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Abstract. The purpose of short-term hydropower scheduling (STHS) in a competitive 

electricity market is to maximize the profit in the near future while adapting to the mid-term 

strategies for system operation. To ensure a realistic and feasible operation for STHS, it is 

crucial to accurately represent the hydropower production function (HPF). The turbine 

efficiency can be represented by a two-dimensional table provided by the turbine 

manufacturers or measured by the hydropower producers on-site with some given efficiency 

values for a set of net water head and discharge values. In literature, the actual efficiency value 

for any working point is usually linearly interpolated from the given efficiency values. To the 

best of authors' knowledge, no study has been done so far to investigate how a nonlinear 

interpolation for the turbine efficiency, i.e. spline interpolation, may contribute to the 

application of STHS. In this paper, we compare the performance of linear interpolation and 

spline interpolation for turbine efficiency curves in the STHS problem and the bidding strategy 

in intraday market. The interpolation methods are tested on an operational hydro-power 

scheduling model, Short-term Hydro Optimization Program (SHOP), which is used by most 

large hydropower producers in the Nordic countries. Numerical tests demonstrate superior 

behavior of spline interpolation for the estimation of turbine efficiency between measured 

points. Compared to linear interpolation, spline interpolation for turbine efficiency curves gives 

smoother discharge transitions in day-ahead scheduling and is vital for obtaining continuous 

marginal cost curves in intraday trading. Based on the results in this paper, spline interpolation 

is a promising alternative to linear interpolation for turbine efficiency curves in STHS. 

1.  Introduction 

In short-term hydropower scheduling (STHS) it is essential to precisely represent the hydropower 

production function (HPF). The relationship between discharge and electric power output from a 

generating unit is a nonlinear function. It depends on both the net head and the turbine/generator 

efficiency. In addition, the turbine efficiency is a nonlinear function of the net head and the water 

discharge. It can be expressed by a two-dimensional table, known as the Hill chart [1], provided by the 

turbine manufacturers or measured by the hydropower producers on-site. 

In this paper, we focus on the contribution of the accurate representation of turbine efficiency to the 

STHS problem and to the bidding strategy in intraday market. Special attention is paid to the impact of 

the different interpolation methods applied to obtain the actual turbine efficiency values.  In literature, 

the actual efficiency values for any working point are usually linearly interpolated from the given 

efficiency values [1-5]. To the best of authors' knowledge, no study has been done so far to investigate 
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how a nonlinear interpolation for the turbine efficiency, i.e. spline interpolation, may contribute to the 

application of STHS.  

Spline interpolation is a form of interpolation where the interpolant is a special type of piecewise 

polynomial called a spline. It can potentially avoid challenges of simple polynomials, likes Runge's 

phenomenon [6]. Spline interpolation can reproduce the value at all points used for the curve fitting, 

but still have a smoothly changing gradient.  

A summary of the steps involved in the process from obtaining to transforming the turbine 

efficiency values into the STHS problem is presented in Figure 1. In Step 1, the turbine efficiency is 

normally measured at different levels of discharge in the plant. These measurements can be done on a 

scaled prototype or on-site. Since data acquisition is much simpler on a prototype model, improved 

and new methods for scaling efficiency measurements are under development [7, 8]. Both scaled and 

on-site measurements will result in a set of discrete points, while the hydropower producers need a 

continuous curve for the full working area of the unit. Curve fitting is hence needed to transform the 

set of discrete points to a set of continuous curves in Step 2. As described in chapter 3.10.2 of [9], the 

choice of interpolation methods plays an important role in the construction of turbine efficiency 

curves. The interpolation for the turbine efficiency curve takes place when the optimization problem 

of STHS is mathematically formulated in Step 3.  

 

  

Figure 1. Steps in the process of obtaining and transforming turbine efficiency curves in STHS. 

 

The rest of the paper is organized as follows. In Section 2 we point out the critical issues in the 

process where the choice of interpolation methods will count. In Section 3 we describe the methods 

we use to construct the turbine efficiency curve and interpolate the efficiency value for any given 

point. Section 4 uses a real-world example to show the impact of the different interpolation methods. 

All the tests are run by an operational STHS tool. Conclusions and suggestions for further work are 

given in the final section. 

2.  Problem description 

In this section, we discuss how curve fitting and interpolation methods will influence the results of the 

STHS problem and the determination of the bidding curve for intraday re-planning. 

2.1.  Turbine efficiency measurements and curve fitting  

The challenges related to curve fitting depend on the properties of the underlying data, as explained in 

the following two sections. 

2.1.1.  Measurements on a scaled prototype. Due to the relatively low cost and high accessibility, a 

large number of measurements can be done on a scaled prototype. These measured discrete values do 

normally not result in a perfect continuous curve, since there will be some noise and uncertainty in the 

sensors and setup. The process of fitting a curve to these data is a trade-off between smoothing the 

noise and preserving local characteristics. Annex H in [9] proposes a curve fitting method to balance 

these two requirements based on splines. The fundamental physical processes affecting the turbine 

efficiency do not directly favour splines above other methods. The motivation for using splines in this 

situation is the freedom it gives to adjust the number of piecewise polynomials based on measurement 

Step 1: Measure turbine efficiency as a set of discrete points

Step 2: Fit a set of curves to the measured data

Step 3: Interpolate the actual turbine efficiency values for working 

points in the optimization problem
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quality. If there is little noise in the measurements, a few points are enough to define one of the 

polynomials. If there is much noise, it may take a lot of points to define the it. The result is always a 

smooth curve. [9] also uses an example to illustrate how this method can be applied in practice. 

2.1.2.  Measurements on a real plant. Most hydropower plants need their operation to be stopped and 

have measuring equipment installed to find the turbine efficiency. The down-time and man labour 

involved is costly. Consequently, on-site measurements of turbine efficiency will not be done very 

often. In contrast to scaled measurements, only a limited number of points can be measured on-site. 

Hydropower producers hence need to choose a curve fitting method that retrieves the missing 

information between the measured points as realistically as possible. The method can be verified by 

comparing the interpolated values from the retrieved curves with measurements that were not 

considered when the curve was constructed ("out-of-sample"-testing). In Section 4.2 we present such a 

test for a real data set. 

2.2.  Interpolation for turbine efficiency curves 

The challenge in Step 3 in Figure 1 is to express the turbine efficiency curve so it fits into the 

mathematical framework of the STHS tool. The activities in Step 3 do not involve any reduction of 

noise or estimation of unknown data points. Instead, the main goal is to interpolate the actual turbine 

efficiency values from the measured points and apply them to formulate the HPF. The accurate 

representation of HPF will help to bring about precise and optimal results.  

2.2.1.  Optimal scheduling in the day-ahead market. Since bidding and clearing of the day-ahead 

market is done several hours before the time of operation, there is enough time for hydropower 

producers to run a full optimization on a detailed model of their watercourses. In this paper we use the 

operational scheduling tool SHOP [10] to test the impact of different interpolation methods for turbine 

efficiency curves. SHOP is a mixed integer linear programming (MILP) model. The HPF is 

approximated as a convex piecewise linear function in the optimization problem. Splitting the 

nonlinear function into a number of linearized segments allows for a precise description of turbine 

efficiency at each breakpoint. These breakpoints are usually not the same as those measured points of 

turbine efficiency, and therefore, interpolation is needed to obtain the corresponding efficiency values.  

Linear interpolation of turbine efficiency results in stepwise gradients. By contrast, spline interpolation 

leads to the continuously changing gradient.  

2.2.2.  Bidding strategy in intraday re-planning. Bidding on intraday markets is done much closer to 

real time, so there is rarely enough time to re-optimize the entire hydraulic system. In [11] a method is 

proposed to build bidding curves for intraday markets. This approach is more computationally 

efficient than optimization and requires a finer representation of the HPF. In this context the 

smoothness and continuous gradient of spline interpolation for turbine efficiency curves becomes even 

more important than in the day-ahead scheduling. 

3.  Methodology 

In this section, we use the mathematical formulation to highlight the impact of interpolation methods 

for turbine efficiency curves on the STHS problem and bidding strategy. A major simplification is that 

we disregard all head effects. This means that the plant is assumed to operate with constant head, 

without head losses and without head-dependency in the turbine efficiency curve. We also set the 

generator efficiency constant to 100%. Only one unit in the plant is considered. These conditions 

allow us to focus on the interpolation methods for the turbine efficiency curve in one dimension. The 

proposed interpolation methods are currently implemented in SHOP without the above-mentioned 

simplifications. It is in operational use by most large hydropower producers in the Nordic countries. 
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3.1.  Spline interpolation 

Firstly, we assume that a set of measured points (also known as "knots") are already available. 

(𝑄𝑛, 𝜂𝑛) refers to the measured water discharge and the corresponding efficiency of the unit at point 𝑛 

(m3/s, %).  

In this paper, the term "spline" means "natural cubic spline". A spline consists of a set of 𝑁 3rd 

order polynomials 𝑓𝑛(𝑞) . Each polynomial is fitted to a segment between each pair of the measured 

points. In other word, the approach of using spline interpolation to mathematically model the turbine 

efficiency curve fixed by 𝑁 + 1 knots {(𝑄𝑛, 𝜂𝑛): 𝑛 = 1,2, … , 𝑁 + 1} is to interpolate between all the 

pairs of knots (𝑄𝑛, 𝜂𝑛) and (𝑄𝑛+1, 𝜂𝑛+1) with polynomials 𝑓𝑛(𝑞), 𝑛 = 1,2, … , 𝑁. Figure 2 explains the 

relationship between knots (𝑄𝑛, 𝜂𝑛) and polynomials 𝑓𝑛(𝑞). 

 

 

Figure 2. Relationship between knots and polynomials by using spline interpolation. 

 

As the spline will take a shape that minimizes the bending under the constraint of passing through 

all knots, both first and second derivatives of the polynomials will be continuous everywhere and at 

the knots. To satisfy this, for knots 𝑛 = 2 ⋯ 𝑁, the following conditions must be met  

 

 𝑓𝑛(𝑄𝑛) = 𝜂𝑛 (1) 

 𝑓𝑛−1(𝑄𝑛) = 𝑓𝑛(𝑄𝑛) (2) 

 𝑓𝑛−1
′ (𝑄𝑛) = 𝑓𝑛

′(𝑄𝑛) (3) 

 𝑓𝑛−1
′′ (𝑄𝑛) = 𝑓𝑛

′′(𝑄𝑛) (4) 

 

At the first point of the first polynomial, and the end point of the last polynomial, 𝑓1
′′(𝑄1) and 

𝑓𝑁
′′(𝑄𝑁+1) are set to 0 as a natural boundary condition. That is, the boundary conditions for the first 

polynomial are defined by 

 

 𝑓1(𝑄1) = 𝜂1 (5) 

 𝑓1
′′(𝑄1) = 0 (6) 

 

And the boundary conditions for the last polynomial are formulated as 

 

 𝑓𝑁(𝑄𝑁+1) = 𝜂𝑁+1 (7) 

 𝑓𝑁
′′(𝑄𝑁+1) = 0 (8) 

 

...
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Based on equations (1) – (8), we can find the polynomial coefficients for the spline. Since each 3rd 

order polynomial has four unknown coefficients, this results in a set of 4𝑁 linear equations with 4𝑁 

unknowns. The solution is found by a tridiagonal algorithm taken from chapter 3.3 in [12]. In our 

implementation we calculate the coefficients for each turbine efficiency spline only once. By storing 

the coefficients as part of the curve description, the actual efficiency at discharge 𝑞 can be found as 

𝜂̂(𝑞) = 𝑓(𝑞) by a simple and computationally efficient calculation.  

3.2.  Linear interpolation 

Linear interpolation of a set of measured points is rather straightforward. It is defined as the 

concatenation of linear interpolants between each pair of the measured points. This results in a 

continuous curve with discontinuous derivatives. The actual efficiency at discharge 𝑞 that lies between 

two points (𝑄𝑛, 𝜂𝑛) and (𝑄𝑛+1, 𝜂𝑛+1), 𝑛 = 1,2, … , 𝑁 is obtained by  

 

 
𝜂̂(𝑞) =

𝜂𝑛𝑄𝑛+1 − 𝜂𝑛+1𝑄𝑛

𝑄𝑛+1 − 𝑄𝑛

+
𝜂𝑛+1 − 𝜂𝑛

𝑄𝑛+1 − 𝑄𝑛

𝑞 (9) 

3.3.  Including turbine efficiency in the MILP framework of the STHS problem 

The HPF includes the turbine efficiency into the formulation of the optimization problem. Equation 

(10) is a version of the HPF with the simplifications mentioned at the beginning of this section. 

 
𝜑(𝑞) = 𝐺 ∙ 𝐻 ∙ 𝜂̂(𝑞) ∙ 𝑞  (10) 

where   

𝜑(𝑞) Power output as a function of the discharge of the unit (MW). 

𝐺 Conversion constant taking into account the gravity acceleration, water density and makes the 

appropriate unit conversions from (m) and (m3/s) to (MW), default value is 9.81 ∙ 10−3.  

𝐻 Net head of the unit, assumed to be constant in this paper (m). 

 

For robustness and computational efficiency, MILP is chosen as the basis for the optimization 

model of SHOP. Since 𝑞 is unknown as a variable in the optimization problem, the interpolated value 

for 𝜂̂(𝑞) may in general turn equation (10) into a nonlinear and nonconvex function. In order to 

incorporating it into the MILP framework, nonconvex areas are replaced with convex ones while 

nonlinearities are handled by approximating the HPF as a piecewise linear function. The 

convexification and approximation are out of the scope of this paper. Interested readers are referred to 

[10] for details on how the HPF is built in SHOP without the simplifications in this paper.  

3.4.  Including turbine efficiency in intraday bidding 

The method used to calculate marginal cost curves for bidding in the intraday market [11] is designed 

to capture as many details from the turbine efficiency curve as possible. A high level of details is a 

necessity for building precise bidding curves. The goal is to determine the optimal discharge level for 

the plant for every possible price in the market.  

In economics, marginal cost is the change in the opportunity cost that arises when the quantity 

produced has an increment of one unit. Therefore, the marginal cost is proportional to the reciprocal of 

the first derivative of 𝜑(𝑞), including 𝜂̂(𝑞) at the same time. In the actual implementation, we assume 

that the marginal cost for one operating point is the change in the opportunity cost of water involved as 

a result of an infinitesimally small increase in the discharge of the unit, typically 0.001 m3/s. 

Then the relative change in the marginal cost curve mainly depends on the both first and second 

derivatives of 𝜂̂(𝑞). If 𝜂̂(𝑞) is obtained by spline interpolation where the first and second derivatives 

of 𝜂̂(𝑞) are both continuous, the marginal cost curve will also change smoothly. If 𝜂̂(𝑞) is obtained by 

linear interpolation where the first derivative at the knots are discontinuous, the marginal cost curve 

will have a stepwise behaviour, i.e. a jump at each measured point. As a bidding curve used in the 
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intraday market, a continuously smooth curve is more acceptable, and therefore, spline interpolation 

for turbine efficiency curves should be applied.   

4.  Numerical results 

In this section, we use a real-world example to illustrate the impact of the different interpolation 

methods on the results of STHS problem and bidding strategy. All the tests in this paper are based on 

the efficiency values taken from on-site measurements of an operational Francis turbine. The values 

from these measurements are listed in Table 1. The tests are run by SHOP on an Intel Core i7-6600U 

processor with 16 GB of RAM. CPLEX 12.6.3 is the solver. 

Table 1. Test data based on actual measurements from an operational Francis turbine. 

4.1.  Comparison of turbine efficiency curves built by different interpolation methods 

Using the data listed in Table 1 as input, three different methods are applied to create continuous 

turbine efficiency curves: 

 

M1: A natural cubic spline found by solving equations (1) – (8) for the measured points  

M2: A piecewise linear curve defined by straight segments between the measured points  

M3: A 4th order polynomial fitted by least square estimation to the measured points 

 

Polynomial interpolation is added as a reference. Figure 3 compares the resulting continuous 

efficiency curves built by the methods. 

 

Figure 3. Turbine efficiency curves built by three different interpolation methods. 
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Point # Discharge (m3/s) Turbine efficiency (%) 

1 12.98 85.29 

2 17.38 90.38 

3 20.92 93.51 

4 24.06 94.42 

5 25.42 94.57 

6 27.74 94.30 

7 29.50 93.41 

8 31.06 92.54 
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If we zoom in around the best efficiency point (25.42 m3/s, 94.57%) as in Figure 4, we see more 

clearly the differences between the three methods. While linear interpolation keeps the best efficiency 

at the same level of discharge (25.42 m3/s) as in Table 1, it shifts downwards to 25.13 m3/s with 

polynomial interpolation and upwards to 25.9 m3/s with spline interpolation. We also note that the 

continuous curves given by linear and spline interpolation pass exactly through each measured point. 

 

 

Figure 4. Turbine efficiency curves around best point built by three different interpolation methods. 

4.2.  Prediction of turbine efficiency between measured points 

As mentioned in Section 2.1.2 we can use out-of-sample values to test the prediction quality of the 

interpolation methods. We want to see how well different methods can reproduce the measured 

efficiency if one of the points is unknown when the curve is determined.  

To test this, we remove points 2–7 one by one from the data set. Then we re-calculate the 

continuous efficiency curve from the remaining points in the data set by each of the methods listed in 

Section 4.1. Based on the continuous and fitted curve we interpolate the efficiency for the removed 

point. Polynomial interpolation is still used as a reference. Both 3rd and 4th order polynomials are fitted 

to the remaining points using least squares curve fitting. The resulting efficiency for all removed 

points is listed in the table below. 

Table 2. Prediction precision of interpolation methods based on out-of-sample testing. 

 Pol3=3rd order polynomial, Pol4=4th order polynomial. 

Removed 

point # 

Turbine efficiency (%) Error (%) 

True Spline Linear Pol3 Pol4 Spline Linear Pol3 Pol4 

2 90.38 90.64 89.84 90.83 91.00 0.26 0.54 0.45 0.62 

3 93.51 93.20 92.52 93.15 93.20 0.31 0.99 0.36 0.31 

4 94.42 94.50 94.24 94.50 94.63 0.08 0.18 0.08 0.21 

5 94.57 94.57 94.37 94.63 94.65 0.00 0.20 0.06 0.08 

6 94.30 94.18 93.91 94.25 94.07 0.12 0.39 0.05 0.23 

7 93.41 93.50 93.36 93.41 93.46 0.09 0.05 0.00 0.05 

Average      0.14 0.39 0.17 0.25 

 

The turbine efficiency found from the interpolated curve is compared to the true efficiency. The 

difference between the approximated and true efficiency is used to calculate the error. We use the error 
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as an indicator for how well the different interpolation methods can predict the actual shape of the 

curve. Linear interpolation gives the highest average difference, while spline interpolation gives a 

somewhat lower difference than polynomials. We also notice that a polynomial of degree 4 has a 

larger average error than a polynomial of degree 3. This may be partially dependent on the data set 

used here, but also related to Runge's phenomenon [6] of undesired effects when using higher-degree 

polynomials for curve fitting. In this case, spline interpolation is the best method to predict turbine 

efficiency between the measured points. Similar test procedures should be carried out for a larger 

number of real-life data sets to verify the general validity of these conclusions. 

4.3.  Optimal scheduling in the day-ahead market 

We use a simple production system with one reservoir and one plant with a single generator to show 

how the different interpolation methods affect the results in STHS problem. The market price is taken 

from four days of historical prices on the Nord pool spot market in the beginning of 2018 [13]. The 

optimal discharge found by the optimization model is plotted in Figure 5, with linear interpolation and 

spline interpolation, respectively.   

In this relatively small optimization problem, the calculation time is 1.21 seconds with linear 

interpolation and 1.38 seconds with spline interpolation. A consequence of the continuously varying 

gradient with spline interpolation is that the discharge changes more smoothly than with linear 

interpolation. The largest difference in discharge between the two interpolation methods for a single 

hour is 2.4 m3/s, corresponding to nearly 10% of the optimal result. Note that the lowest discharge 

level is 25.42 m3/s with linear interpolation, whereas just above 26 m3/s with spline interpolation. The 

lowest discharge level is at the best efficiency point for the unit. In Table 1 we see that this point is at 

25.42 m3/s, and it remains at this level with linear interpolation. However, since we have not added a 

constraint saying 𝑓𝑛
′(𝑞𝑛) = 0 at the best point when finding the spline, the set of equations allows the 

best point to deviate from the one defined in Table 1. Adding such a constraint means that we have to 

remove one of the other constraints for the spline. If we do not remove another constraint, the system 

of equations will be overdetermined and a solution might not be found. 

 

 

Figure 5. Discharge in the day-ahead market with linear and spline interpolation for turbine 

efficiency. 
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4.4.  Calculation of marginal cost curves for intraday trading 

In Figure 5 from the previous section there are four main discharge levels with linear interpolation, 

25.42, 27.74, 29.5 and 31.06 m3/s. This set of discrete discharge levels is easy to explain if we look at 

the marginal cost curve in Figure 6. The marginal cost curve with linear interpolation has three vertical 

jumps at 27.74 m3/s, 29.5 m3/s and 31.06 m3/s, respectively. This means that all prices within each 

vertical jump will result in the same discharge. As concluded in Section 3.4, linear interpolation is not 

suitable to build bidding curves that should be continuous for both discharge and marginal cost. 

Nonlinear interpolation is necessary for creating continuous bidding curves for intraday markets. In 

this case, the largest difference in marginal cost for a given discharge is 1.7 €/MWh between the two 

interpolation methods. This highlights the importance of nonlinear spline interpolation for the 

calculation of the marginal cost curve. 

 

 

Figure 6. Resulting marginal cost curves with linear and spline interpolation. 

5.  Conclusion 

In this paper we have identified both strengths and weaknesses of two interpolation methods for 

turbine efficiency curves. Linear interpolation makes it easier for the user to define the best operating 

point for a unit directly in the input data to the STHS problem, while spline interpolation gives the best 

estimate for efficiency for points that have not been measured. Spline interpolation also gives 

smoother discharge transitions in day-ahead scheduling and is crucial for obtaining continuous 

marginal cost curves in intraday trading. Since the tests are done only for one plant, further work 

should include a larger range of test systems to verify the validity of these conclusions. Based on the 

results in this paper, spline interpolation is a promising alternative to linear and polynomial 

interpolation for turbine efficiency curves in STHS. 
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