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Abstract

To minimize entropy production means to reduce the lost work in a process, and to
optimize the use of energy resources. Due to the need for re-compression, membrane
units for separation of CO2 from natural gas require large amounts of electrical power.
We show that this power requirement can be reduced by controlling the permeation
process so that the entropy production is minimum. With the use of optimal control
theory, we develop in this work a detailed and robust method to minimize the entropy
production of a membrane unit for separation of CO2 from natural gas, by control of
the partial and total pressures on the permeate side. Moreover, we show how the con-
tinuous optimal results can serve as ideal limits for the practical design. A three-step
permeate pressure that approximates the optimum reduces both the entropy production
and the compressor power, when the permeate gas is re-compressed.
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1. Introduction

Semipermeable membranes have many applications in gas separation, and they have
rapidly become a competitive solution since their commercial production started [1].
One of the most important fields of application is separation of carbon dioxide (CO2)
from natural gas [1]. Carbon dioxide is present in the natural gas at the extraction. Its
removal from natural gas is mandatory to meet pipeline specifications, since it lowers
the heat of combustion, it might cause corrosion problems, and it freezes at relatively
high temperatures [2]. Removal of CO2 with alkanolamine solutions has been dom-
inating the field for years, as it allows an almost negligible loss of hydrocarbons [3].
However, under many circumstances, membrane systems are nowadays a competitive
alternative, especially for high concentration of CO2 in the natural gas [4].
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Despite the many advantages of membrane systems, such as small footprint and ease of
operation [1], the main drawback remains the relatively low selectivity, which makes
the costs due to methane losses high. In order to mitigate this drawback, the per-
meate gas is usually re-compressed to undergo further separation stages [5]. How-
ever, this solution brings additional costs due to investments in additional compres-
sors and to the power necessary for their operation. These costs often become the
largest costs in membrane separation systems [6]. For this reason, many studies have
been done to minimize the costs of such systems, while maintaining competitive per-
formances [7–14]. Most approaches to the optimization problem have discussed the
selection of the optimal stage configurations with permeate and/or retentate recycling,
which minimize the costs connected with surface area, methane losses, and compres-
sion power [7, 8, 12, 15]. Two- or three-stage configurations are usually necessary
to satisfy the requirements on separation. The desired methane losses also play a
fundamental role in determining the minimum required membrane area [13]. An-
other approach considers the use of membranes with different selectivies in different
stages [5, 10, 16].
A limitation of optimization results based on cost analysis is that they are affected by
fluctuations in natural gas and energy prices. Moreover, the implementation of carbon
taxes in many parts of the world can further influence the results [17].
With attention to energy saving, we suggest the use of a different approach, namely the
one that minimizes the losses of useful work. Even though membrane processes do not
require direct input of heat or power, work is lost as part of the pressurized gas perme-
ates through the membrane and expands to a lower pressure. In most applications, the
permeate needs to be re-compressed, either to undergo the next separation stage or to
be re-injected into a reservoir. To decrease the work that is lost during the permeation
process means to reduce the power necessary to compress the permeate gas.
The lost work in a process can be evaluated through its total entropy production. In-
deed, the lost work, Wlost, is uniquely related to the entropy that is produced during the
process, Σirr, by the Gouy-Stodola theorem [18]:

Wlost = T0Σirr (1)

The use of nonequilibrium thermodynamics allows us not only to assess the total en-
tropy production, but also to exactly determine where in the system entropy is produced
and in which amounts [19]. This knowledge enables us to individuate the parts of the
system where the largest part of useful work is lost, and where the efforts should be
focused in order to improve the system. By combining the nonequilibrium thermody-
namic framework and an optimization procedure, it is possible to individuate how the
thermodynamic variables should be operated in order to increase the system efficiency.
To minimize the entropy production in a system corresponds to finding the system
operation where the lost work is minimum. By imposing constraints on the inputs and
on the separation of the process, one can guarantee that the economic benefits of the
process are maintained. Entropy production minimization has been used not only in
connection with nonequilibrium thermodynamics, but also in combination with finite
time thermodynamics, resulting in studies of many different applications, such as heat
exchangers [20–24], chemical reactors [25–27], and distillation columns [28–34].
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Figure 1: A schematic representation of the system. The feed stream flows in the z-direction parallel to the
membrane, which separate the feed and permeate streams. The component molar fluxes, JCO2 and JCH4 ,
cross the membrane perpendicularly to it (x-direction). The permeate can flow in the same direction as the
feed stream (A), in opposite direction (B), or perpendicularly to it (C).

The main purpose of this work is to investigate the possibility of reducing the entropy
production in membrane systems, and thus their electric power requirements, by prop-
erly controlling the permeate pressure. The aim is to obtain a deeper insight into the
process and to develop guidelines on how thermodynamic variables such as pressure
should be controlled to enable a reduction of lost work. The results obtained with
optimal control theory are used as ideal limits to guide practical design.
In order to isolate the effect of optimal control of the permeate pressure, non-isothermal
effects due to gas expansion and compression are neglected in the present work. In ac-
tual membrane units, heating is also necessary to compensate for the temperature drop
that takes place when the high-pressure natural gas expands through the membrane.
Moreover, intercoolers are needed to cool down the gas stream after each compressor.
By using the total entropy production as objective function, the optimization proce-
dure can then be easily extended to also take the performance of heaters and coolers
into account. Since membrane systems, heat exchangers and compressors require en-
ergy inputs that differ in quality, the analysis is not trivial when a first-law parameter
such as for instance electric power consumption is used as objective function of the
optimization procedure.
After presenting the system in Section 2, we introduce the thermodynamic model and
formulate the mathematical optimization problem in Section 3. Details on the solution
procedure and relevant data are provided in Section 4, as well as a description of the
different cases which are addressed. Results are presented and discussed in Section 5.
Conclusions are drawn in Section 6.

2. System

We consider a membrane unit for separation of CO2 from natural gas. Figure 1 shows
a schematic representation of the system. The feed and permeate streams are separated
by the membrane. The feed stream flows from left to right, and consists of high pressure
natural gas. The permeate side of the membrane is kept at low pressure. Due to the
different thermodynamic driving forces and transport coefficients, the two components
permeate through the membrane at different rates. When the system is in a stationary
state, the fluxes across the membrane are constant in the x-direction.
In order to isolate the effect due to the optimal control of the permeate pressure, we
make some simplifying assumptions:
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– the gas on both sides of the membrane is perfectly mixed in the x- and y-direction
(plug flow). The assumption is justified by the fact that the permeation rates and
selectivity of commercial membranes are much lower than those for which concen-
tration polarization phenomena occur [35];

– methane and CO2 are the only two components considered in the mixture. Higher
hydrocarbons and water are also normally present in natural gas at the extraction,
but their fraction is reduced through cooling and compression ahead of the separa-
tion unit [36];

– pressure drops due to viscous flow are neglected, as they are typically small [37].
In a previous work [38], the pressure drop of a similar membrane unit was found
to below 0.07 bar. This pressure drop is small in comparison with the pressure
drop across the membrane, and it does not influence the thermodynamic properties
of the gas significantly. Moreover, since the length of the membrane unit is not a
parameter in the optimization procedure, the pressure drop in the different cases will
be approximately the same, hence not influencing the results from the optimization
procedure;

– diffusive fluxes along the z-direction are neglected, since they are small in compar-
ison to the convective flow;

– the transport coefficients are assumed to be constant;

– the gas is considered to be ideal. This hypothesis has shown to hide a temper-
ature drop along the membrane unit due to the Joule-Thomson effect (circa 15 K
temperature difference between inlet and outlet of the feed gas for a similar mem-
brane system [38]). However, the permeabilities of components are to a large extent
unaffected by this phenomenon [39, 40];

– no heat is exchanged with the surroundings. This assumption, together with the
fact that the gas is considered ideal, results in constant temperature throughout the
system.

When optimization is carried out, we assume that we are able to control either the
component partial pressures or the total pressure on the permeate side at every position
along the z-coordinate. We consider three possible configurations for the permeate
side:

A – Co-current: The permeate stream flows parallel to the feed stream, and it has the
same flow direction (from left to right in Fig. 1). The left end on the permeate
side is a dead-end. This condition is typical of hollow fiber membranes, where a
sweep gas is not present.

B – Counter-current: The permeate stream flows parallel to the feed stream, but in the
opposite direction (from right to left in Fig. 1). The right end on the permeate
side is a dead-end.

C – Cross-flow: The permeate stream flows perpendicular to the feed side (x-direction),
and it leaves the unit as it has permeated the membrane.
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3. Theoretical formulation

In Section 3.1, we present the conservation equations used to describe the system. In
Section 3.2, we formulate the entropy production of the system, which represent the
objective function of the optimization. Finally, the optimization problems are described
in Section 3.3, while Section 3.4 presents the constraint imposed on the separation
target of the system.

3.1. Conservation equations

The thermodynamic driving forces between feed and permeate side cause permeation
of the two components from one side to the other. On the feed side, the molar balance
of component i for a cross section of the system on the xy-plane is [41]:

dFi

dz
= −WJi (2)

where Fi is the molar flow rate of the i component on the feed side, W is the width of the
membrane (in the y-direction), and Ji is the flux of component i across the membrane.
Here, i = {CO2,CH4}. Each flow rate can be written as:

Fi = xiF (3)

where F is the total molar flow rate, xi is the mole fraction of the component i. The
sum of the two flow rates gives the total molar flow rate, thus:

dF
dz

=
d
(
FCO2 + FCH4

)
dz

= −W
∑

i

Ji = −WJ (4)

where J is the total molar flux across the membrane.
All the thermodynamic variables introduced above refer to the feed side. We indi-
cate the corresponding variables on the permeate side with a similar notation and the
addition of the superscript p.
In the co-current case (configuration A), the left extremity of the permeate side (z = 0)
is a dead-end, thus the molar flow at this location is zero. Since the gas flowing on the
permeate side is the result of the feed gas that has permeated through the membrane,
the component molar flows on the permeate side, F p

i , can be described by the algebraic
equation [41]:

F p
i = F in

i − Fi (5)

where the superscript in indicates the variable at the feed inlet (z = 0).
Similarly, when the permeate flow is counter-current (configuration B), the mole bal-
ance is [41]:

F p
i = Fout

i − Fi (6)

where the superscript out indicates the variable at the feed outlet (z = L, where L is the
length of the membrane unit). In both co-current and counter-current configuration, the
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component mole fraction on the permeate side can be calculated as the ratio between
the component flow rate and the total flow rate:

xp
i =

F p
i

F p (7)

However, at the permeate inlet of both cases, xp
i cannot be calculated according to

Eq. 7, since the term at the denominator is zero. At this location, the mole fraction
of CO2 and methane is determined by their permeating fluxes, and can be calculated
according to the relation:

xp,in
i =

Ji

J
(8)

The condition described by Eq. 8, applies at z = 0 for the co-current case, and at z = L
for the counter-current case.
When the cross-flow is considered (configuration C), the gas that permeates from the
feed side to the permeate side leaves the membrane unit immediately, and the compo-
nent mole fractions on the permeate side are given by Eq. 8 at all positions along the
membrane.
Flux-force relations from nonequilibrium thermodynamics [42] can be used to calcu-
late the fluxes across the membrane:

Ji = LiXi = −Li∆
µi

T
(9)

where Xi is the thermodynamic driving force, µi is the component chemical potential,
Li is the component mass transport coefficient, and T is the temperature. Here, ∆

indicates the difference between permeate and feed side. Since we consider the gas to
be ideal, the chemical potential of a component in the gas phase can be written as:

µi = µ0,i + RT ln
xi p
p0

(10)

where µ0,i is the component standard chemical potential, R is the universal gas constant,
p is the total pressure, and p0 is the standard state pressure. Introducing Eq. 10 into
Eq. 9, we get:

Ji = −RLi ln
pp

i

xi p
= −RLi ln

xp
i pp

xi p
(11)

The component molar fluxes can be calculated from the permeabilities of the membrane
material to the two gases, Pi, which is defined according to [43]:

Ji = −Pi
pp

i − pi

δ
(12)

where δ is the thickness of the membrane. Comparing Eq. 12 with Eq. 11, we get:

Li =
Pi

δR
pp

i − pi

ln
(
pp

i /pi

) (13)

Permeabilities can be found in literature for specific feed and permeate pressures, tem-
peratures, and compositions [44]. The transport coefficients are determined according
to Eq. 13 for the relative specific conditions.
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3.2. Entropy production
The objective function of the optimization problem is the total entropy production of
the system, Σirr. According to nonequilibrium thermodynamics [42], the entropy pro-
duction of a homogeneous phase can be written as the product sum of all fluxes, Ji, and
their conjugate forces, Xi. The entropy production is:

σ = W
∑

i

JiXi = W
(
JCO2 XCO2 + JCH4 XCH4

)
(14)

By introducing the flux-force relations given by Eq. 9 into Eq. 14, we obtain the entropy
production as a function of the driving forces only:

σ = W
(
LCO2 X2

CO2
+ LCH4 X2

CH4

)
= W

(
LCO2

(
−∆

µCO2

T

)2
+ LCH4

(
−∆

µCH4

T

)2
)

(15)

The total entropy production is found by integrating the entropy production over the
total length of the membrane unit:

Σirr =

∫ L

0
σdz (16)

By introducing Eqs. 11 and 15 into Eq. 16, we get:

Σirr = W
∫ L

0
LCO2

−R ln
pp

CO2

xCO2 p

2

+ LCH4

−R ln
pp

CH4

xCH4 p

2

dz

= Σirr,CO2 + Σirr,CH4 (17)

The total entropy production has two contributions. The first one is due to transfer of
CO2, Σirr,CO2 , while the second one is due to methane transfer, Σirr,CH4 . An alternative
derivation of the total entropy production, which uses the entropy balance equation as
starting point, is provided in Appendix A.

3.3. The optimization problem
The aim of the work is to minimize the total entropy production of the system with
given constrains, taking advantage of optimal control theory. Eight variables are nec-
essary to completely describe the system at any point along the z-coordinate: CO2 and
CH4 molar flow rates, temperature and pressure, on both feed and permeate side.In
the reference case, where no control is operated, the behavior of the height variables
is dictated either by the mass balances (that determine the components flow rates) or
by specifications (constant pressure and temperature). The reference system has, thus,
zero degrees of freedom.
According to optimal control theory, the variables of relevance in a controlled system
can be classified in independent state variables and in control variables [45]. Further
details and an introduction to optimal control theory can be found in Refs. [45, 46].
The state variables are the variables in the system that are governed by differential
equations. According to the formulation reported in Section 3.1, FCO2 and FCH4 are the
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state variables. Since we assume that no gas is fed on the permeate side, the values that
the component flow rates can attain are constrained by the relations:

F in
i − Fi ≥ 0 (18)

Thus, the state variables are subject to constraints. In order to ensure that the state
variable constraints are not violated during the optimization procedure, it is necessary
to define a new variable FS C , whose spatial derivative is defined as [46]:

dFS C

dz
= ξCO2

(
F in

CO2
− FCO2

)
+ ξCH4

(
F in

CH4
− FCH4

)
(19)

where ξCO2 and ξCH4 are step functions defined as:

ξi =

 0, for F in
i − Fi ≥ 0

1, for F in
i − Fi < 0

Equation 19 needs to be equal to 0 in order for all state constraints to be satisfied. By
imposing the two boundary conditions FS C (0) = 0 and FS C (L) = 0, we ensure that the
state constraints are fulfilled everywhere along the spatial coordinate [46].
The control variables are those variables used to control the system. The permeate
partial pressures are used as controls when we control two variables, while the permeate
total pressure is used when only one variable is controlled.
According to optimal control theory, the conditions for a minimum in the objective
function can be derived from the Hamiltonian of the problem [46]:

H = σ + λCO2

(
−WJCO2

)
+ λCH4

(
−WJCH4

)
(20)

+λS C

(
ξCO2

(
F in

CO2
− FCO2

)
+ ξCH4

(
F in

CH4
− FCH4

))
The Hamiltonian has two contributions. The first contribution is given by the integrand
in the total entropy production equation (i.e. the entropy production). The second
contribution is constituted by the product of the multipliers’ functions, λi, and the right-
hand side of the state variable governing equations [46] (including the fictitious state
variable defined by Eq. 19).
The necessary conditions for a minimum and for the fulfillment of the state constraints
are represented by 2 differential equations for each state variable (including the ficti-
tious one), and by 1 algebraic equation for each control variable [45]. Thus, we have 6

8

This is the accepted version of an article published in Computers and Chemical Engineering 
DOI: 10.1016/j.compchemeng.2018.06.002



differential necessary conditions for the problem:

dFCO2

dz
=

∂H
∂λCO2

(21)

dFCH4

dz
=

∂H
∂λCH4

(22)

dFS C

dz
=

∂H
∂λS C

(23)

dλCO2

dz
= −

∂H
∂FCO2

(24)

dλCH4

dz
= −

∂H
∂FCH4

(25)

dλS C

dz
= −

∂H
∂FS C

(26)

The left sides of Eqs. 21-23 equal the conservation equations (Eqs. 2 and 19). Equa-
tions 24-26 describe the evolution in space of the Lagrangian multipliers. Since the
Hamiltonian is not a direct function of FS C , Eq. 26 equals zero, and λS C is constant.
By expressing the Hamiltonian as a function of the state variables, and carrying out the
partial differentiations, Eqs. 24-25 can be reformulated as:

dλCO2

dz
= WRLCO2

(
2XCO2 − λCO2

)  1
xp

CO2

∂xp
CO2

∂FCO2

−
xCH4

FCO2


+WRLCH4

(
2XCH4 − λCH4

)  1
xp

CH4

∂xp
CH4

∂FCO2

+
xCH4

FCH4


+λS CξCO2 (27)

dλCH4

dz
= WRLCO2

(
2XCO2 − λCO2

)  1
xp

CO2

∂xp
CO2

∂FCH4

+
xCO2

FCO2


+WRLCH4

(
2XCH4 − λCH4

)  1
xp

CH4

∂xp
CH4

∂FCH4

−
xCO2

FCH4


+λS CξCH4 (28)

The partial derivatives of the permeate mole fraction are derived in Appendix B.1.
Their expressions are different for different permeate configurations.

3.3.1. Optimal case with 2 control variables
Since the reference system has zero degrees of freedom, we first need to disregard
some of the specifications on the system variables, in order to gain sufficient freedom
to control the system. In this case, we eliminate the specification of constant pressure
on the permeate side, as well as we neglect one of the component balances on the
permeate side. This allows the system to gain two degrees of freedom that can be used
to control the system.
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Several meaningful choices of control variables can be made. We choose to use the
permeate partial pressures as control variables, and we assume to be able to control
them completely. Since we control these variables at any position along the membrane,
the permeate mole fractions are determined everywhere according to:

xp
i =

pp
i

pp (29)

Since the permeate mole fraction is a function of the permeate partial pressures only,
the partial derivatives of xp

i in Eqs. 27-28 are zero. In this case, the Hamiltonian is not
explicitly dependent on the spatial coordinate (i.e. it is autonomous), and therefore it
is constant in space [45].
When two variables can be controlled, we also have two algebraic equations as neces-
sary conditions for a minimum:

∂H
∂pp

CO2

= 0 (30)

∂H
∂pp

CH4

= 0 (31)

When the number of control variables equals, as in this case, the number of indepen-
dent state variables, we have enough control to be able to control all driving forces
independently [25]. Thus, we can use the driving forces instead of the permeate partial
pressures as the control variables. Equations 30 and 31 can then be replaced by:

∂H
∂XCO2

= WLCO2

(
2XCO2 − λCO2

)
= 0 (32)

∂H
∂XCH4

= WLCH4

(
2XCH4 − λCH4

)
= 0 (33)

Solving the two equations for λCO2 and λCH4 and substituting into Eq. 20, we get:

H = −σ + λS C

(
ξCO2

(
F in

CO2
− FCO2

)
+ ξCH4

(
F in

CH4
− FCH4

))
(34)

As mentioned above, the Hamiltonian is constant along the spatial coordinate, while
the last term in Eq. 34 is 0 for any admissible solutions. The entropy production is,
thus, constant across the system, when the system is optimally controlled.
Equations 32-33 can be reformulated to obtain an explicit expression for the two control
variables:

pp
CO2

= xCO2 p · exp
(
−
λCO2

2R

)
(35)

pp
CH4

= xCH4 p · exp
(
−
λCH4

2R

)
(36)

Substituting Eqs. 32 and 33 into Eqs. 27-28, and considering that ξi are equal to 0 for
a feasible solution, we find that the spatial derivatives of the multipliers are zero, and
therefore λCO2 and λCH4 are constant.
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3.3.2. Optimal case with 1 control variable
When one variable is controlled, one specification on the system variables needs to be
eliminated. The most relevant single control variable in our case is the total permeate
pressure, pp. Thus, the specification of constant permeate pressure is disregarded, and
the system gains one degree of freedom that can be used to control the system.
The minimization problem is characterized by the same 6 differential necessary con-
ditions presented above (Eqs. 21-26). However, the optimal problem has now one
algebraic necessary condition only. For the co-current and the counter-current config-
uration, the condition is:

∂H
∂pp = −

WRLCO2

pp

(
2XCO2 − λCO2

)
−

WRLCH4

pp

(
2XCH4 − λCH4

)
= 0 (37)

By expressing the driving forces as functions of the permeate pressure, Eq. 37 can be
reformulated to give an explicit expression for pp:

pp = p

 xCO2

xp
CO2


LCO2

LCO2
+LCH4

 xCH4

xp
CH4


LCH4

LCO2
+LCH4

· exp
(
−
λCO2 LCO2 + λCH4 LCH4

2R
(
LCO2 + LCH4

) )
(38)

In the cross-current case as well as at the permeate inlet in the co-current and counter-current
configuration, the composition on the permeate side depends on pp through Eq. 8.
Thus, the necessary condition has two additional terms:

∂H
∂pp = −WRLCO2

 1
pp +

1
xp

CO2

∂xp
CO2

∂pp

 (2XCO2 − λCO2

)
(39)

−WRLCH4

 1
pp +

1
xp

CH4

∂xp
CH4

∂pp

 (2XCH4 − λCH4

)
= 0

Since it is not possible to find an analytical expression for pp from Eq. 39, the permeate
pressure is computed numerically. The partial derivatives of the permeate composition
with respect to the permeate partial pressure are derived in Appendix B.2.

3.4. Constraint

In order to have a meaningful optimization, we need to impose at least one constraint
on the separation of the membrane unit. Pipeline specifications impose natural gas CO2
fraction lower than 2%. We therefore require the CO2 mole fraction in the retentate gas
leaving the membrane unit to satisfy the pipeline requirements:

xout
CO2

= 0.02, z = L (40)

This constraint is applied to both optimization problems.
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4. Solution procedure

Before solving the optimization problem, we establish the entropy production of a ref-
erence process where no control is operated on the system. Two differential equations
describe the reference process (Eq. 2 for CO2 and methane). We consider three differ-
ent flow configurations on the permeate side (Case A, Case B, and Case C). The nature
of the mathematical problem is different in different configurations. Case A and Case C
are initial value problems, while the counter-current case (Case B) is a boundary value
problem. We use the Matlab “ode15s” multistep solver to integrate the initial value
problems, while we deal with the boundary value problem using the Matlab “bvp4c”
solver, which exploits a collocation method. Constant flow profiles equal to the inlet
values, F in

CO2
and F in

CH4
, are provided as initial guesses (derived from the data reported

in Table 1).
The case with the lowest entropy production is chosen to be the reference membrane
process for comparison with the optimal results. The optimization problem is char-
acterized by 3 additional differential equations (5 differential equations in total) and
one unknown parameter (λS C), that describe the evolution in space of the Lagrangian
multipliers and of the additional state variable (Eqs. 23-26). Six boundary conditions
are thus needed to solve the problem. The 2 first boundary conditions are the same
for reference and optimal case (i.e. FCO2 (z = 0) = F in

CO2
and FCH4 (z = 0) = F in

CH4
).

Additional boundary conditions are given by the constraint on the duty of the sys-
tem (Eq. 40), by the 2 boundary constraints imposed on the additional state variable
(FS C (z = 0) = 0 and FS C (z = L) = 0). Finally, the last boundary condition concerns
the Lagrange multipliers. It is derived from the constraints on the state variables at the
final state as [46]:

0.02λCO2 + 0.98λCH4 = 0, z = L (41)

This condition is usually called terminal condition.
Since some boundary conditions are specified at the inlet (z = 0) , while others at the
outlet (z = L), the optimization problems are boundary value problems. Therefore, we
use the Matlab “bvp4c” solver to solve them. For the solution of the first optimiza-
tion problem, the feed flow profiles obtained for the reference case and two constant
profiles (we arbitrary use the constant value 1) are used as initial guesses for compo-
nent flow rates and Lagrangian multipliers. The optimal results obtained from the first
optimization problem are used as initial guesses for the solution of the second one.

4.1. Input data
Calculations are performed at a set of operating conditions typical of natural gas purifi-
cation membrane units (Table 1). The pressure ratio between feed and permeate side
is very large, since it represents the driving force responsible for the component per-
meation though the membrane. In the calculations of the reference cases, the pressure
ratio equals 50, which is a normal value for such applications. Since the pressure drops
due to the viscous flow are neglected, the total pressure on the feed side is constant. The
same applies to the permeate pressure in the reference case. A summary of the most
important membrane parameters is reported in Table 2. The data for CO2 and methane
permeability in cellulose acetate are taken from Ref. [44]. Tables 1 and 2 contain the
data used to derive the boundary conditions for the problem.
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Table 1: Operating conditions for the reference membrane process [47]. In the reference process, the pressure
on both sides are constant along the z-direction. The same constant temperature is considered at the two
sides of the membrane. Since the inlet end on the permeate side is a dead-end (configuration A and B), the
permeate flow at the inlet is zero. The composition at the inlet of the permeate side is given by the ratio of
the permeating fluxes at this location (Eq. 8).

Value Units

T 308 K
p 50·105 Pa
pp 1·105 Pa
F in 0.195 mol·s−1

F p,in 0 mol·s−1

xin
CO2

0.3 -

Table 2: Parameters of the membrane unit. The transport coefficients, LCO2 and LCH4 , have been calculated
from the other membrane parameters according to Eq. 13.

Value Units

δ 1 µm
W 1 m
PCO2 1.5·10−15 mol·m−1·s−1·Pa−1

PCH4 5.8·10−17 mol·m−1·s−1·Pa−1

LCO2 7.9·10−5 mol2·K ·m−2·s−1·J−1

LCH4 5.7·10−6 mol2·K ·m−2·s−1·J−1

4.2. Investigated cases

In this work, we progressively evaluate and compare different cases. For sake of clarity,
from now on, they are named as follows:

Ref.: In the reference case no optimal control takes place. Three different flow config-
urations are compared, according to the description in Section 2 (Ref. A, Ref. B,
and Ref. C). In every configuration, the length of the membrane unit is such to
give xout

CO2
= 0.02. The length of the best performing configuration (i.e. the length

of the shortest unit) will be taken as the unit length in all optimization problems.

Opt. 2cv: The process is optimally controlled by control of the permeate partial pres-
sures. The corresponding mathematical problem was described in Section 3.3.1.
Since the number of control variables is sufficient to control the two driving
forces independently, the permeate configuration does not influence the results.

Opt. 1cv: The process is optimally controlled by control of the permeate total pressure
only. The corresponding mathematical problem was presented in Section 3.3.2.
The optimization problem is solved for different permeate configurations (Opt. 1cvA,
Opt. 1cvB, and Opt. 1cvC).
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Table 3: Performances of the membrane reference cases, for co-current case (Ref. A), counter-current case
(Ref. B), and cross-flow (Ref. C). The lengths of the membrane units are such to give xout

CO2
= 0.02. Wrecompr

indicate the compression power necessary to re-compress the permeate gas to 50 bar.

Ref. A Ref. B Ref. C Units

xout
CO2

0.02 0.02 0.02 -
L 46.4 41.6 42.8 m
F p,out

CH4
1.26 · 10−2 1.05 · 10−2 1.12 · 10−2 mol·s−1

Σirr 1.618 1.517 1.547 J·K−1·s−1

Σirr,CO2 1.021 1.056 1.035 J·K−1·s−1

Σirr,CH4 0.597 0.461 0.512 J·K−1·s−1

Wcompr 688 666 674 W

5. Results

5.1. Reference cases

Table 3 reports the results obtained for the three different permeate flow configurations,
when no optimal control is operated. The membrane unit length in the different config-
urations are determined so that they give the same CO2 mole fraction in the retentate
(xout

CO2
= 0.02). Ref. A is the case that requires the longest membrane unit (circa 10%

longer than in Ref. B, and 8% longer than in Ref. C).
The counter-current configuration is confirmed to be the most economically advan-
tageous, since it allows to save part of the investment costs due to the smaller mem-
brane surface, and it gives smaller methane losses, F p,out

CH4
. However, the counter-current

configuration is the most convenient also from a thermodynamic perspective. Indeed,
its total entropy production and, therefore, its lost work are lower than in the other
cases (circa 6% and 2% lower than Ref. A and Ref. C respectively). When the per-
meate gas needs to be re-compressed (either to be re-injected into the reservoir or to
undergo a new separation stage), the counter-current configuration requires less com-
pression power than the other configurations (Eq. D.1). In the case that permeate gas
is re-compressed to the original pressure of 50 bar, the counter-current configuration
requires 3.2% less power than the co-current case.
Figure 2 shows the entropy production obtained with Ref. A (thick solid line), Ref. B
(thick dashed line), and Ref. C (thin solid line). Since the length of the membrane
unit is different for the different configurations, the entropy production is reported as a
function of the normalized z-coordinate (i.e. the coordinate value divided by the length
of membrane unit). The shape of the entropy production profiles does not differ much
between the cases, and the difference in the total entropy production of the process is
mainly due to the integration over a different length.
None of the reference cases is optimally controlled to yield minimum entropy produc-
tion. Since the counter-current case produces the least amount of entropy, we choose
Ref. B to be the reference case for further calculations. In the remaining part of Sec-
tion 5, we will refer to it as Ref., and we will use L = 41.6 m from the counter-current
configuration as length of the membrane unit during optimization.
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Figure 2: Local entropy production, in the Ref. A (thick solid line), Ref. B (thick dashed line), and Ref. C
(thin solid line). The thick dashed line and the thin solid line are almost superimposed at this scale.

In order to check the consistency of the thermodynamic framework presented in Sec-
tion 3, the total entropy production has been calculated for all investigated cases ac-
cording to both Eq. 17 and Eq. A.1. The relative error between the results given by the
two equations are order of the numerical accuracy of the calculations (10−6).

5.2. Comparison between analytical and numerical optimization

The conditions for optimality presented in Section 3.3 define only the necessary condi-
tions for a minimum. Therefore, in order to evaluate whether the identified results cor-
respond to the global minimum, the optimal results presented in Sections 5.3-5.4 were
compared with those obtained by solving the optimization problem numerically. De-
tails on the numerical solution of the problem are presented in Appendix C. However,
a numerical optimization does also not guarantee that we find the global minimum.
Thus, the numerical optimization procedure was carried out for different random initial
profiles. If another minimum existed, it would have most likely been found by fol-
lowing this procedure. Since the results obtained with the analytical optimization and
those obtained by numerical optimizations carried out with different random starting
points coincided, we can assume that the minima that have been identified are global
ones.
The relative error between the profiles given by the analytical and numerical optimiza-
tion procedures is order of the numerical accuracy of calculations (relative accuracy of
10−6). Right at the boundaries, the relative error is larger (10−3). This is due to the
fact that the spatial derivative approximation used for the numerical optimization has
lower accuracy at the boundaries. Even though analytical and numerical methods give
the same solution, the analytical one leads to more accurate results in a shorter time.
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Table 4: Total entropy production of the membrane unit in the reference case (Ref.) and in the optimal case
where 2 control variables are available (Opt. 2cv). L = 41.6 m is used as length of the membrane unit.

Ref. Opt. 2cv Units

Σirr 1.517 0.945 J·K−1·s−1

Σirr,CO2 1.056 0.945 J·K−1·s−1

Σirr,CH4 0.461 0 J·K−1·s−1

Figure 3: Entropy production for the reference case (solid line) and for Opt. 2cv (dashed line).

Moreover, the mathematical derivation of the analytical optimization problem enables
us to get information on the nature of the solution (Section 3.3.1).
Thanks to optimal control theory, the system of differential equations (Eqs. 23-26) can
be solved robustly and to a high accuracy for a wide range of operating conditions. The
advantage of using optimal control theory instead of direct gradient- or trust-region
based optimization methods, is that one has excellent control of the accuracy of the
optimal configuration through the error-control of the boundary value solver.

5.3. Optimal case with 2 control variables

In this section, we assume to have full control on the permeate partial pressures. The
results obtained with optimal control are compared with those of the reference case
(Ref.). Since we control the permeate partial pressure at any position, the results are
independent of the permeate flow configuration. Table 4 shows that optimal control
of the permeate partial pressures allows for a significant reduction in the total entropy
production (circa 38%). The reduction is mainly due to the fact that the methane perme-
ating flux reduces to zero. Therefore, by controlling both components’ partial pressures
it is in principle possible to reduce the methane losses to zero.
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Figure 4: Thermodynamic driving forces across the membrane for CO2 (solid lines) and methane (dashed
lines), for the reference case (thick lines) and for Opt. 2cv (thin lines).

Figure 3 compares the entropy production of the reference case (solid line) with the one
of Opt. 2cv (dashed line). The results show that the entropy production is indeed con-
stant when we can control all driving forces independently (dashed line), confirming
what was found theoretically in Section 3.3.1.
Figure 4 shows the thermodynamic driving forces across the system for Ref. (thick
lines) and for Opt. 2cv (thin lines). In the optimally controlled case, the driving forces
for CO2 and methane transport are both constant. In particular, the driving force to
methane transport is everywhere equal to zero.
In practice, the control of both permeate partial pressures is almost impossible. How-
ever, this case is interesting from a theoretical point of view. Indeed, the entropy pro-
duction in the present optimal case represents the lower bound for the production of
entropy of a membrane system subject to specific separation constraints and bound-
ary conditions. A real process that takes place in finite time and space produces an
inevitable amount of entropy, and, thus, it looses some useful work [48]. The mini-
mum amount of work that is inevitably lost depends on the boundary conditions and
constraints assigned to the problem. When constraints and boundary conditions are
fixed, the minimum lost work and the minimum entropy production can be calculated
by optimizing the system under the assumption that we can control all driving forces.

5.4. Optimal case with 1 control variable

In this section, the performances of the reference case (Ref.) are compared with the
optimal case in which we control the total permeate pressure only. Since the driving
forces depend on both total pressure and composition of the permeate side, we cannot
control the driving forces independently. In this case, the results of the optimization
depend on the permeate flow configuration.
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Table 5: Performances of the membrane unit in the reference case (Ref.) and in the optimal cases where
1 control variable is available (Opt. 1cvA, Opt. 1cvB, and Opt. 1cvC). The reduction in the total entropy
production is expressed with respect to the one of the reference case. L = 41.6 m is used as length of the
membrane unit.

Ref. Opt. 1cvA Opt. 1cvB Opt. 1cvC Units

Σirr 1.517 1.447 1.420 1.436 J·K−1·s−1

Reduction in Σirr – -4.6 -6.4 -5.4 %
Σirr,CO2 1.056 0.957 0.953 0.953 J·K−1·s−1

Σirr,CH4 0.461 0.490 0.467 0.483 J·K−1·s−1

F p,out
CH4

1.050 · 10−2 1.071 · 10−2 1.051 · 10−2 1.067 · 10−2 mol·s−1

Figure 5: Entropy production for the reference case (thick solid line) and for Opt. 1cvA (thick dashed line),
Opt. 1cvB (thin solid line), and Opt. 1cvC (thin dashed line).

Table 5 compares the performance of the reference case with those of the optimal case
for different permeate configurations (Opt. 1cvA, Opt. 1cvB, and Opt. 1cvC). The same
membrane length is used for all three configurations. With the control of the permeate
pressure, the separation constraint can be satisfied with all configurations for the same
membrane area. The counter-current configuration (Opt. 1cvB) is nevertheless prefer-
able over the others, as it leads to lower entropy production and to lower methane
losses. The entropy production cannot be reduced as much as with control of both per-
meate partial pressures (maximum reduction of only 6.4% in counter-current configu-
ration). In this case, the reduction in entropy production is only due to lower Σirr,CO2 ,
while Σirr,CH4 is slightly higher than in the reference case (Ref). The fact that the opti-
mization problem only focuses on reducing the contribution due to the CO2 transport
suggests that when there is no independent control on all driving forces, it is particu-
larly beneficial to seek for membrane designs and materials with higher CO2/methane
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Figure 6: Thermodynamic driving forces across the membrane for CO2 (thick lines) and methane (thin lines),
for the reference case (solid line) and for Opt. 1cvA (dashed line), Opt. 1cvB (dash-dot line), and Opt. 1cvC
(dotted line).

Table 6: Total entropy production of the membrane unit for the reference case (Ref.), in the optimal case
where 1 control variable is available (Opt. 1cvB), in the case where EoEP is imposed, in the case where
EoFCO2 is imposed, and in the case where EoFCH4 is imposed. L = 41.6 m is used as length of the membrane
unit.

Σirr / J·K−1·s−1 Ref Opt. 1cv EoEP EoFCO2 EoFCH4

Case A 1.618 1.447 1.463 1.451 1.657
Case B 1.517 1.420 1.421 1.421 1.484
Case C 1.547 1.436 1.442 1.437 1.517

selectivities. With a higher CO2/methane selectivity, Σirr,CO2 represents a larger fraction
of the total entropy production, and therefore a larger reduction of entropy production
is possible, when only the total permeate pressure is controlled.
Figure 5 compares the entropy production for the reference case (thick solid line) with
the one obtained in Opt. 1cvA (thick dashed line), Opt. 1cvB (thin solid line), and
Opt. 1cvC (thin dashed line). Even if none of the entropy production profiles are con-
stant in this case, σ has a smaller variation when the total entropy production is lower
(i.e. Opt. 1cvB).
Figure 6 presents the driving forces in the different cases (solid lines for Ref., dashed
lines for Opt. 1cvA, dash-dot lines for Opt. 1cvB, and dotted lines for Opt. 1cvC). As
for the entropy production, the forces are not constant in any of the optimally controlled
cases. However, the driving force for CO2 transport (thick lines) is more constant in
the optimal cases than in the reference process. On the other hand, the methane driving
force (thin lines) varies more in the optimal cases than in the reference case.
In order to further investigate these aspects, we calculated the total entropy production
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Figure 7: Permeate total pressure for Opt. 1cvB (solid line), and for a three-step approximation of the
optimum profile (dashed line).

that results from controlling the permeate pressure to enforce constant driving force
either to CO2 transport (EoFCO2 ) or to methane transport (EoFCH4 ), or constant entropy
production (EoEP). Table 6 shows that even though the imposition of EoEP or EoFCO2

does not yield a minimum, it leads to a total entropy production which is not far from
the optimum. Therefore, using EoEP as design guideline brings the total entropy pro-
duction 90-98% towards the minimum in terms of the difference between the reference
cases and the optimally controlled cases A-C. In the case of the EoFCO2 , the total en-
tropy production is brought up to 97-99% towards the minimum. This suggests that
these two criteria can be used as relatively simple membrane design guidelines, when a
reduction in the total entropy production is sought. Even though they are only approx-
imations of the optimal solution, they are simple design criteria that make it possible
to avoid elaborate optimization procedures. On the other hand, the use of EoFCH4 does
not reduce the entropy production significantly.

5.5. A practical realization of the findings

From a practical point of view, continuous control of the permeate partial pressures or
permeate total pressure is not realistic. However, the optimal pressure profiles can be
used as ideal limits for the practical design. For instance, practical control can be re-
alized by dividing the membrane unit into a series of sub-units with different permeate
pressures. Figure 7 shows the permeate pressure profile in the optimal counter-current
case (solid line), and for a three-step approximation of it (dashed line). Compressors at
the entrance of each sub-unit can be used to control the permeate pressure, as depicted
in Fig. 8. With such a solution, the entropy production and, therefore, the lost work
reduce by 5.3% with respect to the reference case. Since the total length of the unit is
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the same as in the reference case, the investment costs due to membrane surface area
are the same.
To add compressors to the membrane system means that the process requires additional
power inputs, as well as additional costs for compressors. However, in most practical
applications, the permeate gas needs either to be re-injected into the reservoir or to
enter a second separation stage.
Under such circumstances, the permeate gas is typically re-compressed to pressures
equal to that of the feed gas (or higher). In the present case, the compression ratio
would be 50. Common industrial compressors have compression ratios of 2-4, and
therefore, several compression stages are necessary. In the design phase, by choosing
compressors with appropriate compression ratios and by relocating some compressors
from downstream the separation process to in between the membrane stages, it is possi-
ble to optimally control the permeate pressure, without adding additional compressors
to the global system, and therefore without adding capital costs.
To relocate the compressors that would be needed in a conventional process is a crite-
rion that can also be used to choose the number of stages for the process. Indeed, since
the entropy production reduces as the number of stages increases, the present approach
cannot explicitly indicate the number of stages to be used in a specific application.
However, the marginal entropy production decrement given by the introduction of an
additional stage decreases rapidly: three stages already allow for 82% of the entropy
production reduction obtained in the continuous case.
The control of the permeate pressure that is obtained by relocating the compressors
results in 3.8% saving of the total power which is needed for re-compression, and,
therefore, it decreases the operation costs. The location of the compressors (which is
determined by the length of the membrane subunits) was in this case determined by
considering equal length of the membrane subunits. This solution was suggested by
the nearly linear permeate pressure profile obtained with the optimization procedure
(Fig. 7). However, the lengths of the membrane subunits can also be used as additional
parameters of the optimization procedure to find the optimal location of the compres-
sors and further reduce the losses.
While the relocation of compressors of an existing membrane unit might be difficult to
realize, it is easier to implement in the design phase, for units yet to be built.
In the present case the saving potential is small, but it would be higher for materials and
designs with higher selectivities. With the use of a sweep gas with different composi-
tions, it would also be possible to operate a step-wise control of gas partial pressures
on the permeate side, and further improve the performance of the process.
Since the useful outputs, as well as the inputs, can be set as constraints of the optimiza-
tion procedure, the minimization of entropy production can be done as a next step after
maximization of the separation performances and preliminary economical considera-
tions.

6. Conclusions

We have in this work presented a detailed method for minimization of the total en-
tropy production of a membrane unit for CO2 separation from natural gas using op-
timal control theory. The results of the analytical minimization method were verified
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Figure 8: A schematic representation of an optimally controlled membrane unit, where the permeate gas is
re-compressed for further processing. The optimal results are approximated by a three-step pressure profile.
The pressure in every step is controlled by a compressor.

with a numerical minimization method. When we did not operate any control, the
counter-current configuration was the one that led to the lowest entropy production.
When we controlled all the permeate partial pressures, the total entropy reduced by
38% with respect to the reference case, and the methane losses reduced to zero. The
optimal results were characterized by constant entropy production and constant driving
forces.
By controlling the total permeate pressure only, the entropy production decreased less
(6.4% reduction in the counter-current configuration). Entropy production and driv-
ing forces were not constant in this case. However, the control of the total permeate
pressure to impose constant entropy production or constant CO2 driving force brought
the entropy production very close to the minimum. This suggests that these two cri-
teria can be used as design guidelines to reduce entropy production in CO2 separation
membranes. Moreover, membrane designs and materials with higher CO2/methane se-
lectivity would allow for a larger reduction of entropy production, when only the total
pressure is controlled.
The theoretical optimal results can serve as limit for the practical design. A three-
step permeate pressure profile that approximated the optimum was shown to reduce the
entropy production by 5.3%. This caused 3.8% reduction in compressor power, when
the permeate gas was re-compressed for further processing.
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Appendix A. Deriving the local entropy production

In this appendix, we show the derivation of the entropy production of a membrane
permeation process, from the entropy balance and the process conservation equations.
The starting point is the entropy balance:

Σirr = S out − S in +

∫ L

0
W

(
JCO2 sp

CO2
+ JCH4 sp

CH4

)
dz

=

∫ L

0

(
dS
dz

+ W
(
JCO2 sp

CO2
+ JCH4 sp

CH4

))
dz (A.1)
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where S is the entropy of the feed stream, and si is the molar entropy of the i compo-
nent. From Eq. A.1, it is possible to recognize the entropy production:

σ =
dS
dz

+ W
(
JCO2 sp

CO2
+ JCH4 sp

CH4

)
(A.2)

Since the gas is considered to be ideal, the entropy of the stream can be written as:

S = FCO2 sCO2 + FCH4 sCH4 (A.3)

= FCO2

(
sre f

CO2
− R ln

xCO2 p
pre f

)
+ FCH4

(
sre f

CH4
− R ln

xCH4 p
pre f

)
where sre f

CO2
and sre f

CH4
are the reference molar entropy of CO2 and methane respectively.

Thus, the derivatives of the entropy with respect to the independent state variables are:(
∂S

∂FCO2

)
FCH4

= sCO2 = sre f
CO2
− R ln

xCO2 p
pre f (A.4)(

∂S
∂FCH4

)
FCO2

= sCH4 = sre f
CH4
− R ln

xCH4 p
pre f (A.5)

Substituting the partial derivatives of the entropy in Eq. A.2, we obtain:

σ =

(
∂S

∂FCO2

)
FCH4

dFCO2

dz
+

(
∂S

∂FCH4

)
FCO2

dFCH4

dz

+W
(
JCO2 sp

CO2
+ JCH4 sp

CH4

)
= sCO2

(
−WJCO2

)
+ sCH4

(
−WJCH4

)
+W

(
JCO2 sp

CO2
+ JCH4 sp

CH4

)
= W

(
JCO2

(
sp

CO2
− sCO2

)
+ JCH4

(
sp

CH4
− sCH4

))
= W

JCO2

−R ln
pp

CO2

xCO2 p

 + JCH4

−R ln
pp

CH4

xCH4 p


= W

(
JCO2 XCO2 + JCH4 XCH4

)
(A.6)

which is the entropy production as given by Eq. 14.

Appendix B. Deriving the derivatives of the permeate mole fractions

Appendix B.1. Feed flow derivatives

The partial derivative of the permeate mole fractions with respect to the component
feed flows have different expressions in different permeate flow configurations. In both
co-current and counter-current configurations, the derivatives can be derived by differ-
entiating Eq. 7. Even though the expressions for the permeate flows differ in the two
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cases, by substituting Eq. 5 (for co-current) or Eq. 6 (for counter-current) into Eq. 7
and differentiating, we get:

∂xp
CO2

∂FCO2

=
∂
(
F p

CO2
/F p

)
∂FCO2

= −
xp

CH4

F p (B.1)

∂xp
CH4

∂FCO2

=
∂
(
1 − xp

CO2

)
∂FCO2

= −
∂xp

CO2

∂FCO2

(B.2)

Similarly, we get:

∂xp
CO2

∂FCH4

=
∂
(
F p

CO2
/F p

)
∂FCH4

=
xp

CO2

F p (B.3)

∂xp
CH4

∂FCH4

=
∂
(
1 − xp

CO2

)
∂FCH4

= −
∂xp

CO2

∂FCH4

(B.4)

In the cross-flow configuration, the derivatives can be derived by differentiating Eq. 8.
We first rewrite Eq. 8 for the CO2 mole fraction as:

xp
CO2

(
JCO2 + JCH4

)
= JCO2 (B.5)

Substituting Eq. 11 in the expression above, and rewriting the methane mole fraction
as xp

CH4
= 1 − xp

CO2
, we obtain:

xp
CO2

LCO2 ln
xp

CO2
pp

xCO2 p
+ LCH4 ln

(
1 − xp

CO2

)
pp

xCH4 p

 (B.6)

= LCO2 ln
xp

CO2
pp

xCO2 p

Substituting Eq. 3 and carrying out the partial derivation with respect to FCO2 on both
sides of Eq. B.6, we obtain an expression for the CO2 mole fraction:

∂xp
CO2

∂FCO2

= xCH4

xp
CO2

LCH4

FCH4
+

xp
CH4

LCO2

FCO2

J
R +

xp
CO2

LCH4

xp
CH4

+
xp

CH4
LCO2

xp
CO2

(B.7)

The partial derivative of the methane mole fraction is:

∂xp
CH4

∂FCO2

=
∂
(
1 − xp

CO2

)
∂FCO2

= −
∂xp

CO2

∂FCO2

(B.8)

Similarly, we can derive the partial derivatives of xp
i with respect to the FCH4 :

∂xp
CO2

∂FCH4

= −xCO2

xp
CO2

LCH4

FCH4
+

xp
CH4

LCO2

FCO2

J
R +

xp
CO2

LCH4

xp
CH4

+
xp

CH4
LCO2

xp
CO2

(B.9)

∂xp
CH4

∂FCH4

= −
∂xp

CO2

∂FCH4

(B.10)
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Appendix B.2. Permeate partial pressure derivatives

Carrying out the partial derivation with respect to pp of both side of Eq. B.6, we obtain
an expression for the CO2 mole fraction:

∂xp
CO2

∂pp =
xp

CO2
LCH4 − xp

CH4
LCO2

pp
(

J
R +

xp
CO2

LCH4

xp
CH4

+
xp

CH4
LCO2

xp
CO2

) (B.11)

The partial derivative of the methane mole fraction is:

∂xp
CH4

∂pp =
∂
(
1 − xp

CO2

)
∂pp = −

∂xp
CO2

∂pp (B.12)

Appendix C. Numerical solution of the problem

Section 3.3 presented the conditions that are necessary for a local minimum in the ob-
jective function. Since several local minima may exist, and the minimum found in
calculations might not correspond to the global minimum, we compared the results
found with the analytical procedure presented in Section 3.3 with those obtained by
solving the minimization problem numerically. We used the Matlab optimization func-
tion “fmincon”, which finds the minimum of an objective function subject to equality
and inequality constraints, by using a sequential quadratic programming method.
The objective function is the total entropy production, which is expressed as a function
of the state and control variables.
The equality constraints for the numerical problem are given by the inlet boundary
conditions (Fi(z = 0) = F in

i ), by the constraint on the duty of the membrane system
(Eq. 40), and by the governing equations (Eqs. 2). For the numerical solution, it is
necessary to transform the differential Eqs. 2 into algebraic equations. Therefore, the
term on the left-hand side of the two governing equations is approximated on a spatial
grid of n = 100 points, using a finite difference method. Thus, the two differential
equations turn into two systems of n algebraic equations, that are used as equality
constraints for the minimization problem.
The inequality constraints are represented by the state inequality constraints (Eq. 18).
As for the analytical case, solving the minimization problem numerically does not guar-
antee that the minimum that we found is the global minimum. Therefore, we carried
out the same numerical calculations several times, with different random initial pro-
files for the state and control variables. For all instances, the numerical and analytical
solutions were found to agree with a relative accuracy of the order of the numerical
accuracy of the calculations (10−5).

Appendix D. Ideal compression power

When the permeate gas is injected into the reservoir or it needs to go through a further
separation stage, the permeate gas needs to be re-compressed to a certain pressure,
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pend. If we assume the compression isothermal and reversible and the gas ideal, the
power necessary for the compression is:

Wcompr = −F p,out
∫ pend

pp
pdv = F p,outRT ln

pend

pp (D.1)

where F p,out is the permeate flow leaving the membrane unit and v is the specific vol-
ume. We choose to use the ideal compression power in calculations because the com-
pressor efficiency is not object of this study.
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