substantial CO₂ concentration in the cement kiln flue gas, preferably significantly higher than 15%. Substantial recovery of CO₂ can be realized with a CO₂ concentration of 20% and a recycle of the purged waste stream from the liquefaction unit to the inlet of the membrane unit.
- A permeate pressure of 0.2 bar is assumed in calculations. Any improvement in lowering this pressure in the actual process is highly beneficial.

From the technical performance evaluation of the membrane system and the liquefaction unit, one can infer data for an economic evaluation of the CO_2 capture technology, based on process conditions, pumping and cooling requirements and sizing of units. For the economic evaluation, real data is needed regarding CO_2/N_2 separation

factor, and CO_2 permeance of state-of-art and commercially available membranes. The experiments need to account for the eventual plasticizing effect and co-permeation of H₂O, as well as the temperature of the feed gas, as the flue gas may contain 6-10% water and the exhaust temperature is the range of 300-350 °C. Polymeric membranes are not suited for these high temperatures. In [7] it is noted that in a similar CO₂ recovery application, the "membrane is nearly transparent to water vapor, but has relatively small N₂ and O₂ permeance". The conditioning of the flue gas has not been considered in this study, and the requirements and design of front-end conditioning will depend on actual membrane performance.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 641185.

References

- Jordal K, Størset SØ, Røkke NA. CEMCAP CO₂ capture from cement production. 8th Trondheim Conference on CO₂ Capture, Transport and Storage, June 16-18, 2015.
- [2] Fleiger K. CEMCAP a Horizon 2020 project on CO₂ capture from cement production. CLUSTER Kick-Off Workshop, October 29th 2015.
- [3] Robeson LM. The upper bound revisited. Journal of Membrane Science 2008;320(1-2):390-400.
- [4] IUPAC. Terminology for membranes and membrane processes. Pure & Appl. Chem., Vol. 68, No. 7, pp. 1479-1489, 1996.
- [5] Melin T, Rautenbach R. Membranverfahren Grundlagen, verfahren und industrielle Anwendungen, Wiley-VCH Verlag, 2007.
- [6] Lin H, Thompson MS, Serbanescu-Martin A, Wijmans JG, Arno KD, Lokhandwala KA, Ting Low B, Merkel TC. Dehydration of natural gas using membranes. Part II: Sweep/countercurrent design and field test. Journal of Membrane Science 2013;432:106-114.
- [7] Merkel T, Lin H, Wei X, He J, Firat B, Amo K, Daniels R, Baker R. A membrane process to capture CO₂ from coal-fired power plant flue gas. NETL review meeting, March 26, 2009.