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Optimal Hydropower Maintenance Scheduling in
Liberalized Markets

Arild Helseth,Member, IEEE, Marte Fodstad and Birger Mo

Abstract—Maintenance scheduling is an important and com-
plex task in hydropower systems. In a liberalized market,
the generation company will schedule maintenance periods to
maximize the expected profit. This paper describes a method
for hydropower maintenance scheduling suitable for a profit
maximizing, price-taking and risk neutral hydropower producer
selling energy and reserve capacity to separate markets. The
method uses Benders decomposition principle to coordinate
the timing of power plant maintenance with the medium-term
scheduling of the hydropower system, treating inflow to reservoirs
and prices for energy and reserve capacity as stochastic variables.

The proposed method is applied in a case study for a
Norwegian watercourse, and results, in terms of maintenance
schedules and computational performance, are presented and
discussed.

Index Terms—Hydroelectric power generation, Power gener-
ation economics, Integer programming, Linear programming,
Stochastic processes.

NOMENCLATURE

A. Index Sets

H Set of hydropower reservoirs/stations;
Sh Set of discharge segments for stationh;
K Set of time steps within the week;
T Set of decision stages;
TR Set of stages in maintenance interval;
N Set of nodes in scenario tree;
LM Set of MS Benders cuts;
LHn Set of HPS Benders cuts for noden;
LHp Set of HPS Benders cuts for price clusterp;
Dn Set of descendant nodes fromn, includingn;
DS

nℓ Set of descendant nodes fromn sampled in
backward iterationℓ;

DS
0ℓ Set of nodes sampled in backward iterationℓ;

Ωh Set of reservoirs upstream reservoirh.

B. Parameters

T (n) Lookup table giving time stage for noden;
P (n) Lookup table giving price cluster for noden;
Ḡh Max. capacity in stationh, in MW;
V̄kh,Vkh Max./Min. limit for reservoirh, in Mm3;
C̄h Max. capacity sales from stationh, in MW;
τk Duration of time stepk, in hours;
τ̃k Relative duration of time stepk, fraction;
ζEk Energy price scaling factor for time stepk;

The authors are affiliated with SINTEF Energy Research, Trondheim,
Norway (e-mail: arild.helseth@sintef.no)

This work was funded by The Research Council of Norway Project No.
228731/E20

ζCk Capacity price scaling factor for time stepk;
ηhs,ηs Energy equivalent for (stationh and) discharge

segments, in MWh/Mm3;
πa(n) Coefficient for reservoir level for nodea(n), in

e/Mm3;
πnhℓ,πnℓ Coefficient for reservoir level for noden,

(reservoirh) and iterationℓ, in e/Mm3;
βnℓ Right-hand side for HPS Benders cut at node

n and iterationℓ, in e;
βℓ Right-hand side for MS Benders cut for itera-

tion ℓ, in e;
γnhℓ,γnℓ,γn Coefficient for maintenance for HPS Benders

cuts at noden (reservoirh and iterationℓ), in
e;

γhtℓ,γtℓ Coefficient for maintenance for MS Benders
cuts (for reservoirh), staget and iterationℓ,
in e;

Q̄D
s Max. discharge for segments, in Mm3;

Q̄B
kh Max. bypass for planth in time stepk, in Mm3;

K Last time step in week;
D Maintenance duration, weeks;
ǫ Convergence tolerance, ine;
ΘM Optimal solution of MS problem, ine;
ΘH

n Optimal solution of HPS subproblem at node
n, in e;

Pn Probability of scenario tree noden;
Pn

′ |n Probability of noden
′

conditioned on noden.

C. Stochastic Variables

In Inflow at noden, in Mm3;
Inh Sum weekly inflow to reservoirh at noden,

in Mm3;
λn Energy price at noden, in e/MWh;
λE
p Weekly average energy price for clusterp, in

e/MWh;
λC
p Weekly average reserve capacity for clusterp,

in e/MW.

D. Decision Variables

α Future expected profit for the MS problem, in
e;

αn Future expected profit for the HPS problem
seen from noden, in e;

xt Decision on maintenance in weekt, binary;
ekh Generated electricity in time stepk for station

h, in MWh;
en Generated electricity for noden, in MWh;
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ckh Allocated capacity in time stepk for stationh,
in MW;

vkh Volume in time stepk for reservoirh, in Mm3;
vn Volume in noden, in Mm3;
qDkhs Discharge in time stepk through stationh at

segments, in Mm3;
qDsn Discharge at segments in noden, in Mm3;
qSkh Spillage in time stepk from reservoirh, in

Mm3;
qSn Spillage in noden, in Mm3;
qBkh Bypass in time stepk from reservoirh, in

Mm3;
zht,zt Auxiliary variable, continuous;
Φ(. . .) End value function, ine.

I. I NTRODUCTION

A. Background and Motivation

The flexibility and controllability of hydropower play an
important role for balancing the unpredictable generation from
intermittent generation technologies, such as wind and solar
power, in many power systems throughout the world. Con-
sequently, the reliability of hydropower facilities is of great
importance for secure system operation, and these facilities
should be maintained to provide an adequate level of reliabil-
ity. Maintenance can be categorized as corrective or preventive.
Corrective maintenance is performed after a failure, whereas
preventive maintenance is performed at predetermined periods
and is intended to reduce the probability of failure, prolong the
expected useful lifetime of the system components and ensure
continuous operation at acceptable efficiency levels.

This work concerns the scheduling of preventive power
plant maintenance in hydropower systems in a liberalized
market context. The scheduling consists of finding the optimal
timing of maintenance for a predefined set of plants. We study
the problem from an economic perspective, assuming a prede-
fined requirement for maintenance within the planning period.
In order to minimize the economic impact, it is important to
carefully plan when the plants are maintained. The lost revenue
from taking a hydropower plant out for maintenance depends
on the future market prices and inflow which are uncertain
at the time of planning the maintenance. During maintenance
the plants will be unavailable, possibly leading to loss of water
or profit losses because sales of energy and reserve capacity
has to be moved to periods with lower prices. Thus, there is
clearly a need to integrate the maintenance scheduling with the
process of finding an optimal hydropower dispatch strategy.

B. Literature Review

Both hydropower scheduling [1], [2] and maintenance
scheduling [3] are thoroughly addressed in the literature. The
early works on scheduling of hydropower reservoirs used
the principles of stochastic dynamic programming (SDP), see
e.g. [4]. SDP decomposes the multi-stage planning problem
into a sequence of single-stage subproblems that can be solved
by backward induction. The major drawback of the SDP
method is that the state variables (typically reservoir volumes)
need to be discretized, so the overall problem size becomes

computationally intractable when considering systems with
many reservoirs. The stochastic dual dynamic programming
(SDDP) introduced in [5] allows solving the scheduling prob-
lem without discretizing the state variables, and is therefore
computationally tractable for systems with multiple reservoirs.
The SDDP algorithm can be classified as a sampling-based
variant of multi-stage Benders decomposition method [6],
requiring a convex problem formulation. Extensions of the
SDDP algorithm have been frequently reported in recent
literature, see e.g. [7]–[12].

Several methodological approaches have been presented
to approach the general power plant preventive maintenance
scheduling problem, see e.g. [3], [13] for an overview. The
work in [14] seems like a starting point for the use of mixed
integer linear programming (MILP) for optimal maintenance
scheduling. In [15] the total operating costs were minimized
over an operational planning period of several years while
meeting thermal unit maintenance and system constraints. The
authors used Benders decomposition, fixing the maintenance
schedule in an MILP master problem and obtained cuts by
evaluating continuous nonlinear subproblems.

Maintenance coordination schemes between the system op-
erator and the generation companies were proposed in [16],
[17] for the purpose of maximizing producer’s profits while
achieving a sufficient level of reliability. These coordination
schemes resemble maintenance scheduling in a competitive
market context.

Relatively few works have addressed maintenance schedul-
ing in hydropower-dominated systems. In [18] an integrated
approach for maintenance and refurbishment planning in hy-
dropower systems based on SDP and heuristics was presented.
In [13] a multi-stage Benders decomposition approach was
presented to solve the power plant maintenance scheduling
problem considering multiple generation technologies and
uncertainty in demand. However, hydropower details such as
hydro storages and inflow uncertainties, were not considered.
Optimal maintenance scheduling for thermal and hydropower
plants under uncertainty was also discussed in [19], but the
details of the mathematical model were not presented. In [20]
the maintenance scheduling was embedded in a determinis-
tic, continuous and nonlinear hydrothermal scheduling model
solved by an evolutionary algorithm.

The maintenance scheduling problem has similarities to
the expansion planning problem, in the sense that discrete
expansion decisions are coordinated with the system opera-
tion. Some approaches integrating expansion and operational
planning in a fundamental market modeling context using the
SDDP algorithm are presented in [21]–[23].

C. Proposed Method and Contributions

In this paper we present a method for hydropower plant
maintenance scheduling (HPMS) by coordinating maintenance
scheduling (MS) and detailed hydropower scheduling (HPS)
by the use of Benders decomposition [24]. First, the MS
problem is solved as an MILP problem to provide a trial
maintenance schedule to be considered in the HPS. Sub-
sequently, the HPS problem is evaluated using multi-stage
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Benders decomposition, where an outer approximation of a
convex future expected profit function is constructed for each
time stage by adding Benders cuts. Two different sets of
Benders cuts are built iteratively, one to decompose the multi-
stage linear HPS problem and one to coordinate the MS and
HPS problems.

The presented HPMS method constitutes a novel extension
to previous works in two directions. Firstly, we extend the
multi-stage Benders decomposition approach presented in [13]
by allowing a detailed representation of the hydropower sys-
tem and the relevant uncertainties in the HPMS problem.
Furthermore, we elaborate on how the Benders cuts used in
the HPS should be augmented to incorporate information about
the maintenance schedule, and thus being valid cuts within the
decomposition algorithm. Secondly, the HPS part of the prob-
lem is extended using a combined SDP and SDDP algorithm
and treating inflow to reservoirs and prices for energy and
reserve capacity as stochastic variables. The resulting model
is suitable for HPMS in large and complex watercourses.

D. Paper Structure

The paper is outlined as follows. In Section II the basic
principles of the HPMS scheduling method are described,
using multi-stage Benders decomposition to solve the HPS
problem. Subsequently, a more detailed mathematical descrip-
tion of the HPS problem and the combined SDP and SDDP
solution strategy is provided in Section III. The proposed
method in Section III is applied in a case study in Section IV
where the optimal power plant maintenance schedule for
a Norwegian watercourse is found. Finally, conclusions are
drawn in Section V.

II. D ECOMPOSITIONPRINCIPLE

The basics of the HPMS method are explained in the follow-
ing, emphasizing on the decomposition principle. Consider a
producer operating a single hydropower plant with an upstream
reservoir, aiming to schedule maintenance for the plant within
the periodt ∈ TR. The maintenance scheduling is coordinated
with the scheduling of hydropower within the operational
planning periodt ∈ T , whereTR ⊆ T . The objective of
the HPMS is to find the economically optimal maintenance
schedule while maximizing the expected profit from sales
to the energy market. Note that we keep the HPS model
formulation simplified in this section to emphasize on the
decomposition principle. A more realistic HPS model, suitable
for multiple reservoirs and sales of both energy and reserve
capacity, will be introduced in Section III. It is assumed that
the hydropower producer is a risk neutral price-taker. This is
normally considered a valid assumption in mature liberalized
markets such as the Nordic, where risk management utilizing
financial instruments is typically done separately from the
hydropower scheduling. The need for maintenance is treated as
a predefined requirement. Moreover, we assume that the cost
of maintenance is independent of the time of year, and can
thus be disregarded in the scheduling since the contribution is
constant.

Fig. 1. Illustration of coordination between maintenance scheduling (MS)
and hydropower scheduling (HPS). In each iterationℓ trial schedulesx∗

t
are

sent from the MS to the HPS, and Benders cut coefficientsγtℓ andβℓ from
the HPS to the MS.

Assume that the relevant uncertainties are energy prices
and inflow to the reservoir, and that these uncertainties are
described in a scenario tree, as illustrated Fig. 1. The scenario
tree shown in Fig. 1 comprises 4 decision stagest1-t4 and
15 nodes (circles)n ∈ N . There is one root node at stage
t1 which we index0, and eight leaf nodes at staget4. Except
from the root node, each noden has one unique ancestor node
a(n) and a set ofall descendant nodesDn. We let the set
Dn also include noden itself. The decision stage of noden
is denotedT (n). Maintenance is allowed inTR = {t2, t3},
and the maintenance decision is made in the root node. All
nodes involve decisions on how to operate the hydropower
plant, as described in Section II-A. Note that we do not pose
strict requirements to the construction of the scenario tree here.
The decomposition principle outlined in this Section will be
embedded in a hybrid SDP/SDDP approach in Section III, and
the use of sampling within this approach is briefly discussed
in Sections III and IV.

A. Problem Formulation

The HPMS problem can be formulated as a multi-stage
stochastic MILP problem on extensive form as in (1). The
objective in (1a) is to maximize the expected revenue from
energy sales. For each node, the water balance for the hydro
reservoir is formulated in (1b) and the hydropower generation
in (1c). In the case of the root nodeva(n) equals the initial
reservoir volume. Water discharge through the plant is mod-
eled using one variableqDsn per discharge segments ∈ S.
These segments will be used in decreasing order according to
their energy equivalentηs, provided thatηs decreases withs.

The maintenance schedule is represented by binary variables
xt, indicating whether the plant is being maintained (xt=1) or
not (xt=0) in decision staget. We require that maintenance
should be carried out once over a period ofD decision stages
in (1d), and that these stages should be consecutive in (1e).
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The boundary conditionsxt = 0; ∀t ≤ 0, ∀t > |TR| must
be specified to ensure consecutive maintenance periods. The
formulation in (1e) is identical to that in [16] (Eq. 5) and
[17] (Eq. 6), but could be formulated differently to serve
the same purpose, see e.g. [13]. One could further constrain
the maintenance schedule to reflect technical and legislative
constraints that represents the problem at hand, as discussed
e.g. in [13], [16].

Moreover, one could also allow maintenance on the reser-
voir, e.g. by forcing the reservoir level below a certain limit
for a given period of time. However, such extensions are
considered out of scope for this presentation. Note that the
maintenance schedulext take one common value for all nodes
in decision staget, implying that the decision is taken at the
root node in staget1. If maintenance is chosen, discharge
through the plant is prohibited in (1f).

∑

n∈N

max

{

Pnλnen

}

(1a)

vn +
∑

s∈S

qDsn + qSn − va(n) = In ∀n ∈ N (1b)

en −
∑

s∈S

ηsq
D
sn = 0 ∀n ∈ N (1c)

∑

t∈TR

xt = D (1d)

xt − xt−1 ≤ xt+D−1 ∀t ∈ TR (1e)

0 ≤ qDsn ≤ (1− xT (n))Q̄
D
s ∀s ∈ S, ∀n ∈ N (1f)

0 ≤ vn ≤ V̄ ∀n ∈ N (1g)

en, q
S
n ∈ R

+ ∀n ∈ N (1h)

xt ∈ {0, 1} ∀t ∈ TR (1i)

B. Problem Decomposition

Although the problem in (1) can be solved directly, practical
HPS methods often rely on decomposition approaches to effi-
ciently deal with large scenario trees [25]. We now decompose
the HPMS problem in (1) in an MS problem representing the
root node binary decisions and an HPS problem representing
the continuous variables at all nodes. We apply Benders
decomposition principle to coordinate the solution of the MS
and HPS problems, as illustrated in Fig. 1. Being an LP
problem, the HPS problem itself can be decomposed by node,
and efficiently solved by Benders decomposition, as described
in [25]–[27].

The MS and HPS problems are coordinated iteratively
through forward and backward iterations to arrive at an optimal
solution for the HPMS problem, as described in the following,
and illustrated in Fig. 2. Note that we have included the
iteration counterℓ in Fig. 2, but we generally omit this counter
in the text for notational convenience.

1) Forward Iteration: In a forward iteration, the relaxed
MILP MS problem in (2) is solved first, indicated by box
1© in Fig. 2. The future expected profit from operating the
hydropower system in the period of analysesT is represented
by α in (2a).α is constrained by a set of Benders cuts in (2d)

Fig. 2. Flow chart of the decomposition approach to solve the HPMS problem.

that are added iteratively. We refer to the cuts in (2d) as MS
Benders cuts. The cut coefficientsγtℓ andβℓ are obtained by
evaluating the HPS problem, as indicated in Fig. 1, and further
described in Section II-B2.

ΘM = maxα (2a)
∑

t∈TR

xt = D (2b)

xt − xt−1 ≤ xt+D−1 ∀t ∈ TR (2c)

α−
∑

t∈TR

γtℓxt ≤ βℓ ∀ℓ ∈ LM (2d)

α ∈ R
+, xt ∈ {0, 1} ∀t ∈ TR (2e)

From the solution of the MS problem we obtain a trial
maintenance schedulex∗

t and the upper boundα∗. The
forward iteration is continued by a forward pass visiting
all nodesn ∈ N in the HPS problem, indicated by box2©
in Fig. 2. The trial schedulex∗

T (n) enters the nodal HPS
subproblems as a parameter. An HPS subproblem at a node
n receiving a schedulex∗

T (n) is formulated as:
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ΘH
n = max

{

λnen + αn

}

(3a)

vn +
∑

s∈S

qDsn + qSn = va(n) + In ← πa(n) (3b)

en −
∑

s∈S

ηsq
D
sn = 0 (3c)

zT (n) = x∗
T (n) ← γn (3d)

0 ≤ qDsn ≤ (1 − zT (n))Q̄
D
s , ∀s ∈ S (3e)

αn − πnℓvn

≤ βnℓ +
∑

n
′∈Dn\n

Pn
′ |nγn′

ℓx
∗
T (n′ )

, ℓ ∈ LHn (3f)

αn, en, q
S
n , zT (n) ∈ R

+ (3g)

0 ≤ vn ≤ V̄ (3h)

Dual values extracted from (3) are indicated with an arrow
(←). At each node the immediate profit comes from selling
energyen at a priceλn. The immediate profit is balanced
against the future expected profitαn in (3a), constrained by
Benders cuts in (3f). We refer to the cuts in (3f) as HPS Ben-
ders cuts, and their construction is described in Section II-B2.
The sensitivity of the objective to a change inx∗

t is denotedγn.
In (3d) a continuous variablezt copies the proposed schedule,
and the dual valueγn can be directly obtained. The variable
zt is then used to define whether discharge through the plant
should be allowed in (3e).

Once the forward iteration has completed, convergence can
be checked. The solution strategy decomposes the stochastic
optimization problem in (1) into a first-stage MILP problem
and a multi-stage HPS problem formulated as LP. Assuming
that the problem has relatively complete recourse, the de-
composition converges within a finite number of iterations at
an arbitrary convergence toleranceǫ, according to [24], [28].
Convergence is obtained whenα∗ −

∑

n∈N Pnλne
∗
n ≤ ǫ. As

long as convergence has not been reached, a new backward
iteration is initiated.

2) Backward Iteration: A backward iteration involves
traversing the tree from the leaf nodes to the root node and
solving the nodal HPS problems, see boxes3© and 4© in Fig. 2.
HPS Benders cuts in (3f) are created for all non-leaf nodes and
added to the setLHn used in (3f). Both the initial reservoir level
v∗a(n) and the maintenance decisionsx∗

T (n′ )
, ∀n

′

∈ Dn are
state variables and should be represented in the HPS Benders
cuts. The incorporation of the root node maintenance decisions
in the state space allows HPS Benders cuts that are constructed
for different suggested maintenance schedules to be shared at
each node. This state space augmentation has similarities to the
multi-lag Benders decomposition approach presented in [29].

An HPS Benders cut contribution obtained from the sub-
problem solved at noden in (3) and passed backward to node
a(n) will take the form:

αa(n)−πa(n)

(

va(n) − v∗a(n)

)

−
∑

n
′∈Dn

Pn
′ |nγn′

(

xT (n′ ) − x∗
T (n′ )

)

≤ ΘH,∗
n (4)

where va(n) and xT (n′ ), ∀n
′

∈ Dn are state variables and
the corresponding starred variables are the values set in the
forward iteration. After reordering the contribution can be
formulated as:

αa(n) − πa(n)va(n) −
∑

n
′∈Dn

Pn
′ |nγn′xT (n′ ) ≤ βa(n) (5)

whereβa(n) = ΘH,∗
n − πa(n)v

∗
a(n)−

∑

n
′∈Dn

Pn
′ |nγn′x∗

T (n′ )
.

The proposed maintenance schedule in the current iteration
enters the right-hand sideβa(n). The HPS Benders cut in
(3f) are constructed by averaging the contributions of type (5)
for all immediate descendant (or children) nodes. When used
later, the valuesxT (n′ ), ∀n

′

∈ Dn are known and the term
∑

n
′∈Dn

Pn
′ |nγn′

ℓxT (n′ ) in (5) can be moved to the right-
hand side as in (3f).

The cut coefficientsγtℓ andβℓ used in the MS Benders cut
(2d) are accumulated throughout the backward iteration as in
(6) and (7), whereΘH,∗

0 is the HPS root-node solution.

γtℓ =
∑

n∈N :T (n)=t

Pnγnℓ ∀t ∈ TR (6)

βℓ = ΘH,∗
0 −

∑

t∈TR

γtℓx
∗
t (7)

Note that the valueγn takes in (3d), strongly depends on
the reservoir storage capacity and the expected inflow. In case
there is no storage,γn will reflect the energy priceλn, taking
the marginal efficiencyηs into account. In the presence of
storage capacity, the value ofγn is reduced compared to the
no-storage case according to the expected marginal value of
water. That is, the economic loss of maintenance depends on
the system’s ability to save water across decision stages.

The methodology presented in this section will become
computationally intractable for systems with many decision
stages and fine-grained representation of uncertainty. In Sec-
tion III we elaborate on how the decomposition principle
can be embedded in a hybrid SDP/SDDP approach, and thus
become computationally tractable for large-scale hydropower
systems.

III. H YDROPOWERSCHEDULING MODEL

In this section we extend the HPS part of the HPMS
formulation presented in Section II to realistically deal with
the scheduling of larger watercourses. Moreover, we extend the
scope by allowing sales of both energy and reserve capacity,
assuming that the producer is a price-taker in both markets.
We consider inflow, energy price and reserve capacity price
as stochastic variables. We assume that the system is confined
in a geographical area that can be covered by a single power
balance equation (without internal transmission bottlenecks).
Thus, the hydropower producer can optimize the operation
of a single watercourse indvidually without including other
generation or demand obligations that are part of its portfolio.
The length of a decision period is one week.
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A hybrid SDP/SDDP approach is applied to decompose the
overall HPS problem, see e.g. [30], [31] for further details.
The price processes are represented in a Markov chain using
discrete states (price clusters), and embedded in the SDDP
algorithm as in ordinary dynamic programming. The weekly
price processes are assumed independent of the inflow. Note
that the combined SDP/SDDP algorithm generally requires
the stochastic processes being modelled in the SDP part to
be independent of those modelled in the SDDP part. In our
experience, for a regional system (e.g. a single watercourse
within a price zone) it is difficult to find a significant cor-
relation between local inflow changes and the corresponding
average spot price change. The HPS Benders cuts can be
shared among different system states within a given week
and price cluster, according to [32], to efficiently reduce the
computational effort.

Since only a sample of the “true” scenario tree is visited in
the forward and backward iterations, the construction of HPS
and MS Benders cuts differs slightly from what was presented
in Section II.

A. HPS Solution Strategy

The HPS solution strategy is briefly described below, em-
phasizing on the novel parts.

1) Forward Iteration: In the HPMS forward iteration the
root node MS problem described in (2) is solved first to obtain
a trial maintenance schedule. An upper bound is obtained
from the solution of the MS problem. Subsequently, a set
of scenarios is sampled for the stochastic variables. Weekly
inflows are sampled from a lag-1 autoregressive model, and
weekly average energy and reserve capacity prices are sampled
based on the conditional transition probabilities in a discrete
Markov chain, as described in [10]. For a given noden, the
HPS subproblem described in Section III-B is solved. The
simulated state at the end of the week is passed forward as
an initial state for the next week. The forward simulation
gives an updated set of state trajectories and an expected profit
for the sampled scenarios, which serves as the lower bound.
Convergence can formally be declared when the upper bound
is within a predefined confidence interval of the lower bound.

2) Backward Iteration: HPS Benders cuts at the end of the
planning horizont = |T | can be obtained from a predefined
final value functionΦ. For t = |T | − 1 · · · 1 in the backward
iteration one loops through each discrete price cluster and each
state trajectory obtained from the forward iteration. Starting
from the state at the end of weekt − 1, for each realization
of stochastic variables one computes the optimal operation for
weekt by solving (10). From the sensitivities of the objective
function to the initial state values, new HPS Benders cuts at
the end of weekt− 1 are obtained.

We denote all scenario tree nodes visited in a backward
iteration ℓ as n ∈ DS

0ℓ, i.e., sampled descendant nodes seen
from the root node. For ease of formulation we include the
Markov chain representation of market prices in the scenario
tree notation, so that the setDS

0ℓ comprises all price clusters in
the discrete Markov chain in addition to the sampled inflows.

The MS Benders cut coefficientsγhtℓ andβℓ used in (2d) are
obtained after one backward iteration as probability weighted
averages over all sampled scenariosn ∈ DS

0ℓ.

γhtℓ =
∑

n∈DS
0ℓ
:T (n)=t

Pnγnhℓ ∀t ∈ TR, ∀h ∈ H (8)

βℓ = ΘH
0 −

∑

t∈TR

γhtℓx
∗
ht (9)

B. HPS Subproblem

The weekly HPS subproblem is formulated as an LP prob-
lem described in (10), which is an extension of (3). The
formulation is similar to that used in [33].

For a given noden, price clusterp = P (n) and weekt =
T (n) the realization of weekly inflowsInh, the weekly average
energy priceλE

p , and the weekly average reserve capacity price
λC
p are known. The amount of energy sold to the spot market

and capacity to the reserve market is optimized for the whole
water course.

ΘH
n = max

{

∑

k∈K

∑

h∈H

(

ζEk λE
p ekh + ζCk λC

p ckh

)

+ αn

}

(10a)

vkh +
∑

s∈Sh

qDkhs + qSkh + qBkh− (10b)

∑

j∈Ωh

(

∑

s∈Sj

qDkjs + qSkj + qBkj

)

= vk−1,h + τ̃kInh ∀k, h

ekh −
∑

s∈Sh

ηhsq
D
khs = 0 ∀k, h (10c)

ckh −
1

τk
ekh ≤ 0∀k, h (10d)

ckh +
1

τk
ekh ≤ Ḡh∀k, h (10e)

vkh −
τk

ηhS
ckh ≥ Vkh∀k, h (10f)

αn −
∑

h∈H

πnhℓvkh (10g)

≤ βnℓ +
∑

n
′∈DS

nℓ
\n

Pn
′ |nγn′

hℓx
∗
T (n′ )

, k = K, ℓ ∈ LHp

zht = x∗
ht ← γnh (10h)

0 ≤qDkhs ≤ (1− zht)Q̄
D
khs ∀k, h ∀s ∈ Sh (10i)

Vkh ≤ vkh ≤ V̄kh ∀k, h (10j)

0 ≤qBkh ≤ Q̄B
kh ∀k, h (10k)

0 ≤ ckh ≤ C̄h ∀k, h (10l)

αn, ekh, q
S
kh, zht ∈ R

+ (10m)

The objective (10a) is to maximize the profit from both
markets, subject to constraints (10b-10m). Energy and reserve
capacity prices corresponding to a specific time stepk within
the week are found by scaling the weekly average values by
predefined expected profiles.

The water balance equation for a specific reservoirh and
time stepk is formulated in (10b).
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Electricity generationekh in (10c) and capacity allocation
ckh in (10d)-(10e) are determined per plant. The generation
in (10c) can be seen as a simplified representation of the
generally nonconvex hydropower production function. See
e.g. [34], [35] for more detailed representations.

Allocated capacity should be spinning and symmetric. The
spinning requirement is taken care of in (10d), ensuring that a
plant cannot offer more reserve capacity than what is already
spinning. Eqn. (10e) ensures that the generation capacity sold
in the two markets does not exceed the plant’s installed
capacity. Eqn. (10f) ensures that there is enough water in
the reservoir to deliver up-regulation reserves at the lowest
efficiencyηhS for the entire time period in question.

The profit obtained for the current week is balanced against
the future expected profitαn. This variable is constrained by
HPS Benders cuts in (10g). The HPS Benders cuts should
relate to all state variables, i.e., decision and stochastic vari-
ables that define the system state passed on to the subsequent
week. Although not explicitly represented here, it should be
noted that inflow is also a state variable due to the time
coupling in the autoregressive inflow model. As inflow is
not a decision variable, its contribution to the cut will enter
the right-hand side in (10g), as described in [31]. The HPS
Benders cuts are built and stored for each price cluster in a set
LHp in each backward iteration of the algorithm. In (10g) the
cut coefficientsγn′

hℓ obtained from (10h) are averaged over
all descendant nodes, e.g. combinations of descendant price
clusters and sampled inflow nodes. The setDS

nℓ contains all
descendant nodes seen fromn that are visited in a particular
backward iterationℓ.

It is important that the HPS subproblem has a feasible
solution for all possible states, and thereby ensure that the
HPMS problem has relatively complete recourse. During a
maintenance period for a given station, upstream reservoirs
may experience a constrained release capacity. In the HPS
subpoblem described above, the spillage variableqSkh has
no defined upper bound and will therefore serve as a slack
variable in case both the dischargeqDkhs and bypassqBkh reach
their upper bounds in (10i) and (10k), respectively.

IV. CASE STUDY

A. Case Description

A computer model was established implementing the
HPMS algorithm described in Section II using the combined
SDP/SDDP algorithm described in Section III to solve the HPS
problem. The model was tested on a Norwegian watercourse
comprising 7 hydropower reservoirs with corresponding power
plants, with a total capacity of 986 MW. An illustration of the
topology and specification of some technical characteristics is
provided in Fig. 3. For each reservoir shown in the figure the
average annual inflow and storage capacity are stated, both in
Mm3. Each power plant is identified with a number and its
installed capacity in MW.

A scheduling horizon of 2 years was applied with weekly
decision stages. Each week was divided into 21 time steps
allowing for energy and reserve capacity sales. Each plant is
allowed to commit a maximum of 10 % of its installed capacity
to the reserve market.

Fig. 3. Watercourse topology and technical data.

Conceptually, one could run each case with a scheduling
horizon long enough to make the impact of end-valuation of
reservoirs negligible. In order to obtain acceptable computa-
tion times, we adopted an approximate and practical approach.
A set of cuts of type (10g) was used to ensure that state
variables at the end of the scheduling horizon were valuated.
These cuts were obtained as a result of a few initial model
runs for case A with a time horizon of four years, and the
same set of cuts was used for all simulated cases.

Energy and reserve capacity price scenarios were obtained
from the EMPS model, which is a fundamental hydrothermal
market model [36]. The EMPS model was run on a system
description of the Nordic power system, using 80 historical
inflow years, and with reserve capacity constraints per price
zone. We extracted 80 energy and reserve capacity price sce-
narios from the simulation, and from these scenarios a discrete
price model comprising 6 price nodes per stage (3 energy
and 2 capacity price clusters) was identified by following the
approach described in [10]. The lag-1 autoregressive inflow
model was fitted using a single inflow series comprising 80
historical years, and the model error was sampled from a
normal distribution.

A total of 200 scenarios of inflow and prices were re-
sampled in each forward iteration, and 12 discrete inflow error
terms were sampled at each stage in the backward iterations in
the SDDP-part of the algorithm. A total of200×104 = 20800
HPS subproblems are solved in the forward iteration and
200 × 12 × 3 × 104 = 748800 in the backward iteration
when considering 3 price clusters. In general, increasing the
number of scenarios in the forward iteration will improve the
convergence properties at the cost of higher computational
effort in each iteration.

The model was implemented inC++, using the Gurobi
7.5 library [37] for solution of both the MILP and the LP
problems. All tests were carried out on an Intel Core i7-
4940MX processor with 3.30 GHz and 32 GB RAM.

We ran 4 cases A-D, see Table I separating between whether
maintenance scheduling was considered and whether sales of
reserve capacity was allowed. A maintenance period of 3 con-
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secutive weeks was required, lettingTR comprise weeks 15-
45. In all cases the simultaneous scheduling of maintenance in
two plants are considered, which to our knowledge represents
a realistic two-year case study. The MS problem comprises
1 continuous and 62 binary variables, and is constrained by
64 linear constraints without counting the MS Benders cuts.
The HPS subproblem comprises 1247 continuous variables and
1078 linear constraints without counting the HPS Benders cuts.
The total computation times are indicated in Table I. Although
not exploited in this work, the algorithm is well suited for
parallel processing, see e.g. [38].

TABLE I
SIMULATED CASES.

Maint. Time
Case Included Plants Markets Iter. [hours]

A X 4,7 Energy + Capacity 340 168
B X 4,7 Energy 323 81
C - - Energy + Capacity 40 20
D X 6,7 Energy + Capacity 520 263

B. Results

Both cases A and B concludes on co-scheduling the main-
tenance of plants 4 and 7. In case A the optimal maintenance
period for both plants are in weeks 42-44, whereas the optimal
schedule is weeks 29-31 for both plants in case B. The
higher reserve capacity prices in the summer period makes
it profitable to postpone maintenance to the autumn in case
A. The serial connection between plants 4 and 7 explains
why it is profitable to co-schedule maintenance for these two
plants. A three-week maintenance period at plant 4 leads to
loss of water due to the large inflow and upstream discharge
capacity compared to the reservoir size. Thus, it is wise to
avoid discharging from plant 7 during the maintenance period
of plant 4. When testing other plant combinations, e.g. in case
D for plants 6 and 7 which are arranged parallel, co-scheduling
of maintenance is no longer optimal.

The convergence characteristic of the algorithm is shown
in Fig. 4, comparing the upper bounds for all cases for
the first 100 iterations. The lower bound for case B is also
included to indicate that the cost gap gradually closes as
the iteration number increases. From a theoretical point of
view, the algorithm should converge within a pre-defined
confidence interval, as discussed in [39]. However, through
initial testing on a small-scale system, we found that this
convergence criterion was sensitive to the specific case and
the number of scenarios, inflow error terms and price clusters
used. Thus, we used the stabilization of the upper bound as the
convergence criterion. As discussed in [40], the stabilization
of the lower (minimization problem) bound indicates that
further runs of the algorithm do not significantly improve the
constructed policy, and may serve as a practical convergence
criterion. The number of iterations required for convergence
are shown in fifth column in Table I. As expected, case C
(with no maintenance requirement) converges in significantly
less iterations than the other cases. The storage dynamics and
system complexity slow down the convergence process when
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Fig. 4. Convergence characteristics. Upper bounds for all cases and lower
bound for case B, considering the 100 first iterations.

maintenance is considered. A stable maintenance schedule
over several iterations is needed to ensure that the HPS
Benders cuts are built around that schedule.

In cases A, B and D we have allowed the model to
explore 29 maintenance starting weeks (weeks 15-43) for
each of the two plants considered, giving a total of 841
possible combinations. Fig. 5 shows the models suggestions
for the first maintenance week for case B in all iterations,
before stabilizing at the optimal solution (starting week 29
for both plants). The figure shows that a modest subset of all
combinations are tested before arriving at the optimal solution,
and many of these are only visited once. Moreover, Fig. 5
shows that the diagonal elements are visited more frequently,
i.e. the different timings for co-scheduling of maintenance are
explored. In case D maintenance is required for two reservoirs
connected in parallel, and we observed that a wider search
was carried out for that case, avoiding co-scheduling. Thus,
convergence was slower in case D than in cases A and B, as
indicated in Table I.

C. Discussion

It is possible to improve the computational performance
of the model by some straightforward adjustments. Typically,
the MS problem defined in (2) can be further constrained by
incorporating the expert knowledge and specific requirements
from the producer. Moreover, to avoid starting from scratch,
one can run the case to convergence (with no or fixed
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Fig. 5. Suggested first week of maintenance for plants 4 and 7 incase B
counted over all iterations.

maintenance plans) and use the resulting HPS Benders cuts
as a starting point for the algorithm. We also believe that
computational improvements can be seen by allowing multiple
iterations within the HPS problem for the same maintenance
schedule before creating a MPS Benders cut, similar to the
reasoning in [21]. Finally, it should be noted that we did
not conduct sensitivity analysis on the number of scenarios
sampled in the forward iteration in the presented case study,
and that adjusting this number may improve computational
performance.

V. CONCLUSIONS

A new method suitable for solving the hydropower mainte-
nance scheduling problem for a profit maximizing and price-
taking producer considering both the markets for energy and
reserve capacity was presented. The method uses Benders
decomposition principle to coordinate the timing of power
plant maintenance with the medium-term scheduling of the
hydropower system.

Traditionally, maintenance and hydropower scheduling are
treated as separate or at least loosely coupled tasks, primarily
due to the computational complexity. The proposed method
was applied in a case study of a Norwegian watercourse,
demonstrating that an optimal solution to the hydropower
maintenance scheduling problem can be found by coordinating
the maintenance and hydropower scheduling tasks. Although
the convergence rate is significantly lower than for the hy-

dropower scheduling problem, the results indicate that the
proposed method is capable of efficiently exploring the search
space of possible maintenance periods for multiple plants.
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