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ABSTRACT

In this work an intercomparison of two wave reanalysis products, namely

ERA5 and CFSR-W (WW3 hereafter), is presented. The datasets are

assessed by means of several statistical features, such as seasonal vari-

ability, quantiles of the probability distribution, annual and inter-annual

variability, and several error metrics. Both datasets cover a period of 31

years (1979-2009), a fact that assures that most of the long-scale features

are equally present in both datasets. The analysis performed is depicted

both on a global and regional basis. The results are also assessed on the

basis of a global satellite altimeter dataset.

KEY WORDS: significant wave height; wave climatologies; ERA5;

WW3; seasonal analysis; probability analysis

INTRODUCTION

The study of ocean wave climate is of great importance for a large num-

ber of applications, including among others: ocean climate change stud-

ies, design of ships and offshore/coastal structures, planning of sea oper-

ations, wind and wave energy conversion.

There various sources of wave data, namely (i) visual observations

(Gulev and Grigorieva, 2006), (ii) satellite altimeters (Lefèvre and Cot-

ton, 2001; Young et al., 2011), (iii) in situ buoy measurements, and

(iv) numerical wave models (The WAMDI Group, 1988; Tolman et al.,

2002). Each one of them have its own advantages and disadvantages.

The great advantage of numerical models is their wide coverage on a

high time and space resolution in a global scale, making it possible to

produce long-term wind and wave climatologies.

The quality of wave data is heavily dependent on the quality of the wind

forcing, improvements on the physical modelling and assimilation tech-

niques among others. At least two meteorological centers (NCEP and

ECMWF) work constantly the last decades towards the improvement of

their forecast models. For this, apart from the results of their operational

versions, they perform from time to time reanalysis studies to offer ho-

mogenized wave products.

Stopa (2018, Table 1) summarizes most of the well known wind datasets

used throughout the years to generate global wave hindcasts. These

wind products led to several global reanalyses of wave datasets the last

decades. Among them, it is worth noted ERA-15, ERA-40, ERA-Interim

from ECMWF (Sterl and Caires, 2005; Rascle and Ardhuin, 2013),

NCEP/NCAR, CSFR-W from NCEP (Cox and Swail, 2001; Chawla

et al., 2013; Rascle and Ardhuin, 2013). Other climatologies include

HIPOCAS (Guedes Soares et al., 2002), GOW1 and 2 (Reguero et al.,

2012; Perez et al., 2017).

The emergence of these reanalysis databases has been followed by in-

tercomparison studies against each other and/or against other sources

of data such as buoy and satellite measurements. For example, Caires

et al. (2004) have compared six different reanalysis datasets (ERA-40 and

NCEP/NCAR among them) against NOAA buoy and TOPEX/Poseidon

altimeter datasets. Semedo et al. (2011) compared ERA-40 against vi-

sual observations and satellite data. Stopa in a series of works has an-

alyzed CSFR-W wave data and their relation to climate indices (Stopa

et al., 2013), against ERA-Interim and a number of altimeter data (Stopa

and Cheung, 2014), using 12 different wind fields as input and against

two different satellite datasets (Stopa, 2018). Finally, (Campos and

Guedes Soares, 2016) have compared the results of HIPOCAS clima-

tology against CSFR-W and ERA-Interim.

In the present work, an intercomparison of two wave databases is per-

formed: a) the CFSR-W (Chawla et al., 2013; Rascle and Ardhuin, 2013)

called for simplicity WW3, and b) the newly released ERA5 by ECMWF

through Copernicus Climate Data Store (Copernicus Climate Change

Service (C3S), 2017). The former has been extensively studied by Stopa

and coauthors (Stopa et al., 2013; Stopa and Cheung, 2014), whereas

the latter is studied here for the first time. In the next section, a brief

description of the two datasets is given, as well as a description of the

analysis procedure followed. Then, numerical results are presented and

commented and finally conclusions are drawn. It should be noted that,

although wind speed statistics are also available, they have been omitted

from the present work due to space limitation and can be provided upon

request.
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METHODOLOGY

Data Used

In the present study, three datasets have been used for the intercompari-

son, covering the entire globe. The two of them have been generated by

means of third-generation numerical wave models (WAVEWATCH III

and WAM), and the third one consist of satellite altimeter measurements

merged from several satellite missions. The model data are in regular

gridded netcdf format (361 lats×720 lons = 259920 datapoints), while

the satellite data are stored in tracks.

The first dataset, called hereafter for simplicity WW3, consists of fields

of significant wave height covering the entire globe for the period 1979-

2009 in 3-h intervals (31 years × 2920 3-h = 90520 time instances).

For a more detailed description of the data, one can see here: https:

//polar.ncep.noaa.gov/waves/hindcasts/nopp-phase2.php.

The second dataset, ERA5, which also consists of fields of significant

wave height, has recently been released. Although the data cover the

period 1979-2018 in hourly intervals, only the period 1979-2009 in 3-

hourly intervals has been taken into account. For a more detailed de-

scription, see: https://www.ecmwf.int/en/forecasts/datasets/

reanalysis-datasets/era5.

In addition, and for comparison purposes, satellite altimeter data from

the archive of IFREMER have been used. The archive contains data from

nine altimeter missions, namely ERS-1,2, ENVISAT, TOPEX/Poseidon,

Jason-1,2, GEOSAT-FO, Cryosat-2, SARAL, covering the period 1992-

2016. More detailed information about the missions, as well as about the

validation against buoy data and the induced corrections can be found in

Queffeulou and Croizé-Fillon (2017).

Since satellite data have a different time-space data structure, and in order

to make possible a comparison between them and the model data, mean

monthly values are calculated for both sources for 13 different subre-

gions; see Fig. 1. These discrete non-overlapping subregions have been

defined by Alves (2006), such that the wave conditions within each of

them to be similar.

Fig. 1. Selected subregions of the oceans: Extratropical South Indian

(ETSI), Extratropical South Pacific (ETSP), Extratropical South Atlantic

(ETSA), Tropical South Indian Ocean (TSIO), Tropical Western South

Pacific (TWSP), Tropical Eastern South Pacific (TESP), Tropical South

Atlantic Ocean (TSAO), Tropical North Indian Ocean (TNIO), Tropical

Western North Pacific (TWNP), Tropical Eastern North Pacific (TENP),

Tropical North Atlantic Ocean (TNAO), Extratropical North Pacific

(ETNP), Extratropical North Atlantic (ETNA)

Statistical Analysis Procedure

The data are available as fields in the form

{
X(ti, φ j, λk), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K

}
, (1)

where i runs over the time instances, and j, k over the latitudes and lon-

gitudes, respectively.

In the sequel, two kind of analysis are performed: a) field analysis, show-

ing results for the entire field, and b) synoptic analysis, showing results

averaged over all (or a subset of datapoints) datapoints. In this way, var-

ious statistics related to different aspects of the datasets are depicted.

First, the time index is reparametrized according to Buys-Ballot triple

index (Stefanakos et al., 2006) in order to properly treat variability at dif-

ferent time scales. Hence, the following triple index (y,m, n) will be used.

The first component y is the yearly index. The second m={1, 2, . . . , 12} is

the monthly index. The third n={1, 2, . . . , Nm} represents the time within

a month, whith Nm be the number of 3-hourly observations within the

m-th month.

According to the three-index notation, time series X(ti) at a location

(φ j, λk) is reindexed as follows:

{
X(y,m, n, ·, ·), y = 1, . . . , m = 1, . . . , 12, n = 1, . . . ,Nm

}
. (2)

The three indices (y, m, n) represent three different time scales, making

it possible to explicitly define statistics with respect to each one of them,

separately.

Seasonal Analysis. First, the fields of monthly values of mean value and

standard deviation are formed

µ3(y,m, ·, ·) =
1

Nm

Nm∑

n=1

X(y,m, n, ·, ·), (3)

σ3(y,m, ·, ·) =

√√
1

Nm

Nm∑

n=1

[
X(y,m, n, ·, ·) − µ3(y,m, ·, ·)

]2
. (4)

Then, the mean monthly values are obtained by averaging Eqs. 3∼4 over

the years Y :

µ̃3(m, ·, ·) =
1

Y

Y∑

y=1

µ3(y,m, ·, ·), (5)

σ̃3(m, ·, ·) =
1

Y

Y∑

y=1

σ3(y,m, ·, ·), m = 1, 2, . . . , 12. (6)

These parameters are also known as seasonal mean value and seasonal

standard deviation, depicting the seasonal patterns of the data, and they

have been used in a nonstationary time series modelling suitable for

metocean and maritime parameters; see Athanassoulis and Stefanakos

(1995); Stefanakos et al. (2006); Stefanakos and Schinas (2014).

If, further, one average over all φ j and λk, a synoptic picture for the mean

monthly values in Eq. 5∼6 is obtained

µ̃3(m) =
1

J K

∑

j

∑

k

µ̃3(y,m, ·, ·), (7)

σ̃3(m) =
1

J K

∑

j

∑

k

σ̃3(m, ·, ·). (8)

Combining Eqs. 5∼6, or equiv. Eqs. 7∼8, one can calculate the coefficient

of variation

c̃v3(m, ·, ·) =
σ̃3(m, ·, ·)

µ̃3(m, ·, ·)
, (9)

depicting the Mean Monthly Variability (MMV) of the field (equiv. of

the averaged data).

Similarly, if, instead of Eqs. 3∼4, one calculates the yearly values of
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mean value and standard deviation

µ32(y, ·, ·) =
1

M Nm

M∑

m=1

Nm∑

n=1

X(y,m, n, ·, ·), (10)

σ32(y, ·, ·) =

√√
1

M Nm

M∑

m=1

Nm∑

n=1

[
X(y,m, n, ·, ·) − µ32(y, ·, ·)

]2
, (11)

and, then, applies again Eq. 9, the Mean Annual Variability (MAV) is

obtained as

c̃v32(·, ·) =
σ̃32(·, ·)

µ̃32(·, ·)
, (12)

where µ̃32(·, ·) and σ̃32(·, ·) are obtained from Eqs. 5∼6.

Further, the year-to-year variability, or Inter-Annual Variability (IAV), is

also defined as (Stopa et al., 2013)

ĉv32(·, ·) =
σ̂32(·, ·)

µ̂32(·, ·)
(13)

with

µ̂32(·, ·) =
1

Y

Y∑

y=1

µ32(y, ·, ·), (14)

σ̂32(·, ·) =

√√√
1

Y

Y∑

y=1

[
µ32(y, ·, ·) − µ̂32(·, ·)

]2
. (15)
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Fig. 2. Quantile calculations (50 (median), 90, 95, 99, and 99.9%)

Probability Analysis. If the probability function of month m and year y

is denoted by

F (x; y,m, ·, ·), y = 1, 2, . . . ,Y, m = 1, 2, . . . ,M, (16)

then, the quantiles of it are given by

xp = F
−1(p; y,m, ·, ·), p ∈ [0, 1], (17)

In the present paper the quantiles of p = 50% (median), 90%, 95%, 99%,

and 99.9% are calculated; see also Fig. 2.

The overall probability function, and consequently the associated quan-

tiles, can be obtained by adding the frequencies of each month m and

year y. Similarly, in the synoptic analysis, the probability is obtained by

adding the frequencies of all points together.

Error Analysis. The following statistics are used as error metrics in or-

der to assess the difference between the two reanalysis datasets: Bias,

Root-Mean-Square (RMSE), Scatter Index (SI), and Pearson’s correla-

tion coefficient (CorrCoeff).

Following the parametrization of the previous sections, the monthly val-

ues of these metrics are (1 stands for ERA5, and 2 for WW3):

Bias(y,m, ·, ·) =
(
X1 − X2

)
, (18)

where X ≡ µ3(y,m, ·, ·) is calculated using Eq. 3.

RMSE(y,m, ·, ·) =

√
(X1 − X2)2 , (19)

SI(y,m, ·, ·) = RMSE
/

X1 , (20)

CorrCoeff(y,m, ·, ·) =
X1 X2 − X1 X2√(

X2
1
− X1

2
) (

X2
2
− X2

2
) . (21)

In addition, according to Stopa and Cheung (2014), the following error

metrics have also been computed

NBias(y,m, ·, ·) =
(
X1 − X2

) / √
X2

1
, (22)

NSTD(y,m, ·, ·) = std
(
X2

) /
std
(
X1

)
, (23)

CRMSE(y,m, ·, ·) = std
(
X1 − X2

) /
std
(
X1

)
, (24)

where std
(
X
)
≡ σ3(y,m, ·, ·) is calculated using Eq. 4.

The mean monthly and/or annual variability of these indicators can

be studied by applying appropriate averaging as in Eqs. 5∼6 and/or

Eqs. 10∼11.

NUMERICAL RESULTS

Seasonal Analysis

Following the analysis procedure presented in the previous sections, the

mean monthly variability is assessed on the basis of the mean monthly

values µ̃3(m, ·, ·) and σ̃3(m, ·, ·), calculated by Eqs. 5∼6. According to

these, there is a zonal distribution of the values with a distinct different

behaviour between the northern and the southern hemisphere. Especially,

around the equator there is a zone with the least variability in all months.

It seems that the variability of mean values of ERA5 is a bit lesser than

the corresponding of WW3 in both hemispheres.

In addition, the seasonal variability on a regional basis is studied by

analysing separately the 13 subregions shown in Fig. 1. In Figs. 3, the

mean monthly values of µ̃3(m, ·, ·) and σ̃3(m, ·, ·) are depicted for 4 of the

13 subregions: two showing the variability in the northern hemisphere,

and two in the southern. For comparison purposes, and apart from the

two climatologies, the mean monthly values of satellite data are also

plotted. As expected, the general picture shows more pronounced vari-

ability in the extratropical areas (ETNA, North Atlantic; ETNP, North

Pacific; ETSP, South Pacific; ETSA, South Atlantic), and lesser one in

the tropical zone (TWNP, TNAO, TESP, TSAO). Overall, there is better

agreement between ERA5 and WW3, rather than with the satellite data;

especially, in the extratropical subregions (ETNP, ETNA, ETSP, ETSA).

In the tropical zone, satellite data are also in agreement with ERA5 and

WW3 (TWNP, TNAO, TESP, TSAO). Generally, small deviations be-

tween satellite and model data can be attributed to the fact that the for-

mer have been estimated using 18 years (1992-2009), while the latter 31

years (1979-2009).

2508



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
e
a
n
 v

a
lu

e
s
 (

m
)

Mean monthly values of MV and SD. Region: ETNP

ERA5

WW3

Sat

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
e

a
n

 v
a

lu
e

s
 (

m
)

Mean monthly values of MV and SD. Region: ETNA

ERA5

WW3

Sat

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
e
a
n
 v

a
lu

e
s
 (

m
)

Mean monthly values of MV and SD. Region: ETSP

ERA5

WW3

Sat

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
e

a
n

 v
a

lu
e

s
 (

m
)

Mean monthly values of MV and SD. Region: ETSA

ERA5

WW3

Sat

Fig. 3. Mean monthly values for northern (top: ETNP, ETNA) and

southern hemisphere (bottom: ETSP,ETSA); see also Fig. 1

(continuous: mean value, dashed: standard deviation)

Fig. 4. Mean annual variability (in %) (top: ERA5, bottom: WW3)

Further, the mean annual variability is investigated in terms of c̃v32(·, ·);

see Fig. 4. The agreement between ERA5 and WW3 datasets is good,

showing more pronounced variability in the North Pacific and North At-

lantic Ocean. Finally, the inter-annual variability is studied on the basis

of ĉv32(·, ·); see Eq. 13. In Fig. 5, the coefficient of variation is plotted

for both datasets with WW3 exhibiting greater variability in most of the

areas. It is worth noted that, the present WW3 results are in accordance

with findings in Stopa et al. (2013).

Fig. 5. Inter-annual variability (in %) (top: ERA5, bottom: WW3)

Probability Analysis

In this part of the analysis, the monthly empirical cdf’s of ERA5 and

WW3 are calculated, and, then, the quantiles of 50% (median), 90%,

95%, 99%, and 99.9% have been chosen to described the behaviour of

the empirical distribution. Due to the fact that the distribution is not

symmetric, the median describes better than the mean value the mean

behaviour of the distribution. The other four are used for the description

of the tail.

In Figs. 6–7, the mean annual fields of 50% and 99% quantiles is depicted

for ERA5 and WW3. In general, there is again a zonal distribution of the

quantiles, and ERA5 seems to exhibit less variability than WW3. The

WW3 results are again in accordance with Stopa et al. (2013).

Further, in Figs. 8 the overall (averaged over all points) mean monthly

values of the quantiles are plotted, giving a bird eye’s view of the monthly

variability of the distribution. It seems that WW3 distribution has higher

values in all quantiles. In addition, ERA5 exhibits greater (month-to-

month) variability in the 99.9% quantile.

In any case, the difference between the monthly values of the various

quantiles are on the average in the range of ±15% of the WW3 values.

Error Analysis

In Figs. 9, the overall (averaged over all points) mean monthly variability

of the error measures is given, namely Bias, RMSE, SI, CorrCoeff, and

NBias, NSTD, CRMSE. Similarly, in Figs. 10, the overall (averaged over

all points) mean annual variability of the same quantities is also plotted

(bottom). Most of them seem to have no significant variability at all (ex-

cept for the mean annual Bias). It is worth noticing that, CorrCoeff is

near 1, which means that the two datasets are fully correlated.
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Fig. 6. Mean annual fields of ERA5 quantiles 50% and 99%

Fig. 7. Mean annual fields of WW3 quantiles 50% and 99%
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Further, the overall (averaged over all the years) mean annual variability

of the same measures is depicted in Figs. 11–12. One may argue that

there is an inconsistency between the spatial distribution of the values of

RMSE and those of CorrCoeff. However, the two error metrics should

seen as complementary, giving only partially overlapping (and not ex-

actly the same) statistical information. According to Taylor (2001), a

more convenient measure to be related with CorrCoeff is the CRMSE,

which is normalized with the standard deviation of the data; see Eq. 24.

Indeed, one can observe that in the areas where CorrCoeff suggests low

correlation between the two datasets, CRMSE error exhibits its highest

values.

Finally, the same error measures have been calculated for the 13 sub-

regions, using the monthly values of the datasets. The results both for

a) ERA5 vs Satellite, b) WW3 vs Satellite are given in Table 1. In

most of the regions, Bias is negative (satellite data have greater values

than ERA5 and WW3), except for regions: TESP (ERA5 greater than

satellite), and TSAO (both ERA5 and WW3 greater than satellite). The

values of RMSE are pretty close for each area. As already mentioned,

CorrCoeff is near 1, which is an indication of the correlation of the

datasets. NSTD, which shows the ratio of the standard deviations of the

two datasets, varies between 1.14–1.70 for “WW3 vs satellite” (satellite

has greater variability 14–70%), and 1.16–1.97 for “ERA5 vs satellite”

(satellite shows even greater variability compared to ERA5).

2510



Table 1. Error measures between a) (E)RA5 and (S)atellite, b) (W)W3 and (S)atellite for the 13 subregions

Bias RMSE SI CorrCoeff NBias NSTD CRMSE

E-S W-S E-S W-S E-S W-S E-S W-S E-S W-S E-S W-S E-S W-S

ETNP -0.18 -0.19 0.44 0.45 0.18 0.18 0.90 0.90 -0.07 -0.07 1.16 1.15 0.52 0.51

ETNA -0.36 -0.42 0.59 0.65 0.25 0.28 0.88 0.88 -0.15 -0.18 1.28 1.38 0.62 0.70

TNIO -0.08 -0.12 0.38 0.37 0.25 0.25 0.83 0.84 -0.05 -0.07 1.41 1.26 0.79 0.68

TWNP -0.12 -0.16 0.33 0.35 0.19 0.21 0.74 0.75 -0.07 -0.09 1.34 1.32 0.89 0.87

TENP -0.02 -0.07 0.21 0.23 0.10 0.11 0.78 0.77 -0.01 -0.03 1.28 1.23 0.80 0.78

TNAO -0.09 -0.09 0.23 0.24 0.13 0.13 0.82 0.81 -0.05 -0.05 1.28 1.33 0.73 0.79

TSIO -0.07 -0.11 0.28 0.30 0.13 0.14 0.79 0.78 -0.03 -0.05 1.36 1.26 0.83 0.78

TWSP -0.13 -0.24 0.26 0.34 0.15 0.20 0.41 0.36 -0.08 -0.15 1.97 1.61 1.81 1.56

TESP 0.03 -0.03 0.32 0.31 0.14 0.14 0.52 0.55 0.01 -0.01 1.85 1.70 1.58 1.42

TSAO 0.01 0.02 0.26 0.26 0.14 0.14 0.61 0.59 0.01 0.01 1.76 1.59 1.39 1.28

ETSI -0.17 -0.07 0.39 0.40 0.11 0.11 0.82 0.76 -0.05 -0.02 1.29 1.17 0.74 0.77

ETSP -0.15 -0.12 0.35 0.39 0.11 0.12 0.76 0.69 -0.05 -0.03 1.31 1.14 0.85 0.85

ETSA -0.15 -0.10 0.39 0.39 0.13 0.13 0.66 0.62 -0.05 -0.03 1.36 1.26 1.02 1.01

Fig. 11. Mean annual variability of NBias, CRMSE, RMSE (from top

to bottom)

Fig. 12. Mean annual variability of Bias, CorrCoeff, SI (from top to

bottom)
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CONCLUDING REMARKS

In the present paper, the newly released ERA5 wave climatology is com-

pared against WW3 climatology, as well as a merged satellite database.

The intercomparison covers a period of 31 years (1979-2009), and has

been performed using three-hourly wave fields for the entire globe.

The mean monthly values of the datasets are used as cornerstones of the

analysis. First, seasonal analysis is performed based on seasonal charac-

teristics of them showing a very good agreement. Moreover, the mean

annual and the inter-annual variability computed are in accordance with

findings of other researchers (Stopa et al., 2013).

Then, quantiles of the empirical cumulative distribution are calculated in

order to get a picture of the variability of the distribution and of several

percentiles of interest; especially in the tail of the distribution. Finally,

several error measures are derived in order to assess the agreement be-

tween the datasets.

In addition to the field analysis, data are considered for thirteen non-

overlapping subregions following Alves (2006), and the above mentioned

analysis (seasonal, probability, error) is performed for each one of them.

All in all, the two datasets are in a very good agreement, with WW3 hav-

ing little greater variability than ERA5. It is also noted that, wind speed

statistics are also available, showing similar characteristics. However,

they have been omitted from the present work due to space limitation.
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