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A B S T R A C T

Additional investments to negative emission technologies, such as reforestation or bioenergy with carbon cap-
ture and storage (BECCS), are required to achieve Paris Agreement targets. Chemical-looping combustion of
biomass (Bio-CLC) is an under-the-development combustion technology that could provide relatively low cost
negative CO2 emissions. We modelled Bio-CLC units as a part of a city-level district heating and cooling (DHC)
grid based on literature and our experimental work with Bio-CLC pilot plants. We applied robust decision-
making (RDM) to identify preconditions that favour Bio-CLC over certain competing investment options.

In the selected case study, a Bio-CLC unit had a 50% chance to be profitable (10% Internal rate of return or
better) around the level of 10 €/tCO2 net income from captured bio-CO2. If the net income from captured bio-
CO2 was below 10 €/tCO2, as currently, large heat pumps with COP of 3.5 were the most robust of the studied
investment options. Traditional bio-CHP performed better than large heat pumps only when electricity market
price was above 50 €/MWh and biomass price below 20 €/MWh. Performed RDM analysis provides a systemic
background for both technology developers and DHC operators when considering the competitiveness of the
technology in an uncertain future.

Introduction

Bioenergy with carbon capture and storage (BECCS) is a key tech-
nology to produce negative emissions in long-term emission reduction
scenarios [1–3]. Forever, the actual development of BECCS is progres-
sing quite slowly. In May 2019, there were only a handful of opera-
tional BECCS demonstration plants: four in ethanol production plants,
two in municipal solid waste incinerators, and one power and heat
sector. The total CO2 capturing capacity of these demonstration plants
were approximately two MtCO2 per year, but only one of the demo-
plants stored the captured CO2 while others vented it to atmosphere
[4,5]. The current global development of BECCS is in a strong contrast
to many integrated assessment model scenarios that utilize BECCS both
in power and heat sector and in industry with total volumes up to
15 GtCO2/year by 2050 [1,2].

Chemical-Looping Combustion of biomass (bio-CLC) is an under-
the-development combustion technology that could enable lower cost
negative CO2 emissions than conventional carbon capture technologies
[6]. This study builds up on the experience gained from bio-CLC pilot

unit operations in the authors’ institutes Chalmers University [7–10],
Sintef [11], and VTT Technical Research Centre of Finland [12]. We
have performed a large base of the bio-CLC experiments within the
Nordic Energy Research project “Negative CO2” project [13].

Future bio-CLC boilers will be very similar to current Circulating
Fluidized Bed (CFB) boilers, which represents current best practice for
combustion of biomass in the scale 100–200 MWth. The striking simi-
larities between existing CFB boilers and future CLC boilers suggest that
the capital expenditures as well as the operation expenditures will be
fairly similar for the two technologies. Therefore, cost and performance
estimations for current best practice bio-CFB boilers could, if appro-
priately tweaked, be used with a degree of confidence also for future
bio-CLC boilers. Based on the pilot plant operations and larger scale
designs, we evaluate a range of parameters used in the energy system
modelling of a full-size bio-CLC unit equipped with CO2 capture and
compression facility, see Section “Modelling parameters for bio-CLC
units”.

The focus of this study is to estimate under which assumptions bio-
CLC CCS unit would be a profitable investment for district heating
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companies. This provides additional and crucial information for both
investors and technology developers.

The operation of bio-CLC unit and the profitability of the investment
depends on the studied energy system, due to existing capacity, avail-
able resources, and local costs such as fuel prices and taxes. To put our
modelling in the context and to provide more relevant results, we study
the investments as a part of the case study energy system and cover a
broad uncertainty ranges for the studied parameters. We also estimate
how robust investment bio-CLC plant could be by comparing the bio-
CLC CCS investment to alternative investment options including large
heat pumps, biomass heat only boiler, and biomass combined heat and
power (CHP) unit.

Methods, model, and case studies

The DHC model

The district heating and cooling (DHC) model simulates the annual
operations of DHC network from the DHC network operator perspec-
tive. It is a local operational model where investments can be modelled
by running the model several times according to different investment
options. The model structure and equations are documented in the
Appendix A. The model is validated in the Appendix B. Previous ver-
sions of the model has been used previously in two studies [14,15].

The DHC model simulates the annual operation of a DHC grid by
minimizing the annual costs, which include fuel costs, costs of bought
electricity, profits from the sold electricity, O&M costs, start costs, an-
nualized investment cost, CO2 emission fees, additional costs related to
captured CO2, and possible revenues from the captured bio-CO2. The
model has perfect foresight in a sense that it knows the input, such as
heat demand, for the whole year in advance. This does not mean a
perfect model, but it rules out stochastic simulations where, for an
example, weather uncertainties have an impact on the modelling result.

The foundation of the model is that it has to balance production,
storages, and demand of district heating (DH) and district cooling (DC)
at hourly level acknowledging unit operational constraints. The con-
sumption of DH and DC and the price of the electricity are modelled as
predefined hourly time series. The DHC model does not maintain the
balance of fuels or electricity and thus, the model can buy fuels, sell
electricity, and buy electricity from markets based on predefined prices.
As in the case of real DHC operators, a single unit in the model sells
electricity by market price and buys electricity by market price plus
grid fees and taxes.

The DHC model groups DH and DC production units in four cate-
gories: NGCCs, CHPs, heat only boilers, and large heat pumps. The user
can define NGCCs and CHPs in greater detail than heat only boilers or
heat pumps. NGCCs and CHPs have options to, for an example, include
a condensing turbine (to maximize electricity generation) or to allow
reduction (to increase DH production). Table 1 presents the general
characteristics of each unit type. In addition to production units, the
DHC model has storages for DH and DC. Heat only boilers are modelled
linearly and they have fewer details than NGCCs and CPHs to reduce
the model solving time and to allow running of larger number of model
runs to cover broader ranges for input parameters.

In the current model version, CCS option is included only for CHPs.
If CCS option is enabled, the unit can capture a share of the emitted CO2

emissions. We have split the CO2 emissions to biogenic and fossil, which
allows the modelling of negative CO2 emissions from BECCS. The CO2

capture is always on if enabled in the input data and CCS units are not
flexible in that sense. In the modelling, CCS units receive a certain
compensation for each captured CO2 ton. Compensation can be set to
zero or negative. See chapter 2.2 for assumed parameter values,
Appendix A for model equations, and Appendix B for model validation.

Case study localization

In this study, the DHC model has been localized to Helsinki, Finland.
We assume a reference year 2030 for our case study. We also assume
that current energy policy initiatives will be passed and the Helsinki
DHC operator has to phase out the coal power in the city’s energy mix
by 2030 [16]. In addition, the case study year implies likely increasing
CO2 prices in the EU ETS.

We assume that the lifetime of all other existing units except coal
CHPs could be extended to 2030 [17]. Helsinki has decided to invest-
ment to additional 300 MW of biomass heat only boilers, large heat
pumps, and heat storages [18]. For this study, we study one reference
unit mix, which includes existing units and already decided invest-
ments. We compare this reference scenario to five optional investment
decisions that would replace the oldest NGCC unit (NGCC 1). Table 2
summarizes the assumed units and their capacities in our six different
decision scenarios. In the modelled case studies, units produce elec-
tricity to the Nordic electricity markets and provide district heating to
local clients.

The biomass prices vary much depending on the quality and source
of the wood. Prices in the Nordic region range from approximately
10 €/MWh for waste wood, 20 €/MWh for wood chips, and 30 €/MWh
for wood pellets. Southern Finland has high demand for biomass, but
lower availability leading to situations where units might have to op-
erate with higher cost wood pellets. The uncertainty in the biomass
price increases also due to uncertainties in the EU LULUCF legislation
and amount of biomass needed for other uses [19]. The prices of natural
gas and oil are assumed to slightly increase from the current levels with
30% variance in the fuel prices. Taxes are assumed to remain in the
current levels (Table 3). Studied ranges are relatively broad, but that
gives better overview in the robust analysis.

The remaining system parameters are prices of electricity, prices of
CO2, and the demand of DH and DC (Table 4). We model the per-
spective of DHC operator, which receives the energy price of electricity
when selling and has to pay energy price and other costs when buying
electricity e.g. for DH heat pumps. Energy cost of electricity is based on

Table 1
Properties of production unit types.

NGCCs CHPs Heat only
boilers

Large heat
pumps

capacity unit* MWfu MWfu MWfu MWDH

Maximum fuel power (MWx) x x x x
Minimum fuel power (MWx) x x
Electricity and DH efficiency,

depending on fuel power
x x

DH and DC efficiency, constant x x
Reduction, max (MWsteam) x x
Condensing turbine (% efficiency) x x
Maintenance break (predefined

days)
x x

Ramping limit (% of MWx/h) x
Minimum online time (days) x x
Minimum offline time (days) x x
Annual availability (% of hours) x
Seasonal availability (% of hours) x
CO2 capture efficiency (%) x
Additional cost of captured CO2

(€/tCO2)
x

Investment cost (k€/MWx) x x x x
Fixed O&M (k€/MWx/year) x x x x
Variable O&M (€/MWhx) x x x x
Start cost (€) x x

* Unit capacities are defined either by fuel power (NGCCs, power plants, and
boilers) or by maximum production of DH (heat pumps). In the table, MWx

refers either MWfu or MWDH depending on unit type.
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2014 prices in the Finnish market region and other costs are based on
actual grid costs and taxes in Finland [20]. We assume roughly 20%
variance in these parameters in our analysis.

The price of a CO2 allowance unit was at the level of 20 €/tCO2 in
the EU ETS at October 2018, but on the other hand, neighbouring
Sweden has implemented very high carbon point tax for fossil fuels in
power plants with rates up to 120 €/tCO2 [21]. The Swedish tax does
not apply to Helsinki but provides an upper limit for the analysis.

Captured CO2 could generate both costs and income to the bio-CLC
unit operator. To simplify the modelling and presentation of results, we
sum all the costs, incomes, and/or subsidies due to captured CO2 to one
parameter called ‘net income from captured bio-CO2’. As a reference
value for the analysis, we assume 10 €/tCO2 ‘net income from captured
bio-CO2’. Today’s situation forms the low end for the estimate where
the net income would equal roughly −30 €/tCO2 as a sum of 0 €/tCO2

income, 0 €/tCO2 subsidies, and assumed 30 €/tCO2 transport and
storage cost [22]. The higher end case would be a situation where bio-
CLC unit would receive almost 100% compensation from the negative
CO2 emissions based on a high CO2 price.

The Helsinki city estimated that the city’s DH demand will be
6.5 TWh at 2030 and DC demand will be 0.4 TWh [23]. We assume

roughly 10% variance in these parameters in our analysis.
Fig. 1 shows an estimated hourly distribution of demands. Estimates

are based on the total annual demand and 24 h smoothed hourly tem-
perature series from 2014. The minimum demand of DH represents the
hot water use and the minimum demand of DC represents the base load
of larger users that need DC throughout the year.

Modelling parameters for bio-CLC units

A short description of the bio-CLC technology will be provided
below. The full description is provided in the previous publications
[24–26] and comparison to conventional CCS technologies is provided
in a recent review [27].

Parameters for the bio-CLC unit need to be proportionate and
comparable with competing technologies. To assure consistency, we
have adopted parameters for existing technologies (decision options 2,
3, 5, 6) from DEA power plant catalogue [28] and compiled the bio-CLC
parameter sets (decision option 4) based on these numbers. DEA as-
sumes that all new biomass units would have the flue gas condenser and
could reach above 100% total efficiency when calculated from the
lower heating values.

The main source for bio-CLC unit parameters is from a design and
cost study of 1000 MWth boiler for chemical looping combustion of coal
[6] and recent bio-CLC pilot unit experiments in Sweden, Finland, and
Norway. The bio-CLC parameters are estimates, because no large-scale
bio-CLC units have been built, but we use ranges to study the un-
certainty for the parameters.

The fundamental principle of CLC is that the fuel is oxidized in two
distinctive steps using two separate reactor vessels, commonly referred
to as air reactor and fuel reactor [26]. A solid oxygen carrier (e.g. metal
oxide) performs the task of transporting oxygen between the two re-
actor vessels. In the fuel reactor, the fuel reacts with oxygen provided
with the oxygen carrier particles and thereby forms CO2 and H2O. In the

Table 2
Units and their capacities in the studied scenarios.

Unit Fuel Thermal power Electricity DH DC DH storage DC storage

MW MW MW MW GWh GWh

Common to all decision options NGCC 2 Natural Gas 997 486 432
Oil boilers Oil 1480 1350
Natural gas boilers Natural Gas 723 665
Biomass boilers Biomass 400 368
Heat storages – 250 14
Large heat pumps Waste heat, electricity −30 108 75
Sea water cooling Electricity −3.5 70
Absorption cooling DH, electricity −1.8 −35 35
Cooling Storages – 58 0.7

Opt 1 (Ref) NGCC 1 (existing) Natural Gas 358 165 162
Opt 2 Biomass boilers (new) Biomass 400 400
Opt 3 Biomass CHP (new) Biomass 2x200 128 280
Opt 4 Bio-CLC, CHP (new) Biomass 2x200 116 280
Opt 5 DH heat pumps, COP 3.5 (new) Waste heat, electricity 114 400 100
Opt 6 DH heat pumps, COP 2.5 (new) Heat from sea, electricity 160 400 100

Table 3
Assumed fuel prices (2018 euros) and other fuel parameters.

Natural Gas Biomass Oil

min ref max min ref max min ref max

Fuel cost (€/MWh) 19 27 35 15 25 35 31.5 45 58.5
CHP tax (€/MWh) 12 0 –
Heat tax (€/MWh) 17 0 22
CO2 emissions,

fossil (tCO2/
MWh)

0.201 0 0.264

CO2 emissions, bio
(tCO2/MWh)

0 0.360 0

Table 4
Assumed system parameters. All prices are in 2018-Euros.

min ref max

Annual average electricity price (€/MWh) 20 40 60
Electricity grid costs and taxes (€/MWh) 25 35 45
CO2 price (€/tCO2) 20 40 100
Net income from captured bio-CO2 (€/tCO2) −30 10 60
DC demand (TWh) 0.3 0.4 0.5
DH demand (TWh) 6 6.5 7

Fig. 1. Hourly demands of district heating and cooling.
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air reactor, the reduced oxygen carrier is regenerated by reacting with
O2 provided with air. Thus, fuel and air are not directly mixed. Pure
CO2 is obtained after cooling and condensing steam to water in the fuel
reactor stream. The net energy released in the system as a whole is the
same as for conventional combustion. Unlike other technologies for CO2

capture, there is only minor energy penalty for gas separation to receive
CO2 for sequestration. 100% CO2 capture rate is readily achieved with
gaseous fuels. For solid fuels, it is still possible to achieve nearly 100%
capture rate, albeit leakage of char from the fuel reactor is here a
possibility that would reduce capture rate.

The most commonly proposed way to design a CLC boiler and the
one envisioned here is to utilize Circulating Fluidized Bed (CFB) re-
actors with oxygen carrier particles as bed material [29]. In this design,
the oxygen carrier would be particles in the size range 0.1–0.4 mm, i.e.
comparable to fine sand. The reactor temperature would be in the range
800–1050 °C. CLC can process all kinds of fuels. Biomass is quite sui-
table due to its high content of volatile gases and because the char
generated during pyrolysis typically is comparably reactive. There is
currently more then 10 000 h of operation of CLC pilot reactors using
these basic principles, so the concept has been shown to work well [24].

As pointed out in the introduction CLC boilers based on the prin-
ciples described above would be very similar to conventional CFB
boilers [6]. Further, CFB boilers are currently the technology of choice
for biomass combustion in the scale 100–300 MWth and the only
available technology that would allow for scale-up to larger sizes. The
principal difference between a CFB boiler and a CLC boiler is that the
latter would need to be divided into two separate but interconnected
sections (e.g. fuel reactor and air reactor). In principle, this could be
achieved with an insulated reactor wall and some creative plumbing. A
few additional tweaks would likely also be needed (e.g. with respect to
flue gas cleaning) but the difference in design between a current CFB
boiler and a first generation CLC boiler could be expected to be minor.

The physical size of the plant and most of its main components
would remain essentially the same. No major new equipment would be
needed, aside from CO2 compressor if transport and storage were de-
sired. The standard bed material, which for biomass would be high-
grade silica sand, would need to be replaced with chemically active
oxygen-carrier particles. Here various by-products from metallurgic
industries or cheap and environmentally benign mineral ores (e.g. iron
ore, manganese ore) would be adequate [25]. The similarities between
existing CFB boilers and proposed CLC boilers suggest that the capital
expenditures as well as the operation expenditures will be comparable
for both technologies.

From modelling perspective, the most important differences be-
tween a bio-CLC unit and a normal circular fluidized bed (CFB) boiler,
are captured CO2, lower electricity efficiency, higher investment cost,
and higher variable costs (Table 5).

The following assumptions have been made with respect to the
performance of CLC plants:

• CO2 capture rate has been assumed 98% for the base case, with 95%
as low end and 100% as high-end estimations. This is based on ex-
perimental studies in pilot reactors [7] and previous assumptions for
large facilities [8].

• Compared to a conventional bio-CHP unit a bio-CLC unit would
have increased internal power consumption for CO2 compression
to > 100 bar. This has been assumed to translate to a 2.5%-points
electric efficiency penalty, which is a typical assumption for CCS for
solid fuels.

• There will also be an internal power demand for generation of small
amount of pure O2 for flue gas treatment, so called O2 polishing.
Based on a study for large facilities [6] this requirement has been
assumed to correspond to a 0.5%-points efficiency penalty. This
number is derived from the assumption that 10% of the oxidation
will have to be done with O2 and is reasonably consistent with ex-
perimental studies in pilot reactors [8], albeit biofuels with low

volatile content (e.g. wood char) provides somewhat better perfor-
mance than that while biofuel with high volatile content (e.g. white
wood pellets) provides somewhat worse performance.

• Altogether, this implies a 3%-points electric efficiency penalty for
the base case compared to a conventional CHP unit. In the low end
estimation have set the efficiency penalty to 5%-point, which could
be valid if the internal power consumption for flue gas cleaning and
fans would turn out to be unexpectedly high. The high end esti-
mation for the efficiency penalty have been set to 1%-point, which
could be valid if some of the potential intrinsic advantages of the
CLC-concept (e.g. reduced air-to-fuel ratio, improved steam data
due to lack of ash in the air reactor, more efficient flue gas cleaning
since impurities are concentrated in fuel reactor stream) were to be
fully realized.

• The efficiency with respect to heat production is assumed to be
unaffected since both facilities utilize flue gas condensation. The
energy penalty to total efficiency will therefore be dependent only
on the electric efficiency penalty.

• For the base case, a 20% increase in investment cost for bio-CLC unit
in comparison to bio-CHP unit have been assumed, reflecting the
need for dividing the reactor vessel into two parts, additional flue
gas treatment and additional fans and compressors. This number is
quite possibly the one which is the most difficult to estimate based
on available information currently and it seems reasonable to be-
lieve that early first-of-a-kind facilities may be costlier than that.
The lower and higher estimations represents ± 20% from the
baseline. Lower investment cost could potentially be achieved due
to reduced vessel size due to reduced air-to-fuel ratio, reduced riser
height, or reduced cost for flue gas cleaning [6].

• Variable O&M are higher for bio-CLC than for bio-CHP due to the
need for oxygen carrying bed material, which could be expected to
be more expensive than silica sand. The base case suggests a cost
increase of 0.6 euro/MWh and has been calculated based on a bed
material consumption of 3 kg/MWh (rule of thumb value for sand
consumption in a bio-CHP unit) and a cost increase of 200 euro/ton
(approximate price difference between basic mineral based oxygen
carrier such as ilmenite and high-grade silica sand). The low end
estimation is based on a bed material consumption of 3 kg/MWh and

Table 5
Modelling parameters for biomass CHP and biomass CLC CHP units. All prices
are in 2018-Euros.

Parameter Bio CHP Bio-CLC CHP Unit

(CFB
boiler)

min ref max

Maximum thermal power 200 200 MWfu

Minimum thermal power 80 80 MWfu

Reduction, max 50 50 MWsteam

Electricity efficiency in max
power

0.32 0.27 0.29 0.31 MWelc/MWfu

DH efficiency in max power 0.7 0.7 0.7 0.7 MWDH/MWfu

eff SUM, max fuel 1.02 0.97 0.99 1.01
Electricity efficiency in min

power
0.27 0.22 0.24 0.26 MWelc/MWfu

DH efficiency in min power 0.72 0.72 0.72 0.72 MWDH/MWfu

eff SUM, min fuel 0.99 0.94 0.96 0.98
Ramp limit 100% 100% % of MWfu/

hour
Min online time 0.5 0.5 2 days
Min offline time 0.5 0.5 2 days
Maintenance break

duration
21 14 21 28 days

CO2 capture efficiency – 95% 98% 100%
Investment cost (overnight) 1000 960 1200 1440 k€/MWfu

Fixed O&M 29 23 29 35 k€/MWfu

Variable O&M 0.5 0.6 1.1 3.5 €/MWhfu

Start cost 3000 2000 3000 4000 €
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a cost increase of 20 euro/ton (e.g. use of metallurgic slags) while
the high end estimation is based on a bed material consumption of
10 kg/MWh and a cost increase of 300 euro/ton (e.g. use of more
expensive minerals such as high-grade manganese ore).

• Some other parameters have been assumed to have the same char-
acteristics as bio-CHP for the base case. Considering the high degree
of similarity between bio-CLC and bio-CHP these assumptions seems
justifiable. However, the analysis considers certain variance levels,
see Table 5.

Methods

Profitability of investments depends on unit specific assumptions,
system assumptions, and the number of units that will be built. For an
example, all new investments perform better if the existing units in the
studied DHC system have high operation costs.

We evaluate the profitability of the investments with internal rate of
return (IRR). Net cash flows required to calculate the net present values
(NPV) are calculated as differences of annual operation costs of the
whole DHC system in reference scenario and each investment option.
The investment costs are annualized over 20 years.

We run the DHC model multiple times to study the assumed un-
certainty ranges in the input parameters. First, we vary one parameter
at time to identify the most critical parameters and uncertainties for
each investment option. Finally, we calculate over 1400 futures that
leads to roughly 8000 model runs due to six investment options. In
these model runs, we vary the selected parameters and study which
investment option would be the most profitable (highest IRR) in each
future.

In our analysis, we aim to identify preconditions that favour certain
technologies over each other and to classify assumptions that are un-
favourable to certain technologies. We try to find investment decisions
that are the most robust in an uncertain future. This kind of robust
decision making (RDM) analysis should bring more information about
enabling and disabling conditions for technology developers, energy
companies, and politicians. The method has been demonstrated earlier
e.g. by Forsström [30] and Hall et al. [31].

We consider all parameters independent in the analysis, e.g. im-
proved efficiency of the unit does not add costs or increased natural gas
price does not increase electricity price. In reality, this is not the case.
For an example, fuel prices and electricity prices are linked and the
studied parameters should be linked. On the other hand, current tax
levels or tariff systems might change and change how various para-
meters are currently linked. The linking of uncertainty of the para-
meters would require further studies.

Results and discussion

In the reference case (cf. Table 2), existing large heat pumps have
the lowest marginal costs and run before other units (Fig. 2, top) while
heat only boilers and NGCCs cover the remaining heat load. Biomass
heat only boilers have lower marginal cost than other remaining units
when assuming the default input parameters. The marginal costs of
NGCC units and biomass heat only boilers can be quite close and the
dispatch order depends on electricity, fuel, and CO2 prices. With the
assumed default parameters, biomass heat only boilers dispatch before
NGCCs. With CO2 prices below 20 €/tCO2, higher electricity prices or
higher biomass prices, NGCC units would dispatch before biomass heat
only boilers.

The operation logic and dispatch order of the studied DHC grid
changes when the model is run with bio-CLC units (Fig. 2, bottom part).
With assumed default parameters, the bio-CLC units are the ones with
the lowest marginal costs and run as many hours as possible. They re-
duce their production only during the summer when there is not en-
ough DH demand. Maintenance breaks are scheduled to summer to
increase the full load hours (FLH). In addition, active use of DH storages

increases FLH of bio-CLC units during summer and low demand periods
in spring and autumn. In reference case, the DH storages help to avoid
shut downs of NGCC units, but storages have more load cycles in the
case with bio-CLC units.

System parameters have considerably larger impact on the internal
rate of return (IRR) of bio-CLC investment than unit parameters (Fig. 3).
Both parameter sets are important, but uncertainty in a single system
parameter can change the IRR of the bio-CLC investment up to ± 10%,
while the most significant single unit parameters had impact up
to ± 3%.

The two most critical uncertainties are the net income from cap-
tured bio-CO2 (€/tCO2) and biomass price (€/MWh). Biomass price
depend both on location and market conditions, but the net income
from captured bio-CO2 depends mostly on the legislation, subsidies,
transport costs, and storage costs. The third significant parameter is
natural gas price (€/MWh), which defines the competitiveness of the
NGCCs and gas boilers and, thus, indirectly the profitability of the bio-
CLC units.

Assumed uncertainty ranges in investment cost, CO2 price, and
annual electricity price have each roughly a ± 3% impact on the IRR.
Other remaining parameters are less important and had relatively
smaller impact on the uncertainty of the calculated IRR. These are all
important when preparing for a real demonstration case, but are by an
order less significant than the most critical parameters.

We varied one parameter at time in these uncertainty estimates. In
reality, certain parameters could be linked, e.g. plant efficiency and
investment cost or the price of the fuels and electricity. The effect of
these linked parameters should be explored in further studies.

We made a similar analysis also to other investment options and
noted that the IRR of large heat pump investments is the most sensitive
to electricity related parameters and IRR of biomass units to biomass
price. The natural gas price has a strong impact to the IRR of the all
studied alternative investments (Fig. 4). Five parameters changed the
profitability order of the studied investment options. Higher CO2 price
and higher DH demand improved IRR values of all investment options,
but did not change the profitability order.

In general, heat pumps with COP of 3.5 (Hpu-3.5 in Fig. 4) seem
very robust investment and have the highest IRR in most of the studied
cases. However, we varied only one parameter at time in Fig. 4. This is a
simplified method to study the order of impact and significance of each
parameter to different technologies. In reality, all parameters can have
different values than our default assumptions and we need to rando-
mize selected parameters, run a large amount of scenarios, and study
the impact from that large set of model runs.

Some studied parameters had only minor impact on any of the
studied technologies. For an example, the oil is used only during the
highest peak load hours and the assumed variance in the oil price af-
fected the calculated IRRs only slightly. Similarly, the studied varia-
bility in the DC demand had only a minor impact on the studied in-
vestments. This could be changed if the DC volumes would be tenfold to
assumed levels at 2030, but the DC demand is likely to remain much
smaller than DH demand in Helsinki.

Based on assessments summarized in Figs. 3 and 4, we chose to vary
the following six parameters: biomass price, natural gas price, CO2

price, net income from captured bio-CO2, electricity price, and elec-
tricity grid costs and taxes. We randomized input parameters for 1400
futures and modelled six investment options for each future, totalling
8400 model runs.

From these runs, the bio-CLC investment was successful in 930 fu-
tures (rank 1 or 2 of the studied 6 investment options) and failed in 260
futures (rank 5 or 6). The most robust technology was heat pump with
COP of 3.5 succeeding in 1030 futures and failing in none (Fig. 5). The
ranking was done solely based on the IRR. Investment options could be
ranked based on multi-criteria analysis and additional metrics, e.g.
employment and GHG emissions, but in this figure, we consider only
the IRR.
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The three most robust technologies had distinct input parameter
ranges where they were the most successful (Fig. 6). Bio-CLC tech-
nology required net income from captured bio-CO2 to be the most
profitable investment option. This requires profits by selling CO2 as a
raw material or some kind of subsidies, e.g. a compensation based on
the current CO2 price or an investment subsidy. The CO2 price for fossil
fuels is not enough, because that does not provide income from the
negative emissions.

When studying systems with lower than 5 €/tCO2 net income from

captured bio-CO2, large heat pumps excelled with low electricity prices
or high biomass prices and conventional bio CHP gradually replaced
large heat pumps if assuming cheaper biomass or more expensive
electricity. Interestingly, during low electricity price or high biomass
price, large heat pumps with COP 3.5 were more profitable than bio-
CLC up to net income levels of 30 €/tCO2.

It is important to recognize, that local resources of e.g. waste heat to
achieve COP of 3.5 might be limited. In these situations, the DHC op-
erator might want to build those units first and then see the profitability

Fig. 2. Hourly operation of units in two cases: reference case at top and investment option 4 (2 × 200 MW bio-CLC units) at bottom. HPUs: Existing large heat pumps
(Table 2), BioB: biomass heat only boilers, FosB: natural gas and oil heat only boilers.

Fig. 3. IRR of two bio-CLC CHP units with sensitivity analysis. Variables are grouped to unit specific parameters and system specific parameters and sorted by
significance.
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order of the remaining options. Fig. 7 is drawn as Fig. 6, but the analysis
is redone without large heat pumps with COP of 3.5. In such case, bio
CHP and bio-CLC perform the best in larger ranges of assumed input
parameters. In addition, biomass heat only boilers become the most
profitable options in some cases. Nevertheless, this does not influence
the conclusion that bio-CLC investment is the most successful only if it
receives around 10 €/tCO2 net-income from captured bio-CO2.

When looking only at the bio-CLC investment option (cf. Table 2),
the adopted assumption of uncertainties gives a 50% chance for bio-
CLC investment to be profitable (10% IRR) around the level of 10 €/
tCO2 net income from captured bio-CO2 (Fig. 8).

We defined the net income as a sum of costs, subsidies, possible
compensation based on CO2 price in EU ETS, and possible profits from
selling captured CO2 to companies who could is it as raw material. For
an example, the 10 €/tCO2 net income level should be interpreted in a
way that if transport to geological storage costs 30 €/tCO2 (−30 €/tCO2

income) the required incomes and subsidies should equal 40 €/tCO2.
Alternatively, if a company using bio-CO2 as raw material pays 2 €/
tCO2 to bio-CLC unit operator, the sum of other incomes, subsidies and
costs should be at the level of 8 €/tCO2.

Companies can reduce these uncertainties by, for an example,
making long-term supply deals of fuel or secure the electricity prices in
future markets. On the other hand, the broad ranges used here, can be
interpreted also as uncertainty in energy taxation that companies have
much smaller possibility to affect.

Conclusions and discussion

According to literature, operations on pilot and demonstration

Fig. 4. IRR of studied investment options (cf. Table 2) under different system assumptions.

Fig. 5. Rank of different investment options (highest IRR) in simulated sce-
narios.

Fig. 6. The most profitable investment option (measured by IRR) presented by
uncertainty ranges of prices of biomass, electricity price, and net income from
captured bio-CO2.

T.J. Lindroos, et al. Sustainable Energy Technologies and Assessments 34 (2019) 157–172

163



plants, and our analysis here, the bio-CLC technology could provide
relatively cheap negative emissions. According to our modelling, the
profitability level (10% IRR) could be reached around 10 €/tCO2 net
income from the captured bio-CO2. We defined the net income as a sum

of costs, subsidies, possible compensation based on CO2 price in EU
ETS, and possible profits from selling captured CO2 to companies who
could is it as raw material. The energy losses at plant and compressing
the CO2 are accounted before the estimated net income level.

However, it is possible that investment in bio-CLC units is profitable
but the district heating and cooling grid operator still invests to some
other technology. Decision makers base their investment decisions on
many factors including relative profitability of alternative investments,
estimated development of the system and policies, uncertainties, the
size of investment, employment effect, available resources, other local
conditions, etc. A robust investment is successful in a wide range of
possible futures. It does not have to be always the best option, but it
should rarely be the worst.

Large heat pumps with COP of 3.5 were the most robust of the
studied investment options. Large heat pumps with COP 3.5 performed
well in 71% of the studied futures and were poor only with high elec-
tricity prices, high transmissions costs, or high electricity taxes. Bio-CLC
units were the most robust investments if they received a 10 €/tCO2 or
higher net-income from the captured bio-CO2. The bio-CLC technology
performed poorly without net-income from captured bio-CO2. Other
risk-zones for the bio-CLC technology were high biomass prices around
30 €/MWh and low electricity prices around 30 €/MWh.

It is likely that DHC operators will first invest to the most profitable
and the most robust technology, and then start looking for additional
investments if required. To simulate this, we did the same analysis, but
without large heat pumps with COP of 3.5. With this assumption, the
bio-CLC, bio CHP, and large heat pumps with COP of 2.5 are the most
robust options. In this second analysis, the bio-CLC investment was the
most profitable in a slightly number of futures, but still required
roughly 10 €/tCO2 net income from the captured bio-CO2 to be the most
robust of the studied investment options.

We outline our own analysis to the technical performance, costs,
and direct CO2 emissions of the BECCS in the studied case study. Other
studies have adopted a broader viewpoint on the sustainability of the
BECCS and have concluded that BECCS technologies can be either
sustainable and produce negative emissions or fail in both metrics
[32,33]. The main things to consider are direct and indirect land use
change, sustainability of the feedstock, energy consumption and emis-
sions related to transport of fuel and CO2, and assumed substitution in
the energy system [34]. Common results of the aforementioned studies
have been that the sustainability of BECCS is highly dependent on the
individual supply chains and should be inspected case-by-case.

Funder

The article was written as a part of the ‘Negative CO2’ project
funded by Nordic Energy Research and partly with in-kind funding of
the participating research institutes.

Appendix A. DHC model documentation

The model operates on hourly resolution and has a perfect foresight over the modelled year. To reduce the solve time of mixed integer pro-
gramming (MIP) model, the on/off variables are modelled in predefined half days, i.e. first half day h1 consists of hours t1…t12, h2 consists of hours
t13…t24, etc. The mapping set between corresponding t and h is called th. In addition, we have defined sets Tr (t2 … t8760) and Hr (h2…h730) to
model the operational constraints. Table A.1 presents the symbols used in the equations.

Energy balance

The Energy balance equation is the foundation of the DHC model requiring that demand in each grid (DH and DC) equals production, conversions
between grids, storage charges, and storage discharges at hourly level. We have not included a loss of load or spill variables, which would allow the
model to overproduce and loss the production. The DHC model does not maintain the balance of fuels or electricity and thus the model can buy fuels,
sell electricity, and buy electricity from markets based on predefined prices.

p v v v v vg t
demand

g t g t g t g t g t, ,
prod

,
convertIn

,
convertOut

,
storageIn

,
storageOut= + +

where

Fig. 7. The most profitable investment option when excluding large heat pumps
(COP 3.5).

Fig. 8. IRR of the bio-CLC investment in modelled scenarios.
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Production unit types

The DHC model has four different unit types that can produce DH and DC: NGCCs, CHPs, heat only boilers, and heat pumps. Each unit type has
different level of details to add required operational characteristics and constraints, and to maintain reasonable simulation times. Heat only boilers
and large heat pumps are modelled without MIP variables and with fewer details than NGCCs and CPHs to reduce the model solving time and to
allow running of larger number of model runs to cover broader ranges for input parameters (Table A.2).

Table A.1
Symbols used in the model equations.

Subscripts Description

v Variable (linear)
vb Variable (binary)
vi Variable (integer)
p Parameter
g Grid; district heating (DH) or district cooling (DC)
u Unit
U Set of units u
Gt Gas turbine (subunit)
St Steam turbine (subunit)
Ct Condensing turbine (subunit)
f Fuel
t Hour index
T Set of hours (t1 … 8760)
Tr Subset of time steps (t2 … t8760)
h Half day index
H Set of half days (h1 … h730)
Hr Subset of half days (h2 … h730)
th Set mapping corresponding t and h

Table A.2
Properties of production unit types.

NGCCs CHPs Heat only
boilers

Large heat
pumps

capacity unit* MWfu MWfu MWfu MWDH

Maximum fuel power (MWx) x x x x
Minimum fuel power (MWx) x x
Elc and DH efficiency, depending

on fuel power
x x

DH and DC efficiency, constant x x
Reduction, max. (MWsteam) x x
Condensing turbine (%

efficiency)
x x

Maintenance break (predefined
days)

x x

Ramping limit (% of MWx/h) x
Minimum online time (days) x x
Minimum offline time (days) x x
Annual availability (% of hours) x
Seasonal availability (% of hours) x
CO2 capture efficiency (%) x
Additional cost of captured CO2

(€/tCO2)
x

Investment cost (k€/MWx) x x x x
Fixed O&M (k€/MWx/year) x x x x
Variable O&M (€/MWhx) x x x x
Start cost (€) x x

* Unit capacities are defined either by fuel power (NGCCs, power plants, and boilers) or by maximum production of DH (heat pumps). In the table, MWx refers
either MWfu or MWDH depending on unit type.
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In addition to production units, the DHC model has conversion units from DH to DC (absorption cooling) and storage units for both DH and DC.

NGCC units

The main difference between NGCCs and CHPs is that NGCC units have two gas turbine sub-units with their own on/off variables. In addition, we
have not modelled CCS option for NGCC and NGCCs are very flexible and do not need ramping limits at hourly level. Fig. A.1 presents the flowchart
of NGCC unit modelling.

On/off variables are defined for gas turbines. First gas turbine (Gt1) indicates the on/off status of the whole NGCC unit.

u U vb vb vb vb{ } : u Gt h Hr
onOff

u Gt h
onOff

u Gt h
start

u Gt h
stopNGCC

, , , , 1 , , 1 , ,= +

Implicitly, this means that minimum online and offline times for NGCC units are 12 h.
For NGCC units, the steam balance equation of the gas turbines is

u U v v v{ } : ( 1.04 )u t
fuelUse

Gt u t
elcProd Gt

u t
steamOut GtNGCC

, ,Gt, ,Gt,= × +

where multiplication factor 1.04 for electricity generation describes energy losses in electricity production. Fuel use is limited to following ranges [0,
pminFuelPower − pmaxFuelPower] with binary on/off variable.

The steam balance equation of the steam turbine is

u U v p v v v v{ } : ( ) ( 1.04 )
Gt u t

steamOut Gt
u u t

reduction
u t
elcProd St

u t
steamOut St

u t
steamIn CtNGCC

,Gt,
GtSteamEff

, , , ,× = + × + +

The total electricity production of NGCC units

v v v v( )t
elcProd

u U u t
elcProd Gt

u t
elcProd St

u t
elcProd Ct

, , ,NGCC= + +

where

v v p vb p( )u t
elcProd Gt

Gt u t u u Gt h th
onOff

u, ,Gt,
fuelUse GtEfficiency

, ,
GtConstant= × ×

v v p vb pu t
elcProd St

u t u u Gt Gt h th
onOff

u, ,
steamIn St StEfficiency

, 1,
StConstant= × ×=

v v pu t
elcProd Gt

u t u, ,
steamIn Ct CtEfficiency= ×

And the total DH production of NGCC units

u U v v v v{ } : g DH u t
prod

u t
steamOut St

u t
reduction

u t
effLossAtPartialLoadNGCC

, , , , ,= +=

where VeffLossAtPartialLoad is a linearized heat loss-term that is zero at maximum fuel power and has user-defined value peffLossFactor at minimum fuel
power, e.g. peffLossFactor = 0.03 would equal a 3 percentage point decrease in district heating production when operating at minimum load. Typical
thermal efficiency losses in large NGCC units are small, but this additional parameters allows more realistic modelling of the plant efficiency and
keeps the formulation identical with power plants where this loss-term is needed more.

Options for reduction and condensing turbine are switched off if parameters pmaxReduction or pCtEfficiency are zero in the input data.

CHPs

The process chart of CHPs is slightly simpler than for NGCCs, because one boiler replaces multiple gas turbines (Fig. A.2). For the remaining
process, the modelling is the same than for NGCC units.

CHPs have only one on/off variable

Fig. A1. Flow chart of NGCC units modelling in the DHC model.

Fig. A.2. Flow chart of CHPs in the DHC model.
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For CHPs, the steam balance equation of the steam turbine is

u U v p v v v v{ } : ( 1.04 )u t
fuelUse

u u t
reduction

u t
elcProd St

u t
steamOut St

u t
steamIn CtPP

,
efficiencyPP

, , , ,× = + × + +

where multiplication factor 1.04 for electricity generation describes energy losses in electricity production. Fuel use is limited to following ranges [0,
pminFuelPower − pmaxFuelPower] with binary on/off variable.

The total electricity production of CHPs

u U v v v{ } : u t
elcProd

u t
elcProd St

u t
elcProd CtPP

, , ,= +

where

v v p p vb pu t
elcProd St

u t
fuelUse

u u u h th
onOff

u, ,
efficiencyPP StEfficiency

,
StConstant= × × ×

v v pu t
elcProd Gt

u t u, ,
steamIn Ct CtEfficiency= ×

And the total DH production

u U v v v v{ } : g DH u t
prod

u t
steamOut St

u t
reduction

u t
effLossAtPartialLoadPP

, , , , ,= +=

where VeffLossAtPartialLoad is a linearized heat loss-term that is zero at maximum fuel power and has user-defined value peffLossFactor at minimum fuel
power, e.g. peffLossFactor = 0.03 would equal a 3 percentage point decrease in district heating production when operating at minimum load. Typical
thermal efficiency losses are small, but this set-up allows additional flexibility in the modelling.

Equations allow modelling electricity only power plants by setting pmaxReduction = 0 and calculating a peffLossAtPartialLoad in a way that the equation
above produces always 0. Also heat only units could be modelled when pStEfficiency and pCtEfficiency are zero, but we have defined these as separate heat
only boilers to reduce simulation time. In the case of combined heat and power (CHP) production, options for reduction and condensing turbine are
switched off if parameters pmaxReduction or pCtEfficiency are zero in the input data.

If ramping limit constraint is enabled, the model compares the production of two consecutive hours setting a maximum limit to the change. If
ramping limit has smaller value than minimum power, equations become more complicated as the power plant has to be able to shut down and start
even though the change to the minimum load would be greater than the maximum ramp limit.

Upward ramp limit

u U{ } :unitRampLimitPP &

v v p p vb vb p( )u t Tr
fuelUse

u t u u u h th
onOff

u h th
start

u, , 1
fuelUse rampUpLimit maxFuelPower

,( 1) ,( 1)
minFuelPower< + × × + ×

Downward ramp limit

u U{ } :unitRampLimitPP &

v v p p vb vb p( )u t Tr
fuelUse

u t u u u h th
onOff

u h th
stop

u, , 1
fuelUse rampDownLimit maxFuelPower

,( 1) ,
minFuelPower> × × ×

Online constraints limit the minimum online and offline times when enabled.

Minimum offline time

u U vb vb{ } : ( )unitOnlineLimit
u h
onOff

Hr h p

h

u Hr
stopPP &

,

1

,
u
minDownTime

<
=

Minimum online time

u U vb vb{ } : ( )unitOnlineLimit
u h
onOff

Hr h p

h

u Hr
startPP &

,
1

2

,

u
minUpTime

>
=

where minimum online time is summed from one half day earlier than minimum offline time, because due to ramp limit equations, start variables are
in the previous half day and stop variables are at the same half day block.

Annual limit of the activity factor (AFA) sets a maximum limit to the annual sum of onOff variable

u U vb p{ } : ( ) 730unitAfaLimit

h H
u h
onOff

u
PP &

,
maxAfa<

where 730 is a scaling factor of the AFA-limit that is given in range [0…1] in the input data.
Seasonal activity factor (AFS) limit is identical to annual limit, but the summation is limited to predefined 3 month blocks (Dec-Feb, Mar-May,

Jun-Aug, Sep-Nov). The total number of half days in these periods is 180, 184, 184, and 182 consecutively. The actual implementation consists of 4
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equations that are all the same form, but with different summing period and constant for the amount of half days in the season.

u U vb p p{ } : ( )unitAfsLimit

h H
u h
onOff

u
PP &

,
maxAfs halfDaysInSeason

season
<

Boilers

Boilers are modelled very simply to save computational time. The error caused due to this decision was studied by modelling the boilers as PP
units. As a result, the difference was quite small in our long term planning case study, because boilers units often had many small subunits and those
operated only during the peak demand hours.

The operation of boiler units is described by one equation

u U v p v{ } : u t
fuelUse

u DH u t
prodboiler

,
efficiencyBoiler

, ,× =

Heat pumps

Heat pumps produce DH from waste heat sources and can cogenerate district cooling. Often one large heat pump units have multiple subunits
that can operate individually, but cannot vary their power and have to operate at full power.

u U v vi p{ } : g DH u t
prod

u t
subUnitsOnline

u
HPU

, , ,
maxDHPower= ×=

u U v v
p

{ } : 1
u t
elcUse

g DH u t
prod

u

HPU
, , , hpuCOP= ×=

Some large heat pumps can produce also district cooling

u U v v p{ } : g DC u t
prod

g DH u t
prod

u
hpuDCratioHPU

, , , ,= ×= =

Conversion units

DC can be converted from DH or produced from ambient cooling sources, e.g. from the sea water.

u U v v p{ } :convert
g DC u t g DH u t u, ,
convertIn

, ,
convertOut inputRatio= ×= =

If pinputRatio = 0, the unit does not consume DH and is considered a free cooling unit. The operations require electricity that is consumed as a ratio
of converted DC.

u U v v p{ } :convert
u t g DC u t u,
elcUse

, ,
convertIn elcUseFactor= ×=

Storage units

Storages can store DH or DC and balance the production and demand, but there is a storage loss factor. The storage balance equation

u U v v p v v{ } :storage
g u t Tr g u t u g u t g u t, ,
storageLevel

, , 1
storageLevel storageLossRate

, ,
storageIn

, ,
storageOut= × +

To decrease the calculation time, we assume that storage starts and ends empty. This is a minor assumption as the existing and planned storage
sizes are relatively small and equal the production of few hours.

System equations

The objective equation adds all the costs, including possible net profits from captured bio-CO2, annualized investment costs, and annualized
decommission costs.

v v v v v v( )
t T t t t t t

obj variableOmCost fuelCost taxCost CO2Cost elcCost= + + + +

v p p p( )
h H h

startCost investmentCost decommissionCost fixedOmCost+ + + +

where

v v p v p( ) ( )t u U u t u u U DH u t
prod

u
variableOmCost

,
fuelUse varOmCosts

, ,
varOmCosts

NGCC PP boiler HPU| |= × + ×

v v p( )ft u u t u
fuelCost

,
fuelUse

{ }
fuelCost

u
= ×

v v p p( )ft u u t u u
taxCost

,
DHprod

{ }
DHprodTax unitSpecificTaxModifier

u
= × ×

v v p v p( ) ( )t u u t U u t
CO2Cost

,
CO2emissions CO2Cost

u ,
capturedCO2 netProfitFromCapturedBioCO2

CCS= × + ×

v v p v p v p( )t u u t t u t u t t
elcCost

,
elcUse elcMarketCost

,
elcUse elcGridCostAndTax

,
elcProd elcMarketCosts= × + × ×

T.J. Lindroos, et al. Sustainable Energy Technologies and Assessments 34 (2019) 157–172

168



v vb p vb p vb p( ) ( )h u U u h u u U u Gt Gt h u u Gt Gt h u
startCost

,
start startCost

, 1,
start unitStartCost

, 2,
start GtStartCost

PP NGCC= × + × + ×= =

p p p p( )
U u u

investmentCost
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U u u
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2
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u U v v p p{ } : fu t
capturedCO

u t u u
CCS

,
2

,
fuelUse

{ }
fuelFossilCO2EmissionFactor CO2CaptureRate

u
= × × +

v p pfu t u u,
fuelUse

{ }
fuelBioCO2EmissionFactor CO2CaptureRate

u
× ×

The split between biogenic and fossil CO2 emissions allows the modelling of negative CO2 emissions from BECCS. In the current model version,
CCS option is included only for power plants. The total emissions can be negative if there is enough BECCS compared to fossil CO2 emissions. In these
cases the CO2 cost can be negative. Implicitly this means that BECCS units receive a compensation based on the amount of captured CO2 and assumed
CO2 price.

Capacity investments

Invested capacity for each scenario is decided by user and not optimized by the model.

Appendix B. DHC model validation

We validate here the documented version of the model by setting the input data according to historical data and comparing the model results to
actual production statistics for four years 2014–2017. We use several indicators to compare the results to statistics, including fuel consumption, CO2
emissions, cogenerated electricity, cogenerated DH, etc.

Input data

Input data consists of three main sections: units and their parameters, system parameters, and time series. See chapter 2.2 and Appendix I for
explanations of each group and their properties.

For the period from 2014 to 2017 the case study system of Helsinki DHC grid had 2 NGCC units, 2 CHP units and a large number of smaller heat
only boilers that are grouped according to their fuels (Table B.1). In addition, there was one large heat pump unit for the whole period and another
one for years 2016 and 2017. The system had small heat and cooling storages and additional cooling capacity from seawater cooling and absorption
cooling.

System parameters include DH and DC demand, fuel taxes, fuel prices, electricity grid fee, and CO2 tax (Table Fuel taxes on heat production from
Statistics Finland (Table B.2). The DH and DC demands are from statistics and cover actual consumption, net imports with neighbouring cities, and
distribution losses. Fuel taxes are according to tax levels in Finland. Fuel prices are based on statistics Finland, which publishes national averages, but
we adjusted them for the case study due to long-term contracts that the local DHC operator had. In addition, the model has only one annual price for
fuels when, in reality, prices may vary much during the year affecting the merit order.

Table B.1
Units in the validation model runs.

Unit Fuel Thermal power Electricity DH DC DH storage DC storage

MW MW MW MW GWh GWh

NGCC 1 Natural gas 358 165 162
NGCC 2 Natural gas 997 486 432
Coal CHP 1 Coal 726 204 420
Coal CHP 2 Coal 506 155 300
Coal boiler Coal 211 190
Oil boilers Oil 1500 1350
Natural gas boilers Natural gas 769 692
Biomass boilers Biomass 0 0
Heat storages – 20 2.1
Large heat pumps, block 1 Waste heat, electricity −35 105 75
Large heat pumps, block 2 (from 2016 onwards) heat from DC, electricity −7 22 14
Sea water cooling Electricity −3.5 70
Absorption cooling DH, electricity −1.8 −35 35
Cooling Storages – 58 0.7
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Hourly time series for electricity market prices are from Nordpool historical market data for Finnish market region from 2014 to 2017. Annual
average electricity prices were quite stable and varied from 29.7 €/MWh at 2015 to 36 €/MWh at 2014.

Fig. B.1 shows an estimated hourly distribution of DH and DC demands for 2014. Estimates are based on the total annual demand and 24 h
smoothed hourly temperature series from 2014. The minimum demand of DH represents the hot water use and the minimum demand of DC
represents the base load of larger users that need DC throughout the year. For years 2015 to 2017, these time series are scaled according to the total
demand.

Comparing results to statistics

The total amount of generated DH matches statistics exactly as it is an input assumption (Table B.3). The amount CO2 emissions and cogenerated
heat and electricity (NGCCs and CHPs) is reasonably close with statistics with an average deviation of ± 3%.

When looking the consumption of individual fuels, the model succeeds in simulating the consumption of coal and natural gas (Table B.4). We did
not add multifuel plants to the model despite the small amount of cogenerated biomass with coal. These coal plants will phase out by 2030 and new
plants will likely be based on single fuels, e.g. biomass. The DHC did not capture the small full load hours of oil-based capacity (from 70 h at 2017 to
140 h at 2016), because the grid has excess capacity and can operate almost without the oil plants that had the largest marginal cost. This error has
few likely causes: all plants need a certain amount of annual operation hours to remain usable and the grid might need additional balancing during
the high heating loads. We did not model the minimum annual operation hours or the grid balancing. Relative error in oil consumption is large, but
the total error in system level results is small.

The modelled large heat pumps had slightly larger variability compared to the statistics than CHP and NGCC plants (Table B.5). In statistics, the
full load hours vary from 3600 at 2014 to 4400 at 2017. In the model runs, the FLH vary from 2900 at 2014 to 5000 at 2017. The error in the large
heat pumps is relatively larger because their DH capacity is only 3.5% of the total DH capacity and small variations in the CHP and NGCC operation
might have a relatively large impact on the large heat pump operations.

Overall, these results show the DHC model succeeds in describing the operation logic and manages to approximate the actual operations when
compared to annual statistics. There are no public monthly statistics of the operations.

Table B.2
Demands, tax levels, and fuel costs in the validation model runs.

Parameter Unit 2014 2015 2016 2017

DH demand GWh 6883 6403 7062 7059
DC demand GWh 133 125 141 141
Coal tax, CHP €/MWh 12.8 14.3 16 17.1
Coal tax, HOB €/MWh 18.7 21.8 25.2 27
Coal fuel cost €/MWh 12 11.5 10 11
Natural gas tax, CHP €/MWh 8 11.1 12.1 12.9
Natural gas tax, HOB €/MWh 11.5 15.4 17.4 18.6
Natural gas fuel cost €/MWh 20.5 17 22.7 27.5
Oil tax, HOB €/MWh 17 19.5 22.3 23.9
Oil fuel cost €/MWh 35 35 35 35
Electricity grid fee €/MWh 35 35 35 35
CO2 tax €/tCO2 5 6.5 3 7

Fig. B.1. Hourly demands of district heating and cooling in the validation model runs.
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Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.seta.2019.05.005.
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