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A B S T R A C T

The responses of a monopile offshore wind turbine subjected to irregular wave loads are investigated numeri-
cally and experimentally, considering a range of sea states. An extensive experimental campaign was carried out
on a fully flexible model, representative of a 5 MW offshore wind turbine, at 1:40 scale. An assessment of the
experimental results for the response amplitude operator for regular waves and the 90th percentile seabed
bending moment in long-crested irregular waves is carried out using two models (analytical and numerical) for
uncertainty propagation, suggesting that bias errors in the model properties and in the wave elevation contribute
the most to the total uncertainty. The experimental results are also compared to a numerical model using beam
elements and Morison-type wave loads with second order wave kinematics. The numerical model does not
capture all of the responses within the level of uncertainty of the experiments, and possible reasons for the
discrepancies are discussed.

1. Introduction

The offshore wind industry is moving towards larger turbines in
order to save costs on installation and maintenance. The increase in
rotor size and aerodynamic loads requires increasingly large support
structures. For monopile wind turbine foundations (which support
roughly 80% of the offshore wind turbines in Europe [1]), this corre-
sponds to an increase in diameter, and more significant wave loads.
Furthermore, to maintain a soft-stiff design with respect to 1p (rotor
frequency) and 3p (blade sweeping) excitation, the decrease in rotor
speed associated with upscaling also leads to a reduction in the first
global bending natural frequency of large monopile wind turbines. As a
result, the ocean waves whose second, third or fourth harmonic are
capable of exciting the structure at its natural frequency, are waves
with lower periods - and (for typical severe sea states) larger energy. In
severe weather conditions, when the turbine is typically parked with
the blades feathered, monopile wind turbines are very lightly damped
and therefore particularly sensitive to wave loads which excite resonant
responses.

In order to ensure safe yet economical design of large monopile
wind turbines, the hydrodynamic loads and the ringing-type responses
need to be predicted accurately. Here, we apply Faltinsen's definition of
ringing: “transient structural deflections at frequencies substantially

higher than the incident wave frequencies” [2]. Ringing-type responses
were extensively studied experimentally and theoretically in the 1990s
in support of the development of tension leg platforms and gravity-
based structures for the oil and gas industry [2–8]. For shallower water
and irregular waves, state-of-the-art methods include using (modified)
Morison's equation with 2nd order irregular wave kinematics [9],
Morison's equation or Rainey's equation combined with wave kine-
matics from nonlinear potential theory or from CFD [10–12], or wave
kinematics from embedded stream function or higher order Stokes
waves [13]. Recently, Kristiansen and Faltinsen introduced a new load
model for intermediate water depth which can be applied to monopile
wind turbines [14]. Compared to experiments with a rigid monopile
and regular waves, the new load model shows good agreement in the
third order load for small to medium wave steepness. Loads from
breaking waves require the inclusion of additional load models [15]. In
the present work, a Morison-type load model – typical for engineering
calculations – is selected for simplicity and in order to establish a
baseline comparison for further work.

Model scale experiments are used to provide validation data for
different numerical approaches; several recent relevant model tests are
summarized in [9]. Previous tests include rigid [9,11,14,15–17], single-
mode [9,18], and fully flexible models [11,19,20]. While rigid models
can provide important information about the wave loads, the response
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of the structure is what really drives design. A single-mode (pitching)
model is simple to build, but doesn’t completely match the deforma-
tions of the structure in the model compared to full scale. As a result,
radiation loads may be too large at model scale compared to full scale,
and the response to wave excitation may not correctly represent the full
scale responses. Furthermore, the second mode may be of importance,
especially for breaking waves [20]. Here, we present a new set of ex-
periments, which were carried out with a highly instrumented model at
1:40 scale in the Ocean Basin at SINTEF Ocean in August 2017. The
model consisted of a fully flexible monopile with a mass representing
the rotor-nacelle assembly. The first two modes of a prototype design
were represented with reasonable accuracy and the model was sub-
jected to a range of regular (long-crested) and irregular (long- and
short-crested) waves.

In order to use experimental data for validation of numerical tools,
there is a need for thorough uncertainty analysis regarding the hydro-
dynamic experiments as well as the numerical models themselves [21].
The present test program included repetition tests as well as multiple
realizations of the same wave conditions, such that the statistical var-
iations can be investigated. This paper presents an estimation of the
uncertainty in the experiments, focusing on the long-crested wave
conditions, as well as a comparison of the results with state-of-the-art
engineering models. Repeatability is assessed directly from the experi-
mental results, and possible bias errors are estimated and propagated to
the responses of interest using a simple semi-analytical model and using
a state-of-the-art engineering model.

The main focus of the present paper is to identify the level of un-
certainty in the experimental results, in order to understand whether or
not the discrepancy between the numerical models and the experi-
mental results is within the experimental uncertainty. Many experi-
mental results have been presented in this area - with very little dis-
cussion of the level of certainty in the results. This work attempts to
shed light on the level of uncertainty in the estimation of extrema, and
to show the extent to which engineering methods can reproduce the
90th percentile responses within the experimental uncertainty.

Section 2 presents the experimental setup and test campaign, while
Section 3 explains the numerical model. An assessment of the un-
certainty in the experimental campaign is given in Section 4. Results of
the experimental campaign and numerical analyses are presented to-
gether in Section 5, focusing on the ability of the numerical model to
capture selected response metrics within the estimated experimental
uncertainty. Differences between the numerical model and experi-
mental results are also examined.

2. Experimental setup

2.1. Model and instrumentation

The experimental model represents a prototype 5 MW offshore wind
turbine with a monopile support structure in 30 m water depth. The
model tests were carried out at scale 1:40 in the Ocean Basin at SINTEF
Ocean. Unless otherwise noted, physical quantities are reported at full
scale. Froude scaling (including the difference between the fresh water
density in the model tests and sea water density at full scale) is applied
in order to scale the model test results. Since the monopile wave loads
are dominated by inertia-type loads, the error induced by the difference
in Reynolds number at model scale compared to full scale is assumed to
be small.

The prototype design corresponds to the NREL 5 MW reference wind
turbine [22] supported by the offshore tower developed in OC3 Phase
III [23] and a 7 m diameter monopile, with the OC3 Phase II soil
stiffness parameters [24]. For the prototype design, the monopile
thickness is 60 mm and the transition from monopile to tower occurs at
10 m above the waterline. For the model scale design, as shown in
Fig. 1, a flexible backbone from the top of the tower to the seabed
provides the correct distribution of bending stiffness, while outer shells

placed around the backbone provide the correct outer diameter in the
wetted section of the monopile. The outer shells, in 5 m sections, are
connected to the backbone at the vertical center of each section. The
space between the inner backbone and the outer shells is filled with
divinycell in order to avoid sloshing water in the monopile. At the
seabed, the monopile is connected to a 50 m long “soil spring”: a pipe
section which extends down to the foundation and which was designed
to give a representative bending stiffness for the monopile and soil.

The mass distribution of the model, including the instrumentation,
does not precisely follow the mass distribution of the prototype 5 MW
design, but provides a reasonable approximation. At the top of the
model, as shown in Fig. 2, two aerodynamic drag disks were installed.
These disks, which were installed in an attempt to increase the aero-
dynamic damping of the system, match the mass of the rotor-nacelle
assembly (RNA). The inertia provided by these disks is, however, larger
than that of the prototype RNA, and there is no equivalent flexibility
representing the wind turbine blades, both of which can influence the
second and third eigenmodes. A detailed comparison of the natural
frequencies is given in Section 5.2 (Table 1).

The model is instrumented with strain gauges at 20 elevations
(ranging from z=−46.00 m to z=16.90 m). At each instrumented
elevation, there are 4 strain gauges in order to measure bending mo-
ments about the x- and y- axes. Since the wave loads are transferred to
the center core of the model only at horizontal connection plates, the
shear forces (derived from the bending moments) are nearly constant
from the middle of one section to the middle of the next. In addition to
the strain gauges, 10 accelerometers were installed on the model. These
are used for extracting the mode shapes and can also be used for esti-
mating the wave loads via i.e. force identification techniques [25].

Wave gauges were installed in the basin during both calibration and
testing with the model. Fig. 3 shows the wave gauge positions during

Fig. 1. Sketch of the monopile model, without (left) and with (right) outer
shells.
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calibration of long-crested waves. There were 13 standing probes
(present during both calibration and tests with the model) and 23
probes along a wave harp (a set of tightly-spaced wave probes aligned
with the wave propagation direction, with a distance of 6 m between
each probe and connected to a single support) which was only present
during wave calibration. The wave harp is shown in Fig. 4.

2.2. Test matrix

As shown in Table 2, 19 regular waves were tested, with periods (T)
ranging from 6 to 15 seconds. Two steepness values were considered
(approximately 1/30 and approximately 1/40). These different steep-
nesses can be useful for identifying nonlinear loads and behaviors. In
Table 2, the Keulegan-Carpenter (KC) number for regular waves is
calculated based on the maximum velocity according to linear theory,
that is:

= πH
D

KC
tanh(kh)

,1

(1)

where k is the wave number, h is the water depth, and D is the diameter.
The Ursell (Ur) number in Table 2 is calculated using the linear wave
height (H1) and the wavelength λ according to the linear dispersion
relationship:

= H λ
h

Ur .1
2

3 (2)

As shown in Table 2, the KC number for all of the considered tests is
quite low. For the smallest waves (KC < 1.25), no flow separation is
expected [26], and for KC up to 5.0, the added mass coefficient is not
expected to vary significantly [27].

Fig. 2. Left: photograph of the model installed in the wave basin, highlighting the drag disk. Right: numerical model in SIMA, where the four upper lines represent
the drag disk. Transition from red to black checkerboard indicates the calm water free surface elevation.

Table 1
Key model particulars, compared to the design prototype and to the OC3 Phase II monopile [24]. All values in full scale. Note that the OC3 Phase II monopile is in 20
m water depth, compared to the present model in 30 m water depth.

Model Tests Prototype OC3 Phase II Monopile [24]

Diameter (wetted section of monopile) [m] 7.0 7.0 6.0
Tower base diameter (10 m above waterline) [m] 6.5 6.5 6.0

Tower top diameter [m] 3.87 3.87 3.87
RNA mass [tonnes] 335.9 350.0 350.0

RNA Ixx about RNA CoG [tonnes-m2] 7.136x104 4.00x104 4.00x104

RNA Iyy about RNA CoG [tonnes-m2] 7.136x104 3.07x104 3.07x104

RNA Izz about RNA CoG [tonnes-m2] 9.513x104 2.44x104 2.44x104

Monopile penetration depth (below seabed) - 46 m 30 m

Fig. 3. Wave probe layout during calibration of long-crested waves. Left: full
basin extents, dashed lines show zoom area. Right: zoom near the model,
showing the tightly-spaced wave probes in the harp.
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In addition to the regular wave tests, 56 three-hour duration (28
long-crested and 28 short-crested) irregular sea states were tested. The
short-crested wave conditions are not studied in the present work,
while the long-crested wave conditions are shown in Table 3.

The wave conditions in Table 3 are also characterized by a

representative KC number using the formulation given in DNV-OS-J101
[28] and irregular Ursell number (Ur) [29]. The representative KC
number is calculated as:

= πH
D

KC ,s
(3)

where D is the diameter and Hs the characteristic wave amplitude. The
irregular Ursell number is computed as [29]:

=
k H
k h

Ur
2( )

,p s

p
2 (4)

where kp is the wave number at the peak frequency and h the water
depth. The maximum Ursell value computed is 0.15, below the validity
limit for second order waves (Ur = 0.33) where one begins to observe
artificial bumps [30]. Similar to the regular waves, the KC number is
low for all of the irregular wave tests.

3. Numerical modelling

A numerical model of the test set-up is developed at full scale in the
SIMA software, using the RIFLEX finite element program from SINTEF
Ocean. The numerical model consists of beam elements, following the
discretization in Table 4, which are subjected to hydrodynamic loads.
The bottom of the soil spring is modelled as fully fixed, while the top of
the structure is free.

The hydrodynamic loading in the numerical model is based on a
modified Morison model, applied to each strip of the monopile. For a
circular cylinder in long-crested waves, the distributed component of
the force proposed by Kristiansen and Faltinsen (KF) [14] or the dis-
tributed force from Manners and Rainey [31] can be expressed as:

= + −F ρπ D za ρπ D zC a xd
4

d
4

d ( ¨),h h a h
2

1
2

2 (5)

with:

= ∂
∂

+ ∂
∂

+ ∂
∂

a u
t

u u
x

w u
zh1 (6)

= ∂
∂

+ ∂
∂

a u
t

w u
zh2 (7)

(the transverse velocity v is zero for long-crested waves, while the
horizontal, u, and vertical, w, components are nonzero). Furthermore,
in Eq. (5), ρ is the density of water, D is the diameter of a vertical strip
of the monopile, and Ca (taken here to be 1.0) is the so-called mass
coefficient. The structural acceleration is ẍ . The two terms on the right
hand side are usually referred to as the inertia terms. For practical
reasons, the existing formulation in the RIFLEX software requires using
the same wave particle acceleration in both terms. Three formulations
of the load are included here:

1) approach a1, the total acceleration including all advective terms.
This model corresponds to the R2 model in [9], except that viscous
drag forces are neglected in the present work.

= = ∂
∂

+ ∂
∂

+ ∂
∂

a a u
t

u u
x

w u
z

.h h1 2 (8)

Fig. 4. Wave harp as installed during wave calibration.

Table 2
Regular wave tests.

H (m) T (s) KC Ur Repetitions

1.9 6.0 0.85 0.22 0
2.6 7.0 1.18 0.55 0
3.3 8.0 1.54 1.13 0
4.2 9.0 2.04 2.12 0
5.2 10.0 2.65 3.63 0
6.3 11.0 3.39 5.78 0
7.5 12.0 4.27 8.71 1
8.8 13.0 5.31 12.57 0
10.2 14.0 6.50 17.53 1
1.4 6.0 0.63 0.16 0
1.9 7.0 0.86 0.40 0
2.5 8.0 1.17 0.85 0
3.2 9.0 1.55 1.62 0
3.9 10.0 1.99 2.72 0
4.7 11.0 2.53 4.31 0
5.6 12.0 3.19 6.50 0
6.6 13.0 3.98 9.43 0
7.7 14.0 4.91 13.23 1
8.8 15.0 5.92 17.88 0

Table 3
Long-crested irregular wave tests.

Hs (m) Tp (s) γ KC Ur Additional seeds Repetitions (seed 1)

1.9 6 5 0.85 0.01 3 0
3.4 8 2.1 1.53 0.03 0 0
4.6 9 2.5 2.06 0.05 3 0
6.5 9 5 2.92 0.07 0 0
8 9 5 3.59 0.08 0 0
8.1 10 5 3.64 0.10 0 0
8.5 11 4.1 3.81 0.12 0 0
9 12.3 2.8 4.04 0.15 3 8
8.5 13 1.9 3.81 0.15 0 0

Table 4
Structural modelling. *The mass of the drag disk is modelled through rigid elements connected to these beam elements.

Line type Length (m) Number of elements Cross-section properties

Soil spring 20 20 D=7 m, E=3312 GPa
Wetted part of monopile 30 70 D=7 m, E=3312 GPa

Tower 87 20 D=7 m to D=4.3 m, E=3312 GPa
Drag disk 7 5 D=4.3 m, rigid, no mass*
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2) approach a2, a formulation without the ∂
∂u u

x term:

= = ∂
∂

+ ∂
∂

a a u
t

w u
z

.h h1 2 (9)

3) approach a3, no advective terms.

= = ∂
∂

a a u
t

.h h1 2 (10)

Note that only the local acceleration is included in the standard
Morison's equation (a3). Models a1 and a2 can be regarded as modified
Morison models. We have not included the surface intersection force
from [31], or the Fψ term from [14]. Additionally, viscous drag terms
have been found to be negligible and are therefore not included. All of
the simulations in the present work consider 2nd order wave kinematics
and the loads are integrated up to the undisturbed 2nd order wave
elevation.

In order to obtain the second order wave kinematics, the measured
wave elevation signal is first linearized through a bandpass filter. The
high-frequency cut-off of this filter is selected through an iterative
procedure in order to best match the measured wave elevation spec-
trum. This iterative procedure is carried out for each calibrated wave
signal. An example of the wave spectrum reconstruction is given in
Fig. 5. As shown, we do not attempt to reconstruct the low-frequency
components of the measured spectrum. The measured low-frequency
components include both difference-frequency components, parasitic
waves generated in the basin, and some resonant modes of the basin,
while the reconstruction does not include the difference-frequency
terms. A reasonable match for the high-frequency tail is obtained.

There are important limitations regarding the selected wave kine-
matic model and wave load model applied in the present work. For very
steep regular waves, second order wave kinematics have been found to
overestimate the measured velocity field [32]. Compared to the wave
conditions in [32], the irregular waves studied here correspond to
lower wave height to water depth ratio (H/h≈ 0.3) and shorter non-
dimensional period ( ≈T gh 7.4). Still, some overestimation of wave
kinematics may be expected.

4. Uncertainty assessment

4.1. Response metrics

In order to be able to assess the experimental uncertainty, well-
defined response metrics, or quantities of interest, are needed. These
response metrics have to be quantities which can be measured or
computed directly from the measurements, and which can also be
predicted numerically. For simplicity, scalar (rather than time series)

quantities are desirable. For the present work, we define the following
response metrics:

1) Bending moment transfer function, denoted response amplitude
operators (bending moment RAOs) at z=−28.5 m for the first,
second, and third harmonic of the primary wave frequency for wave
periods 6-15 s.

2) 90th percentile 30-minute bending moment response at z=−28.5
m for long-crested waves with Hs=9 m and Tp=12.3 s (TMA
spectrum [33]).

The first response metric can be computed from the long-crested
regular waves, while the second is obtained from the realizations of
irregular waves.

The bending moment RAO for the first harmonic component is de-
fined as the amplitude of the bending moment at the primary wave
frequency divided by the amplitude of the wave elevation at the pri-
mary wave frequency. Here, the amplitude is determined by first
bandpass filtering the time signal of interest, then taking the average
amplitude over a time range after the ramp in the wave amplitude, but
before the return of reflected waves from the beach. The second and
third harmonic response components are divided by the first order
wave amplitude raised to the power of 2 or 3, respectively, in the
chosen definition of the RAO for the second and third harmonic re-
sponses. The amplitude of the higher harmonic components is de-
termined using bandpass-filtered time signals before reflections, in a
similar manner to the first order RAO.

Although the 90th percentile 30-minute maximum bending moment
is not typically a design parameter of interest (one might instead be
interested in the 3-hour maximum bending moment), it is selected as a
response metric for practical reasons. Each 3-hour realization can be
divided into 6 30-minute periods. The 90th percentile 30-minute
maximum is estimated by fitting a Gumbel distribution to the maxima
from each of the 30-minute periods. The method-of-moments is used for
the fitting process. The uncertainties induced by the fitting process are
not examined here.

For the experiments, the uncertainty in these response metrics will
depend on the uncertainty in the incoming waves, the model itself (i.e.
geometry, stiffness, mass distribution), and the measured response
(bending moment). The numerical simulations include uncertainty in
the discretization, the wave input (in this case, in the filtering of the
measured wave), and in the load model (in this case, the coefficients in
the Morison model). Oberkampf et al. [34] present a framework for
error and uncertainty analysis in modeling partial differential equa-
tions, considering epistemic and aleatory uncertainty, acknowledged
errors, and unacknowledged errors in six phases of modeling and si-
mulation. The present work does not attempt to quantify the un-
certainty in the numerical analysis, but focuses on the experimental
uncertainty.

4.2. Experimental uncertainty

Experimental uncertainty is typically expressed in terms of random
(aleatory or statistical) uncertainty and systematic (bias, systemic)
uncertainty [35,36]. Random uncertainties are related to inherent
random variations in a physical process. The level of random un-
certainty can be assessed through repeated tests. Systematic un-
certainties may create an unknown bias in the tests. Without additional
information, there is no way to reduce these uncertainties, and their
magnitude is typically estimated through expert opinion.

The random standard uncertainty of a response which is measured
repeatedly is found from:

=
−

s s
N 1R

x

(11)

where sx is the standard deviation of the measured quantity over N

Fig. 5. Second order reconstruction of the measured wave elevation, Hs=9 m
and Tp=12.3 s.
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repeated tests. Repeated tests capture the random uncertainty in mea-
surement and in the physical process simultaneously - the variation
between different repeat tests does not give us information about the
source of the variation.

The effect of a systematic uncertainty on the uncertainty of the re-
sponse variable of interest must be obtained through uncertainty pro-
pagation. Where multivariable dependencies are involved, the un-
certainty propagation may be carried out based on known relationships
between the dependent variables and measured variables [37]. A lin-
earization of a known functional relationship can be used to find a
sensitivity index. Considering a result R which depends on L in-
dependent variables xi, the sensitivity index θi is given by

= ∂
∂

=θ R
x

i L, 1, 2, ... ,i
i (12)

and evaluated at either mean or nominal values of the result. A similar
sensitivity index can be obtained by sequential perturbation [37]. The
uncertainty in the result due to the systematic uncertainties is obtained
by the square root of the sum of squares (RSS) of the contributions from
all of the independent variables:

∑= ±
=

( )u θ uR
i

L

i x
1

¯
2

i
(13)

where ux̄i is the best estimate of the uncertainty in the independent
variable.

In order to combine the random and systematic uncertainties, the
RSS is again used:

= +u u s( ) ( ) .c R R
2 2 (14)

The total uncertainty from Eq. (14) is shown in the results in the
present work. It should be noted that one could also present the ex-
panded uncertainty (equal to twice the total uncertainty for a 95%
confidence interval) [36]. In the following subsections, we first present
an assessment of the level of repeatability in the tests. Next, the esti-
mated bias errors in the measurements of the model, waves, and re-
sponses are described. Then, a simplified model which enables the
propagation of bias errors is presented. Finally, the total experimental
uncertainty in selected response metrics is estimated using both the
simplified model and through numerical simulations with model a3
described in Section 3, and the contributions of different factors are
compared.

4.2.1. Repeatability
Repetition tests - where an identical signal was sent to the wave-

maker - are useful for assessing the repeatability of the results. Due to
the time-consuming nature of such tests, there are few published ex-
amples of extensive repetition tests with a flexible model in a wave

basin. Fig. 6 shows one of the largest response events for one realization
of the sea state with Hs=9 m, and Tp=12.3 s, which was run in total 9
times with the model and 3 times without the model. The repeatability
of this particular event is, however, not particularly impressive: the
coefficient of variation (ratio of standard deviation to the mean) of the
maximum bending moment is 0.18. The calibrated wave (measured at
the model, shown in red) and the wave measured far from the model
(but at the same x-location) have coefficients of variation of 0.07 and
0.08, respectively.

Despite the automation in the test procedures, the repeatability of
the tests observed here is lower than typically seen in tests in the Ocean
Basin. There are several factors which contribute to this relatively low
repeatability. First, wave generation at relatively small depths (as in the
present work) is very sensitive to the local water depth. The basin floor
is moveable, and though it was fastened carefully at 16 locations, there
are still local variations in the bottom and there is some possible de-
formation of the bottom. Second, there are non-deterministic processes
associated with breaking waves. Although breaking waves were not the
main focus of the present work, there were breaking waves present in
most of the studied sea states. Finally, the level of damping in the
system was extremely low. There are important memory effects in the
response of a lightly damped flexible monopile (see [9]), and the system
may continue to respond to events (including breaking wave events)
long after the wave has passed, thus changing the system's interaction
with subsequent waves.

Assessing the repeatability of the RAO is challenging for several
reasons. First, the generation of regular waves in relatively shallow
water can be challenging due to the previously mentioned depth var-
iations and reflections, standing waves, and parasitic waves in the
basin. The variation of the wave amplitude along the harp during ca-
libration, shown in Fig. 7, exemplifies these challenges. There are no-
table differences in the amplitude of the first harmonic of the wave,
especially for the longest waves. The wave amplitude at a given loca-
tion along the harp deviates up to 18% compared to the mean ampli-
tude, and the coefficient of variation ranges from 3 to 9% depending on
the wave period. The second reason that it is difficult to assess the re-
peatability of the RAO is that few repetition tests were carried out.

Fig. 8 shows the computed RAO for all of the regular waves. For a
linear system under linear wave loads, the RAO for different wave
steepnesses would be equal. There is good agreement in the first har-
monic RAO for longer waves, while for the shorter waves and the
higher harmonics there are some nonlinear effects, leading to different
RAO values for different wave steepnesses. These nonlinear effects may
be related to the load mechanisms at the first order frequency, or to
interactions between first and higher order wave load components. For
example, the 2ω wave loads when T=8 or 9 s, resulting in resonant
responses, may change the first harmonic loads and responses due to
hydroelasticity or other interactions. The repeated tests also showed

Fig. 6. Repeatability of a severe wave event, Hs=9 m and Tp=12.3 s. The wave with the model is measured 200 m from the model in the y-direction.
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good agreement (within 2%) for the first harmonic.
The RAO for the second harmonic of the response shows significant

amplification when the wave period was 8-9 s, which is close to twice
the natural period of the monopile. The discrepancies between the re-
sults for the different wave steepnesses were large, but the repeatability
of each condition was within 5%. For the third harmonic, the peak
occurred for periods near 3 times the structural natural period. The
repeatability at 12 s is seen to be quite poor, which may be related to
the dynamic amplification near this period giving great sensitivity. It
should also be noted that the higher order responses tend to be less
stable than the first order response, so the results may be sensitive to
the selected time period for analysis.

Fig. 9 illustrates the variation in the 30-minute 90th percentile
bending moment near the seabed for irregular waves with Hs=9m and
Tp=12.3 s. The variation among repetitions of the same seed give si-
milar results for the 90th percentile bending moment: the coefficient of

Fig. 7. Variations in regular wave amplitude along the
wave harp. Left: amplitude of the first harmonic of the
wave along the harp, where WAVE2 shows the value at
the model location. Note that the indicated steepnesses
1/30 and 1/40 are approximate. Middle: time series of
wave elevation along the harp (T=6 s, lower steep-
ness). Right: time series of wave elevation along the
harp (T=13 s, lower steepness).

Fig. 8. Experimental bending moment (at z=−28.5 m) RAO results, high-
lighting the repeatability and the differences in results for different wave
steepness.

Fig. 9. Gumbel fitting of the 90th percentile 30-minute maximum bending
moment (P=0.9 in the figure) for Hs=9 m and Tp=12.3 s, from experi-
mental data. Dots show 6 maxima from each 3-hour experimental realization,
while lines show fitted Gumbel distributions based on those maxima. Black
lines/points are repetition tests of the same seed, while colors show different
seeds. The dashed gray line shows the results considering 24 maxima (using the
first of the repetition tests and three additional seeds).

Table 5
Estimated bias errors. All values given in full scale.

Parameter Bias error

Measured wave elevation ±3%
Water depth ± 0.4 m

Mass distribution ± 10% locally
Inner core dimensions ±4 mm
Outer shell dimensions ± 6 cm

Strain ± 0.5%
Acceleration orientation± 2.5°, location 0.12 m
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variation for those 9 estimates is 2%. Comparing the mean of these 9
estimates with the predictions from three additional seeds gives a
coefficient of variation of 4.7%. The statistical results for the irregular
waves are seen to be more repeatable and more stable than the in-
dividual events (such as the one shown in Fig. 6).

4.2.2. Estimated bias errors
The bias errors in the wave elevation measurements, physical model

properties, and acceleration and bending moment measurements are
summarized in Table 5.

The waves are measured using resistive-type wave gauges, which
are calibrated by moving the waves gauges up and down in still water.
Bias errors in the wave measurements can arise if the gauge is not
completely vertical, if the distance over which the gauges are moved
during calibration is incorrectly measured, due to temperature effects,
or changing water levels during calibration. The temperature variations
during the model tests were± 0.07 °C, and the wave gauges have a
sensitivity of 2%/deg C. Temperature effects had a relatively small
contribution to the bias error for the wave gauges.

The total mass and the center of mass were measured prior to dry-
testing the model. The local mass distribution is, however, estimated,
and a large uncertainty in the mass distribution can be seen to exist due
to the extensive instrumentation in the model.

Strain (ϵ) measurements are used to estimate the bending moment
in the structure. The functional relationship between the measured
strain and the bending moment is based on Hooke's law:

= = =σ E w Iϵ E y My/zz (15)

where σ is stress, E is Young's modulus, y is the radial location of the
strain measurement, I is the area moment of inertia of the cross-section,
and wxx is the local curvature. The bending moment is then seen to be
linearly related to the measured strain. Calibration of the strain gauges
is carried out by applying a known moment (via a hanging weight at-
tached through a pulley at a given height), such that for our purposes,

the sensitivity of the moment measurement to error in the strain mea-
surement is captured by the linear calibration factor. We estimated the
bias error by considering±2 mm model scale error in height and±5
degrees error in orientation of the load applied for calibration. Based on
the manufacturer data, the temperature error in the moment is 0.03%
per degree C: considering temperature variations± 0.07 °C, the tem-
perature contribution to the bias is negligible compared to the pre-
viously described contributions.

The bias error in the acceleration measurements is reported, but is
not used in the rest of the analysis, since the focus is on the bending
moment measurements.

4.2.3. Simplified semi-analytical uncertainty propagation
In order to carry out propagation of bias errors using analytically

obtained sensitivities, a simplified model is needed. Furthermore, in
general, it is preferable to use different numerical models for the pro-
pagation of uncertainties compared to the numerical model one wishes
to investigate. Here, we first consider a simplified model for the re-
sponse of the monopile. This simplified model is used to propagate bias
errors in the properties of the physical model and in the incoming
waves to the bending moment response.

For the present system, a linearized model is obtained by combining
a 5-mode structural response model with linear wave loads considering
only the inertia term from Morison's equation. The number of modes
was selected based on a convergence study using the simple model.

The structural response model takes the form of the decoupled or-
dinary differential equations in Eq. (16), where m̄i is the modal mass, b̄i
is the modal damping, k̄i is the modal stiffness, F̄i is the modal force,
and yi is the modal response.

+ + = =m y b y k y F i¯ ¨ ¯ ˙ ¯ ¯ , 1, 2, 3, 4, 5i i i i i i i (16)

For a uniform beam, analytical expressions for m̄i and k̄i are easily
derived. Due to the complexity of the present system (with varying

Table 6
Independent input variables for semi-analytical analysis. (1) The variation in stiffness is found based on the possible error in inner core dimensions at the
most sensitive point.

Input variable Symbol Comments

Mass distribution m Affects modal parameters. Uniform relative variation 10%.
Stiffness distribution EI Affects modal parameters. Uniform relative variation 4%(1).

Modal damping bi or ζ Varied for all five modes simultaneously 20%.
Outer diameter D Only affects wave loads. 6 cm.
Water depth h Affects modal parameters and wave loads. 0.4 m

Regular wave period 2π/ω Affects wave loads. 0.05 s.
Irregular wave significant wave height Hs Maintain spectral shape. 3%.

Irregular wave peak period Tp Maintain spectral shape. 0.05 s.

Fig. 10. Contributions to the experimental uncertainty for the first
order bending moment RAO, using the simplified model.
Contributions uR (i.e. terms inside the summation of Eq. (13)) are
shown in the columns for each wave period, while the random
uncertainty sR (Eq. (11)) is shown as a dashed line (assumed to be
equal for all wave periods).
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stiffness and density), it is more convenient to apply a finite element
model rather than developing the analytical expressions. In the present
work, the same Euler beam model from RIFLEX is used in order to

obtain the mode shapes φi. Since the software does not easily output the
modal mass and stiffness, we can apply Eqs. (17) and (18) together with
the known mass distribution (including added mass) and stiffness dis-
tribution to obtain these parameters. The undamped natural fre-
quencies obtained from the estimated modal mass and stiffness were
found to be within 5% of those from the eigenvalue analysis. The dis-
crepancy is probably due to the simplifying assumptions which lead to
Eqs. (17) and (18), and the sensitivity of the derivatives of the dis-
cretized mode shapes. In order to maintain the same natural fre-
quencies, the modal mass was modified to give matching results.

The vertical integration in Eqs. (17) and (18) is over the full length
of the monopile and tower. There are contributions to the modal mass
from the distributed mass per length m(z) (including added mass) as
well as point masses (Mj) and inertias (Ij). The modal stiffness is gov-
erned by the local bending stiffness, consisting of the Young's modulus
E and area moment of inertia I.

∫ ∑ ∑= + +m m z φ z M φ z I φ z¯ ( )( ( )) dz ( ( )) ( ( ))i z

z
i j i j j i z j

2 2
,

2
low

top

(17)

∫=k z φ z¯ EI( )( ( )) dzi z

z
i,zz

2
low

top

(18)

For simplicity, the modal damping is chosen to give the same
damping ratio in all five modes. Based on the decay tests, ζ=0.5%
critical damping is chosen.

= =b m ω ζ ζ k m¯ 2 ¯ 2 ( ¯ ¯ )i i i i i0, (19)

The structural model with n modes (n=5 here) can be used to
obtain the total deflection at any point along the structure:

∑=
=

w z t y t φ z( , ) ( ) ( ).
i

n

i istruct
1 (20)

The local accelerations (∂
∂

w
t

2
2 ) and curvatures (∂

∂
w

z

2
2 ) can then be used

to evaluate the sensitivity of measured quantities to uncertainties in the
independent inputs.

The external loads in this simplified model are based on the inertia
term from Morison's equation:

= +ρ C π DdF ( 1)
4

a dza
2

(21)

where ρ is the water density, Ca is an inertia coefficient, D is the wetted
diameter, and a is the wave particle acceleration. For the simple un-
certainty propagation model, linear Airy wave theory is used to find a.
The viscous drag forces are neglected because they are small and in
order to maintain a linear model. In the modal response model, the
Morison inertia load takes the form:

Fig. 11. Contributions to the experimental uncertainty for the bending moment
RAO, computed using SIMA. Top: first harmonic, middle: second harmonic,
bottom: third harmonic. Contributions uR (i.e. terms inside the summation of
Eq. (13)) are shown in the columns for each wave period, while the random
uncertainty sR (Eq. (11)) is shown as a dashed line (assumed to be equal for all
wave periods).

Fig. 12. Contributions to the experimental uncertainty in the 90th
percentile 30-minute bending moment response at z=−28.5 m
for long-crested waves with Hs=9 m and Tp=12.3 s, depending
on wave spectrum cut-off frequency in the simplified uncertainty
propagation model. Contributions to uR are shown as columns,
while sR is shown as a dashed line.
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−

F φ z ρ C π D¯ ( ) ( 1)
4

a dz,i h i a
0 2

(22)

with a for regular waves with amplitude ηa and frequency ω=2π/T in
water depth h given by:

= +a ω η k z h ωtcosh( ( ))
sinh(kh)

cos( ).a
2

(23)

According to this simple semi-analytical model, the first response
metric, the first harmonic bending moment RAO at zj=−28.5 m is
given by Eq. (24). Eq. (24) consists of the bending moment response
(from superposition of the modal responses to the distributed load in
Eq. (21)) divided by the incoming wave amplitude. The wave amplitude
ηa in the denominator is cancelled by the same term which appears in
the acceleration (Eq. (23)). The higher wave harmonic responses are
not captured by this model due to the simplifications in the excitation

Fig. 13. Selected pullout test results.

Fig. 14. Decay test results, model hit from the top. Left: mudline bending moment time series. Right: damping ratio calculated by logarithmic decrement.

Table 7
Eigenfrequencies of the experimental model, numerical model of the experi-
ments, and the reference prototype. Differences are computed between the
experimental model and the numerical model of the experiment.

Configuration Mode Exp. (Hz) Num. (Hz) Diff (%) Prototype (Hz)

Dry, mass at the top 1 0.26 0.27 2.7 N/A
2 1.09 1.03 5.2 N/A
3 4.06 3.85 5.0 N/A

Dry, aerodynamic
disk

1 0.24 0.24 0.9 N/A
2 1.00 0.91 8.9 N/A
3 2.69 2.27 15.8 N/A

Wet, aerodynamic
disk

1 0.22 0.24 8.2 0.26
2 0.85 0.85 2.9 1.07
3 2.40 2.11 11.8 3.22
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In Eq. (24), βi is the frequency ratio for each mode:

= =β ω
ω

ω m

k

¯
¯

.i
i

i

i (25)

Using the RAO in Eq. (24), the response spectrum in linear irregular
waves for this simple model is given by Eq. (26), where SM is the re-
sponse and Sw is the wave spectrum (see e.g. [38]).

=S ω S ω H ω( ) ( )| ( )|M w
2 (26)

For the present experiments, a TMA wave spectrum [33] is applied.
The TMA wave spectrum modifies the JONSWAP spectrum (SJ) for fi-
nite water depth. The JONSWAP spectrum is itself a modification of the
Pierson-Moskowitz spectrum (SPM). Following the notation from DNV
[27]:
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where ωp=2π/Tp is the peak spectral frequency, γ is the spectral peak
shape factor, σJ is a spectral width parameter, and Aγ is a normalizing
factor. The TMA spectrum is written as

=S ω S ω ϕ ω( ) ( ) ( ).w J TMA (29)

For intermediate water depth, following [33], the depth function is
computed in terms of the wave number k as in Eq. (30) (note that this
differs from the expression in [27]).

=
+

ϕ sinh (kh)
cosh (kh) kh coth kh

,TMA

2

2 (30)

with ω2= gk tanh(kh).
Assuming a Gaussian wave elevation, following [38], the response

which with probability p will not be exceeded over time T can be es-
timated as

⎜ ⎟= ⎛
⎝

⎞
⎠

+
ξ T σ

ν T
p

( ) 2 ln
(0)

ln(1/ )p x
x

(31)

In Eq. (31), the standard deviation σx can be found from the zeroth
spectral moment (Eq. (32)), while the zero upcrossing rate +ν (0)x can be
estimated based on the zeroth and second spectral moments. For the
response metric defined previously, T=30 min.

∫=
∞

σ S dωx M
2

0 (32)

=+ν
π

σ
σ

(0) 1
2x

x
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Fig. 15. Numerically and experimentally obtained dry mode shapes for modes 1-3. (Prototype modes are for wetted monopile).

Fig. 16. Numerically and experimentally obtained wet mode shapes for modes 1-3.
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Table 6 summarizes the variables which can be considered as inputs
to this simple model, as well as their interpretation with respect to the
measurement bias errors given in Table 5. The sensitivity to each of
these inputs can be computed by analytical derivation, combined with
discrete derivation where needed. Any variables which affect the modal
parameters, for example, require re-calculation of the modal para-
meters in addition to analytical derivations. For distributed parameters
(mass and stiffness), a uniform relative variation is assumed for sim-
plicity. This may, however, give a significant overestimation of the total
uncertainty.

The height (or amplitude) of regular waves does not affect the RAO
in this simple linear model, so this variable is not included in Table 6.
The regular wave height is instead considered as a part of the mea-
surement model.

To compute the total bias error in the measured response, we
combine the effects of the inputs in Table 6 with the effects of the es-
timated bias errors in the wave elevation and bending moment mea-
surements.

4.2.4. Total experimental uncertainty
Using the simplified model presented in Section 4.2.3, the experi-

mental uncertainty in the RAO for the first harmonic bending moment
is shown in Fig. 10. For each wave period, the contributions to the bias
error are shown by columns, while the random error (based on the few
available repetitions, taken to be constant across all periods) is shown
as a dashed line. The predicted baseline RAO for the simplified model

Fig. 17. Comparison of numerical and experimental mudline bending moment
RAO from the regular wave tests. Experimental results are slightly shifted along
the x-axis for readability. Error bars indicate total uncertainty as in Eq. (14).
The amplitude of the total uncertainty for the lowest frequency for the 3rd
harmonic using the simplified uncertainty analysis is approximately 2.5× 106

Nm/m3.

Fig. 18. Numerical and experimental time series of wave elevation (without model present) and mudline bending moment, H=7.5 m, T=12 s.

Fig. 19. Comparison of numerical and experimental 90th percentile 30-minute
bending moment response at z=−28.5 m for long-crested waves with Hs=9
m and Tp=12.3 s. Experimental results are shifted along the x-axis to increase
readability.
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was in good agreement with the experimental results, and the propa-
gated uncertainty could be computed directly. As shown, the bias errors
are generally larger than the random error. The most important com-
ponents of the bias error are the wave elevation, mass, and diameter.
The bias errors generally decrease for longer wave periods, and the
importance of the mass distribution becomes smaller for longer waves.
This is as expected, since the monopile response becomes increasingly
stiffness-dominated for long wave periods.

The total uncertainty for the regular wave results was also assessed
using the SIMA model. As far as possible, time domain simulations were
carried out considering the same variables as in Table 6. For the
damping, the stiffness-proportional structural damping was increased
(or decreased) by 20%. The wave elevation and period were modified
by directly modifying the input time series (by multiplicative factors).
The uncertainty in the mudline bending moment RAO for the first three
harmonics of the response is shown in Fig. 11. As shown, the first order
results are similar to those from the simplified model (Fig. 10). For the
second and third harmonics, large uncertainties can be seen in the wave
periods which produce resonant responses. This can also be seen in the
random error: the third harmonic random error is relatively large due to
the fact that the repeated tests were carried out for a period of 12 s.

The contributions to the uncertainty for the 90th percentile bending
moment are shown in a similar manner in Fig. 12 for two different cut-
off values for the irregular wave spectrum which is used in the sim-
plified uncertainty propagation model, and for the SIMA model (only
evaluated for Hs 9 m and Tp 12.3 s). The reason for using two different
values for the cut-off frequency in the simple model is that the cut-off
for linear waves ( =ω g H2 / scut ) suggested by Stansberg et al. [39] falls
almost exactly at the first natural frequency of the structure (without
considering errors in mass or stiffness). Since the parameter variations
corresponding to bias errors induce changes in the natural frequency, it
was judged to be more representative to allow the linear wave com-
ponents to either excite the first bending mode of the structure for all
variations, or to cut off the spectrum well below the natural frequency
such that no linear waves could excite the natural frequency. Using the
simplified model, the estimated 90th percentile bending moment was
overpredicted when the cut-off was set high (ωcut=1.8 rad/s, re-
presenting unrealistic linear wave excitation of the first natural fre-
quency) and underpredicted when the cut-off was set low (ωcut=1.2
rad/s, representing no excitation of the first natural frequency). The
computed bias errors were therefore in each case scaled by the same
factor needed to make the estimated 90th percentile bending moment
from the simple model match the first repetition of the first seed of the
experimental results.

As shown in Fig. 12, the selection of the cut-off frequency for the
spectrum in the simple model affects the importance of the mass,
stiffness, and damping terms, while the uncertainty due to diameter,
water depth, significant wave height, peak period, and moment mea-
surement is not dependent on the cut-off. This is as expected: without
the high-frequency components of the spectrum, the response is stiff-
ness-dominated such that the structural damping effects are negligible
and inertia effects are relatively small. In the comparisons between the
experimental and numerical results, the experimental uncertainty is
shown according to ωcut=1.8 rad/s as this yields a larger uncertainty.
As with the regular wave results, the uncertainty due to bias errors is
large compared to the uncertainty due to random errors, and the mass,
diameter, and wave elevation (through Hs) are important contributors.
Compared to the first order RAO, the 90th percentile bending moment
is more sensitive to the stiffness and damping: this is as expected, since
the higher frequency responses become more important. The con-
tributions to the experimental uncertainty estimated by the simplified
and SIMA models are similar except that the SIMA model suggests
larger importance of Hs and Tp for the bias errors. The inclusion of
higher order wave loads in the SIMA model may explain this difference.

5. Experimental and numerical results

5.1. Pullout tests

Prior to installing the model in the basin, pullout tests were carried
out on land in order to document the model's stiffness and check the
consistency of the moment and shear force measurements. These tests
were carried out by attaching a string to the model at a given height and
statically loading the string (through a pulley) with known weights. The
loads were incrementally increased and then decreased, such that all
load levels were measured twice except for the highest load.

The displacement of the model was measured at various locations
using potentiometric displacement sensors. These sensors are presumed
accurate to 0.01 mm (model scale), but the alignment of the sensor and
the applied load is more difficult to control. Considering a possible error
of± 5 degrees, error bars indicating±0.4% of the displacement are
indicated in Fig. 13, which shows the experimental and numerical re-
sults for one pullout test.

As shown in Fig. 13, the measured displacements and bending
moments agree well with the measured values. Larger deviations (not
shown) could be seen for the shear force.

Fig. 20. Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs=9 m and Tp=12.3 s, showing
extreme overprediction in realization 3.

E. Bachynski, et al. Applied Ocean Research 89 (2019) 96–114

108



5.2. Decay tests

Decay tests were carried out to identify the eigenfrequencies and
eigenmodes, and to quantify the different damping contributions. The
tests were carried out in both dry and wet configurations, and the dry
tests were carried out in two configurations: first with a simple mass at
the top, then with the aerodynamic drag disk which was used in the
tests with waves. During the decay tests, the model was either pulled
and released, or simply hit, at different vertical locations.

The time series of the mudline bending moment and the calculated
damping ratio for the first global bending mode (excited by hitting the
top of the tower) are shown in Fig. 14. As shown, the dry test with top
mass (no aerodynamic drag disk) shows primarily linear damping. This
damping is considered as structural damping and modelled through
stiffness-proportional Rayleigh damping in the numerical model. The
presence of the aerodynamic drag disk increases both the linear and the
quadratic damping. Comparing the two tests with the drag disk present,
the decay test in water shows additional linear damping compared to

the dry test. This damping is a combination of hydrodynamic radiation
damping and hydrodynamic linear damping due to attached boundary-
layer flow [40]. An earlier study with a pitching monopile [9] estimated
the radiation damping to be on the order of 1% of critical damping. For
the fully flexible monopile, the velocity of the wetted section of the
monopile is much lower than that of the pitching monopile. As a result,
both the radiation damping and the linear damping due to attached
boundary-layer flow are significantly smaller. Simplified estimates as-
suming a linear deformation of the monopile under sea level suggest
that the radiation damping contributes 0.16% of critical damping and
attached boundary-layer flow contributions 0.03% of critical damping.
This agrees with the observed increase in linear damping for the wet
decay test compared to the dry test. The damping in the model tests is
quite low compared to what might be expected for the prototype (1.7-
2.8%) [41–43].

The obtained eigenfrequencies of the numerical and experimental
models are summarized in Table 7. For reference, the corresponding
eigenfrequencies of the 5 MW basis design, after which the

Fig. 21. Comparison of time series of mudline bending moment, bandpass filtered about 1st eigenfrequency (top), 2nd eigenfrequency (middle), and remainder
(bottom). Hs=9 m a nd Tp=12.3 s, showing extreme overprediction in realization 3.
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experimental model was designed, are also given. For the prototype,
additional blade-related modes are present, but the selected frequencies
correspond to the first three monopile/tower bending modes. The dry
mode shapes are shown in Fig. 15. In the numerical model, when
changing from the mass to the disk, the center of gravity of the mass is
moved higher in addition to adding the inertia of the disk. This mod-
ification was made in order to capture the change in the first natural
frequency.

As shown, the first mode shape does not depend strongly on how the
RNA is modelled, while the second and third modes show greater
variation. For the dry tests, the frequencies from the simulation model
are within 6% of the measured values for the first two modes. The third
mode is in good agreement for the model with just mass at the top, but
the agreement is worse for the model with the disk. Qualitatively, the
first and second mode shapes appear similar for the simulation and
experimental models, but the accuracy of such a comparison is some-
what limited by the number of accelerometers along the model.

The wet mode shapes are shown in Fig. 16, while the frequencies are
given in Table 7. Compared to the dry simulation model, added mass is
included in the wet simulation model. The simulation model does not
show as large of a change in the first modal frequency when moving
from the dry to wet model. There are several possible reasons for the
discrepancy: there may be some entrapped water within the monopile
which is not captured by the numerical model, and the stiffness of the
attachment in the basin may be softer than the dry set-up. The second of
these two possibilities is judged to be most likely: an assumption that
the model was completely hollow and became filled with water would
have negligible impact on the natural frequency, while allowing the soil
spring to be 20% softer could explain the observed difference.

The damping in the numerical model is implemented based on the
experimental results: Rayleigh stiffness-proportional damping is used to
match the linear damping contributions, while quadratic drag coeffi-
cients on the drag disk were used to match the quadratic damping
contributions.

5.3. Regular wave tests

Fig. 17 compares the mudline bending moment RAO from the ex-
periments and the numerical simulations. Error bars for the first order
RAO indicate the total uncertainty as in Eq. (14), computed either using
the simplified model or the SIMA model. This total uncertainty could
further be increased to account for the expanded uncertainty [36],
however this is not included in the present work. For the second and
third order RAO, in the simplified uncertainty analysis, the total

uncertainty from the first order RAO is divided by the first order wave
amplitude (once or twice, respectively), in the same way that the
second and third harmonic RAOs are computed. In the SIMA un-
certainty analysis, the bias error in the second and third harmonic RAOs
is estimated directly from the simulations.

The simulations in SIMA capture the main trends in the results, but
do not match the experimental results within the estimated uncertainty
bands for all frequencies. For the first order RAO, there is no difference
in the numerical results between the different wave steepnesses. The
experimental RAO shows some discrepancies in the first order RAO,
especially for the 8 s wave. The 8 s wave corresponds approximately to
twice the natural period of the first bending mode of the monopile, and
there may be interactions among different frequencies in the load and
response. The numerical simulations are also seen to give poorer
agreement for the first order RAO for shorter wave periods. This
agreement might be improved by choosing the added mass and
damping coefficients for each wave period, or by applying the
MacCamy-Fuchs correction.

The main discrepancies in the second order RAO are for wave per-
iods 8 s and 9 s, which are approximately twice the natural period of the
first bending mode. The numerical simulations greatly overpredict the
response at these frequencies, indicating that either the second order
wave excitation is overpredicted, or the damping is underpredicted in
the simulations, or both. The second order wave excitation according to
Morison's equation with second order wave kinematics is expected to be
overpredicted [44,9]. There may additionally be a change in the hy-
drodynamic damping in waves compared to the damping in still water
which was estimated from the decay tests, but this effect is expected to
be minor compared to the overprediction of the loads. Numerical
models a1 and a2, which include some advective terms, show slightly
larger overestimation than model a3.

Similarly, the third order response is not captured accurately for
wave periods close to three times the first natural period of the struc-
ture. The uncertainty based on the simplified method is seen to be re-
latively large for the shortest periods, which is intuitively related to the
fact that these waves and the corresponding higher order bending
moments are quite small, and become difficult to measure experimen-
tally. The SIMA approach for estimating uncertainty gives larger un-
certainty in the second harmonic at 8 s and in the third harmonic at 12
and 14 s, which is related to the excitation of the first mode of the
structure.

Fig. 18 shows an example time series of the regular wave elevation
and the mudline bending moment. The selected case with T=12 s
shows good agreement in the first and second order responses, while

Fig. 22. Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs=9m and Tp=12.3 s, showing good
match for maxima. Repetition tests are included in the experimental results.
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the third order component is somewhat overestimated by the numerical
results. Even higher frequency components can be seen in the experi-
mental results.

5.4. Long-crested irregular wave tests

Fig. 19 compares the experimental and numerical prediction of the
second response metric, the 90th percentile 30-minute bending moment
response at z=−28.5 m for long-crested waves with Hs=9 m and
Tp=12.3 s (TMA spectrum). In Fig. 19, the metric is calculated based
on each of the experimental realizations, and also numerically using the
corresponding calibrated wave as input. For the first realization, two
repetition tests were carried out for the wave calibration, and each
measured calibrated wave was used as input to the numerical simula-
tions with the three different acceleration formulations, such that nine
numerical results are present for the first realization.

As shown in Fig. 19, the numerical simulations can sometimes, but
not always, predict the 90th percentile mudline bending moment
within the estimated experimental uncertainty. The estimated

uncertainty is very similar for the simplified and SIMA methods. Model
a1 consistently predicts the largest extreme, followed by model a2,
followed by model a3.

For realization 3, the discrepancy between simulated and predicted
results is particularly large. This discrepancy is related to two wave
events where the simulation tool, regardless of the acceleration for-
mulation, greatly overpredicts the response at the first bending mode.
One of these events in shown in Fig. 20. The simulation tool over-
predicts the response to the first of two waves, such that the numerical
model still has a significant resonant response when the second wave
excites the model even more. This can be seen more clearly in Fig. 21,
where the response is bandpass-filtered about the first eigenfrequency,
and then about the second eigenfrequency. The rest of the response is
then denoted “QS”, although this response includes both the quasi-
static contributions and all other contributions outside of the two first
natural frequencies (as in [20]). The overprediction of second order
wave loads may be a reason for large first mode response to the first
wave.

Additional examples of the time series of response are compared in

Fig. 23. Comparison of time series of mudline bending moment, bandpass filtered about 1st eigenfrequency (top), 2nd eigenfrequency (middle), and remainder
(bottom). Hs=9 m and Tp=12.3 s. Repetition tests are included in the experimental results.
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Figs. 22–24 . Fig. 22 shows an example of fairly good agreement be-
tween the model tests and the numerical model for two maxima. The
simulation does not capture the decay of the response at the first nat-
ural frequency, but both maxima are captured within the level of var-
iation seen in the repetition tests.

Fig. 23 shows the filtered responses for the same event as in Fig. 22.
Here, we can observe that the good agreement in the total response
does not necessarily correspond to good agreement in all frequency
components. For the first maximum (around 9070 s), the numerical
model captures both the first mode and quasi-static contributions fairly
well. For the second maximum (around 9110 s), the numerical model
overestimates the quasi-static component and underestimates the first
mode response. As expected, the numerical model does not have any
significant forcing near the second eigenfrequency, and therefore
cannot capture any of the response in that frequency range.

Fig. 24 shows the same event as in Fig. 6, and the numerical model
is seen to underestimate the bending moment, giving results well below
the range of results obtained through repetition tests. The numerical
model consistently underpredicts the response following a smaller wave
(near 8325 s), possibly due to wave breaking (based on the very sharp
elevation pattern), and continues to underpredict the response to the

larger waves around 8350 s. The elevation of the wave which excites
the response appears to be well captured by the second order approx-
imation, while several other waves in the same portion of the time
series are not.

These time series highlight the challenges of drawing event-based
conclusions for this very lightly damped model: the response is domi-
nated by the first mode, and the dynamics of the system prior to a
subsequent steep wave can be important for the response. While there is
significant spread among the experimental repetitions, there are clearly
events which this simple numerical model is able to capture within that
level of variation.

The 90th percentile 30-minute bending moment response at
z=−28.5 m was also estimated for additional long-crested wave
conditions, as shown in Fig. 25. The repeatability was assumed to be the
same as in the Hs=9 m and Tp=12.3 s when assessing the experi-
mental uncertainty using the simplified model. It should be noted that
not all of the conditions in Fig. 25 represent 50-year conditions; the
90th percentile 30-minute response is used as a comparison measure
but does not have any design relevance. A similar level of agreement is
seen for these sea states as in the previously discussed results.

Fig. 24. Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs=9m and Tp=12.3 s, showing poor
match for ringing event. Repetition tests are included in the experimental results.

Fig. 25. Comparison of numerical and experimental 90th percentile 30-minute bending moment response at z=−28.5 m for various long-crested waves. Results for
four independent realizations (seeds) are shown for Hs 4.6 m, Tp 9 s.
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6. Conclusions

Model tests of a fully flexible monopile were carried out at SINTEF
Ocean. The level of uncertainty in the model tests has been examined
and an engineering model based on a modified Morison's equation with
second order wave kinematics has been compared to the experimental
results, focusing particularly on a set of response metrics for which
experimental uncertainty was estimated.

The experimental results highlighted the resonant response of the
monopile when subjected to severe wave loads. The first mode of the
response, which could be excited primarily by second and third order
wave loads, dominated the response due to the low damping in the
system. As expected, the steep wave conditions gave large bending
moments at the mudline. Out of the tested sea states, the condition with
Hs=8.1 m and Tp=10 s gave the largest measured responses, but the
90th percentile 30 minute bending moment was similar for all of the
selected conditions along the 50-year contour with Hs > 8.0 m and 9
s<= Tp <=12.3 s.

The uncertainty analysis suggests that the random errors (estimated
through repetition tests) are of minor importance compared to bias
errors (estimated through a simplified analytical uncertainty propaga-
tion and through numerical simulations) for the estimation of RAOs and
statistical results. Based on a somewhat conservative estimate - local
variation applied as a global variation - the mass and stiffness of the
model itself were found to be important contributors to the bias error.
The wave elevation and model diameter, where the bias errors were
estimated more realistically, were also seen to be important.

The numerical results for the engineering model, considering three
formulations of the wave particle acceleration, showed that only some
of the response metrics were in agreement within the level of experi-
mental uncertainty. The numerical results including the advective
terms of the acceleration always predicted larger responses than the
numerical results without these terms. The reasons for discrepancies
between numerical and experimetnal results could include the over-
prediction of second order wave excitation in the numerical model,
incorrect estimation of the third order wave excitation, small differ-
ences in the natural period, and the challenges associated with the
extremely low damping in the physical model. Due to the low damping
of the model, the history of the response was very important for the
response in the largest waves. Future work should examine the use of
more accurate wave kinematics and higher order wave load formula-
tions for the long-crested and short-crested wave conditions, and new
experimental campaigns with additional sources of damping should be
considered.
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