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Optimal Hydropower Maintenance Scheduling in
Liberalized Markets

Arild Helseth, Member, |IEEE, Marte Fodstad and Birger Mo

Abstract—Maintenance scheduling is an important and com-
plex task in hydropower systems. In a liberalized market,
the generation company will schedule maintenance periods to
maximize the expected profit. This paper describes a method
for hydropower maintenance scheduling suitable for a profit
maximizing, price-taking and risk neutral hydropower producer
selling energy and reserve capacity to separate markets. The
method uses Benders decomposition principle to coordinate
the timing of power plant maintenance with the medium-term
scheduling of the hydropower system, treating inflow to reservoirs
and prices for energy and reserve capacity as stochastic variables.

The proposed method is applied in a case study for a
Norwegian watercourse, and results, in terms of maintenance
schedules and computational performance, are presented and
discussed.

Index Terms—Hydroelectric power generation, Power gener-
ation economics, Integer programming, Linear programming,

Stochastic processes.
NOMENCLATURE
A. Index Sets
H Set of hydropower reservoirs/stations;
Sh Set of discharge segments for station
K Set of time steps within the week;
T Set of decision stages;
Tr Set of stages in maintenance interval;
N Set of nodes in scenario tree;
LM Set of MS Benders cuts;
cH Set of HPS Benders cuts for node
£f Set of HPS Benders cuts for price cluster
D, Set of descendant nodes fram includingn;
D5, Set of descendant nodes fromsampled in
backward iteratior?;
D5, Set of nodes sampled in backward iteration
Qpn Set of reservoirs upstream reservbir
B. Parameters
T(n) Lookup table giving time stage for node
P(n) Lookup table giving price cluster for node
Gy, Max. capacity in statiork, in MW,
Vin, Vi Max./Min. limit for reservoirh, in Mm?;
Ch Max. capacity sales from statidn in MW,
Tk Duration of time stepk, in hours;
Tr Relative duration of time step, fraction;
¢E Energy price scaling factor for time stép
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Capacity price scaling factor for time stép
Energy equivalent for (statioh and) discharge
segments, in MWh/Mm?3;

Coefficient for reservoir level for nodg(n), in
€/Mm?;

Coefficient for reservoir level for node,
(reservoirh) and iteration?, in €/Mm?3;
Right-hand side for HPS Benders cut at node
n and iteration?, in €;

Right-hand side for MS Benders cut for itera-
tion ¢, in €;

Coefficient for maintenance for HPS Benders
cuts at node: (reservoirh and iterationt), in

€;

Coefficient for maintenance for MS Benders
cuts (for reservoirh), staget and iteration?,

in €;

Max. discharge for segment in Mm?;

Max. bypass for plant in time stepk, in Mm?;
Last time step in week;

Maintenance duration, weeks;

Convergence tolerance, #;

Optimal solution of MS problem, ir€;

Optimal solution of HPS subproblem at node
n, in €;

Probability of scenario tree node

Probability of noden” conditioned on node.

C. Sochastic Variables

Inflow at noden, in Mm3;

Sum weekly inflow to reservoif, at noden,
in Mm3;

Energy price at node, in €/ MWh;

Weekly average energy price for clustgrin
€/MWh;

Weekly average reserve capacity for clugier
in €/MW.

D. Decision Variables

Future expected profit for the MS problem, in
€;

Future expected profit for the HPS problem
seen from node, in €;

Decision on maintenance in weékbinary;
Generated electricity in time stgpfor station

h, in MWh;

Generated electricity for node, in MWh;
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Ckh Allocated capacity in time step for stationh, computationally intractable when considering systems with
in MW, many reservoirs. The stochastic dual dynamic programming
Ukh Volume in time stegk for reservoirh, in Mm3;  (SDDP) introduced in [5] allows solving the scheduling prob-
Un, Volume in noden, in Mm3; lem without discretizing the state variables, and is therefore
ab.. Discharge in time step through statiomh at computationally tractable for systems with multiple reservoirs.
segments, in Mm3; The SDDP algorithm can be classified as a sampling-based
q Discharge at segmeatin noden, in Mm?; variant of multi-stage Benders decomposition method [6],
q,fh Spillage in time stepk from reservoirh, in  requiring a convex problem formulation. Extensions of the
Mm3; SDDP algorithm have been frequently reported in recent
q Spillage in noden, in Mm?; literature, see e.g. [7]-[12].
qs, Bypass in time stept from reservoirh, in Several methodological approaches have been presented
Mms3; to approach the general power plant preventive maintenance
Zht 2t Auxiliary variable, continuous; scheduling problem, see e.g. [3], [13] for an overview. The
O(...) End value function, ir€. work in [14] seems like a starting point for the use of mixed
integer linear programming (MILP) for optimal maintenance
I. INTRODUCTION scheduling. In [15] the total operating costs were minimized
A. Background and Motivation over an operational planning period of several years while

I o meeting thermal unit maintenance and system constraints. The
The flexibility and controllability of hydropower play an " T .

. . : . authors used Benders decomposition, fixing the maintenance
important role for balancing the unpredictable generation from . .
: ) . . . chedule in an MILP master problem and obtained cuts by
intermittent generation technologies, such as wind and solar . . :

evaluating continuous nonlinear subproblems.

power, in many power systems throughout the world. Con . L
- c Maintenance coordination schemes between the system op-
sequently, the reliability of hydropower facilities is of great

importance for secure system operation, and these faciliterator and the generation companies were proposed in [16],

should be maintained to provide an adequate level of reliabﬁ-s/] for the purpose of maximizing producer's profits while

; . . . .achieving a sufficient level of reliability. These coordination
ity. Maintenance can be categorized as corrective or preventive, . L "
. ) : . schemes resemble maintenance scheduling in a competitive
Corrective maintenance is performed after a failure, whereas
naarket context.

preventive maintenance is performed at predetermined perio I?Zelativel few works have addressed maintenance schedul-
and is intended to reduce the probability of failure, prolong the y

expected useful lifetime of the system components and ensgr% :ga%d;gf(r)nv;?rr\:[(iﬁgggtzi;Xthirr?)?ér:rZe[i?] gnnrl]?;egirr?tﬁd_
continuous operation at acceptable efficiency levels. pp P g y

This work concerns the scheduling of preventive powfrrOpOWer systt_ams based on SDP and heu_ri_stics was presented.
plant maintenance in hydropower systems in a liberaliz 4 [13]tadrr;ultl-sltag?hBenders chotmpo_sTon approaﬁhdwlgs
market context. The scheduling consists of finding the optim%trlesen ed to solve the power plant maintenance scheduling
roblem considering multiple generation technologies and

timing of maintenance for a predefined set of plants. We stufl o )
the problem from an economic perspective, assuming a prea}épertamty in demand. However, hydropower details such as

fined requirement for maintenance within the planning perio yd_ro storages and inflow unc_ertalntles, were not considered.
In order to minimize the economic impact, it is important to ptimal maintenance scheduling for thermal and hydropower

carefully plan when the plants are maintained. The lost reve nts under uncertainiy was also discussed in [19], but the

from taking a hydropower plant out for maintenance depen gtarlLs ?r:tt:e ?athe?agc?:‘ms\;jel Wﬁ:g Tj%t %r(ia:entgdi Ipm[i]?]
on the future market prices and inflow which are uncerta e mainienance scheduling was embedade a dete >

at the time of planning the maintenance. During maintenante continuous and nonlinear hydrothermal scheduling model

the plants will be unavailable, possibly leading to loss of Watgplved by an evolutionary aIg.orlthm. oo

or profit losses because sales of energy and reserve capagit € malqtenance .schedullng pr_oblem has S|m|lar|t|_es to
has to be moved to periods with lower prices. Thus, theretﬁ exp_ansmn_p_lannlng problem, n the_,- sense that discrete
clearly a need to integrate the maintenance scheduling with ansion decisions are coordinated with the system opera-

process of finding an optimal hydropower dispatch strategyt.'on' Some approaches integrating expansion and opgratlonal
planning in a fundamental market modeling context using the

. . SDDP algorithm are presented in [21]-[23].
B. Literature Review

Both hydropower scheduling [1], [2] and maintenance o

scheduling [3] are thoroughly addressed in the literature. The Proposed Method and Contributions

early works on scheduling of hydropower reservoirs usedIn this paper we present a method for hydropower plant
the principles of stochastic dynamic programming (SDP), semintenance scheduling (HPMS) by coordinating maintenance
e.g. [4]. SDP decomposes the multi-stage planning problescheduling (MS) and detailed hydropower scheduling (HPS)
into a sequence of single-stage subproblems that can be solgdthe use of Benders decomposition [24]. First, the MS
by backward induction. The major drawback of the SDProblem is solved as an MILP problem to provide a trial
method is that the state variables (typically reservoir volumesiaintenance schedule to be considered in the HPS. Sub-
need to be discretized, so the overall problem size beconsegjuently, the HPS problem is evaluated using multi-stage
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Benders decomposition, where an outer approximation of x5 T}
convex future expected profit function is constructed for ear..........._.._. ty 7] by .~ I3 ... ta

time stage by adding Benders cuts. Two different sets
Benders cuts are built iteratively, one to decompose the mu;
stage linear HPS problem and one to coordinate the MS &
HPS problems.
The presented HPMS method constitutes a novel extens
to previous works in two directions. Firstly, we extend thi
multi-stage Benders decomposition approach presented in [;
by allowing a detailed representation of the hydropower sy
tem and the relevant uncertainties in the HPMS probler
Furthermore, we elaborate on how the Benders cuts usec
the HPS should be augmented to incorporate information abt
the maintenance schedule, and thus being valid cuts within 1 ‘5
decomposition algorithm. Secondly, the HPS part of the pro MS HPS |
lem is extended using a combined SDP and SDDP algorith " sormmmmmm oo f B oo TR
and treating inflow to reservoirs and prices for energy ar
reserve capacity as stochastic variables. The resulting model

; ; ; Fig. 1. lllustration of coordination between maintenanciesitling (MS)
is suitable for HPMS in Iarge and complex watercourses. and hydropower scheduling (HPS). In each iteratfaial schedulescy are
sent from the MS to the HPS, and Benders cut coefficieptsand 8, from

the HPS to the MS.

D. Paper Structure

The paper is outlined as follows. In Section Il the basic
principles of the HPMS scheduling method are describe,

using multi-stage Benders decomppsmon to solv_e the H c§,scribed in a scenario tree, as illustrated Fig. 1. The scenario
problem. Subsequently, a more detailed mathematical descH%—e shown in Fig. 1 comprises 4 decision stages; and
tion of the HPS problem and the combined SDP and SD P5 nodes (circlesy, ¢ . There is one root node at stage

solution strategy is provided in Section lll. The propose which we index0, and eight leaf nodes at stage Except

method in Sect!on lll is applied in a case study in Section | om the root node, each nodehas one unique ancestor node
where the optimal power plant maintenance schedulea%

N . t is found. Finall lusi n) and a set ofall descendant nodeB,,. We let the set
a Norwegian watercourse Is found. Finafly, conciusions » also include noder itself. The decision stage of node
drawn in Section V.

is denotedT’(n). Maintenance is allowed iz = {t2,t3},

and the maintenance decision is made in the root node. All
[I. DECOMPOSITIONPRINCIPLE nodes involve decisions on how to operate the hydropower
\Blant, as described in Section II-A. Note that we do not pose

in Th:rr?aﬁ::ssiz?;thinH;'\gSdg:itgoigifoﬁ)(pﬁgf (Ijem g;enfs?ggrs’crict requirements to the construction of the scenario tree here.
9 P 9 P P pie. e decomposition principle outlined in this Section will be

produce_zr oper_atmg asingle hydrqpower plant with an uPStr_eae%bedded in a hybrid SDP/SDDP approach in Section Ill, and
reservoir, aiming to schedule maintenance for the plant Wlthtlﬁle use of sampling within this approach is briefly discussed
the periodt € Tr. The maintenance scheduling is coordinateld Sections 11l and IV

with the scheduling of hydropower within the opera‘tiona[1 '
planning periodt € 7, where 7z C 7. The objective of .
the HPMS s to find the economically optimal maintenanc® Problem Formulation

schedule while maximizing the expected profit from sales The HPMS problem can be formulated as a multi-stage
to the energy market. Note that we keep the HPS modstbchastic MILP problem on extensive form as in (1). The
formulation simplified in this section to emphasize on thebjective in (1a) is to maximize the expected revenue from
decomposition principle. A more realistic HPS model, suitabknergy sales. For each node, the water balance for the hydro
for multiple reservoirs and sales of both energy and resemaservoir is formulated in (1b) and the hydropower generation
capacity, will be introduced in Section Ill. It is assumed thah (1c). In the case of the root nodg,) equals the initial

the hydropower producer is a risk neutral price-taker. This isservoir volume. Water discharge through the plant is mod-
normally considered a valid assumption in mature liberalizeded using one variable?, per discharge segment ¢ S.
markets such as the Nordic, where risk management utiliziihese segments will be used in decreasing order according to
financial instruments is typically done separately from thibeir energy equivaleni,, provided that); decreases with.
hydropower scheduling. The need for maintenance is treated a¥he maintenance schedule is represented by binary variables
a predefined requirement. Moreover, we assume that the cogtindicating whether the plant is being maintaineg=1) or

of maintenance is independent of the time of year, and caat (x,=0) in decision stageé. We require that maintenance
thus be disregarded in the scheduling since the contributiorstsould be carried out once over a period/®fecision stages
constant. in (1d), and that these stages should be consecutive in (1e).

Assume that the relevant uncertainties are energy prices
d inflow to the reservoir, and that these uncertainties are
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The boundary conditions; = 0;Vt < 0,Vt > |Tgr| must
be specified to ensure consecutive maintenance periods. The Initialization
formulation in (le) is identical to that in [16] (Eqg. 5) and Converged

[17] (Eq. 6), but could be formulated differently to serve (=(+1 =1
the same purpose, see e.g. [13]. One could further constral'r """"""""""""""""""" !
the maintenance schedule to reflect technical and Iegislati\: @ I
constraints that represents the problem at hand, as discuss Solve MILP in (2) :
e.g. in [13], [16]. : Store a*, 2t vt € T :
Moreover, one could also allow maintenance on the resej -
voir, e.g. by forcing the reservoir level below a certain limit | n=1 yes :9s
for a given period of time. However, such extensions afe : §
considered out of scope for this presentation. Note that th: =¥
maintenance schedulg take one common value for all nodes |5
in decision stage, implying that the decision is taken at the | b : §
root node in stage;. If maintenance is chosen, discharge; | | 8
through the plant is prohibited in (1f). ! O no 1=
! Solve (3) for state vf”(’:w,’w?z‘n) I
| Store solution :
Z max {Pn )\n en} (161) i Pass on state 7;f;* to children nodes i
neN : :
Un-i-zqgfi-qs—va(n):[n VYneN (1b) ,'_ZZZZZZZZIZZ:ZZZZZZZZZZZZZZ'ZZZZIZ::I
|
s€S I Solve (3) for state ’Uﬁ’(*n) ,méz‘n) : o
en — Z 77$qun =0 vneN (lc) : Store ©* 7,4, for HPS cut : g
sES : Store 4, for HPS and MS cut : g
| I
S @ =D (1d) |1 |5
teTr | : %
Ty — Tp—1 < Tyyp_ Yt € T; le : s
' [: P bt -D r o (le) I Solve (3) for the initial state : g
0<gqy, < (1 - mT("))Qs Vs e §,Vn e N (1f) : Store Gé{"* for the MS cut : =
0<v, <V YneN (1g) | !
en g5 €RY YneN () T S
7, € {0, 1} Vt € Th (1i) Fig. 2. Flow chart of the decomposition approach to solve tR&1S problem.
B. Problem Decomposition that are added iteratively. We refer to the cuts in (2d) as MS

Although the problem in (1) can be solved directly, practic&t€nders cuts. The cut coefficienfs and 3, are obtained by
HPS methods often rely on decomposition approaches to ef¥2luating the HPS problem, as indicated in Fig. 1, and further
ciently deal with large scenario trees [25]. We now decompo@gscribed in Section [1-B2.
the HPMS problem in (1) in an MS problem representing the
root node binary decisions and an HPS problem representing

the continuous variables at all nodes. We apply Benders O™ = maxa (2a)
decomposition principle to coordinate the solution of the MS Z 2 =D (2b)
and HPS problems, as illustrated in Fig. 1. Being an LP teTw

probler_n,_ the HPS problem itself can be decqmposed by npde, Tt — T5-1 < TeaD1 Vt € Th (2¢)
and efficiently solved by Benders decomposition, as described "

in [25]-[27]. a— Y yum < B VieL (2d)

The MS and HPS problems are coordinated iteratively t€Tr
through forward and backward iterations to arrive at an optimal a e Rz, €{0,1} vt € Tr (2e)

solution for the HPMS problem, as described in the following,

and illustrated in Fig. 2. Note that we have included the From the solution of the MS problem we obtain a trial

iteration counter in Fig. 2, but we generally omit this countermaintenance schedule; and the upper boundv*. The

in the text for notational convenience. forward iteration is continued by a forward pass visiting
1) Forward Iteration: In a forward iteration, the relaxedall nodesn € N in the HPS problem, indicated by ba®

MILP MS problem in (2) is solved first, indicated by boxin Fig. 2. The trial schedules*T(n) enters the nodal HPS

@ in Fig. 2. The future expected profit from operating theubproblems as a parameter. An HPS subproblem at a node

hydropower system in the period of analy§ess represented n receiving a schedule*T(n) is formulated as:

by « in (2a).« is constrained by a set of Benders cuts in (2d)
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* H, *
- Z IEDn/|nﬁyn/ (ZT(HI) o ZT(n/)) < ®n' (4)

n' €D,
ol = maX{Anen +an} (33) where vy(,) and x4, ¥n' € D, are state variables and
the corresponding starred variables are the values set in the
U + Z 4D+ 4 = vam) +In < Ta(n) (3b) forward iteration. After reordering the contribution can be
s€ES formulated as:
€n — Z nsqun =0 (30)
s€S . Ag(n) = Ta(n)Va(n) — Z ]Pn'\nfyn/xT(n') < Ba(n) (5)
2T (n) = ZT(n) S~ Tn (3d) n €Dy,
< gD < (- 2pm)QP 3e " . .
0= Qsn = ( ZT(n)>Q5 , VS€S ( ) Whereﬂa(”) = 671;1 - Tra(”)va(n) - Zn/E’Dn Pn/|n7n’xT(n/).

Qp — TneUn The proposed maintenance schedule in the current iteration
< Be + Z Pn,‘n%,ﬂ;(n,),ge Lff (3f) enters the right-hand Sldéa(n).. The HPS_Benders cut in
, (3f) are constructed by averaging the contributions of type (5)
n €Dy \n K R .
s R+ 3 for all immediate descend{ant (or children) nodes. When used
Qn,€n,sq, lzT(n) € (39) later, the valueSCT(n/), Vn € D, are known and the term
0<wv, <V Bh) > ep, Po/inYu ey i (5) can be moved to the right-
hand side as in (3f).

Dual values extracted from (3) are indicated with an arrow The cut coefficients;, and 3, used in the MS Benders cut
(+-). At each node the immediate profit comes from sellin@d) are accumulated throughout the backward iteration as in
energye, at a price)\,. The immediate profit is balanced(6) and (7), wher@®{"* is the HPS root-node solution.
against the future expected profif, in (3a), constrained by

Benders cuts in (3f). We refer to the cuts in (3f) as HPS Ben-

ders cuts, and their construction is described in Section II-B2. Vie = Z Pryne vt €Tr (6)

The sensitivity of the objective to a changerihis denotedy,,. neN:T(n)=t

In (3d) a continuous variable copies the proposed schedule, Be=05" = > e} 7)

and the dual value,, can be directly obtained. The variable teTr

z is then used to define whether discharge through the planfyote that the value,, takes in (3d), strongly depends on
should be allowed in (3e). the reservoir storage capacity and the expected inflow. In case

Once the forward iteration has completed, convergence a@@re is no storagey, will reflect the energy price.,,, taking
be checked. The solution strategy decomposes the stochasféc marginal efficiencyy, into account. In the presence of
optimization problem in (1) into a first-stage MILP problemstorage capacity, the value of, is reduced compared to the
and a multi-stage HPS problem formulated as LP. Assumipg-storage case according to the expected marginal value of
that the problem has relatively complete recourse, the dgater. That is, the economic loss of maintenance depends on
composition converges within a finite number of iterations @e system’s ability to save water across decision stages.
an arbitrary convergence tolerangeaccording to [24], [28].  The methodology presented in this section will become
Convergence is obtained whert — > _\ P, \.e;, <e. As  computationally intractable for systems with many decision
long as convergence has not been reached, a new backvdes and fine-grained representation of uncertainty. In Sec-
iteration is initiated. tion Il we elaborate on how the decomposition principle
2) Backward Iteration: A backward iteration involves can be embedded in a hybrid SDP/SDDP approach, and thus
traversing the tree from the leaf nodes to the root node ahdcome computationally tractable for large-scale hydropower
solving the nodal HPS problems, see bo@sand®@) in Fig. 2. systems.
HPS Benders cuts in (3f) are created for all non-leaf nodes and
added to the set’’ used in (3f). Both the initial reservoir level I1l. HYDROPOWERSCHEDULING MODEL

Ua(ny @nd the maintenance decision, Vn' € D, are | this section we extend the HPS part of the HPMS
state variables and should be represented in the HPS Bendfhulation presented in Section Il to realistically deal with
cuts. The incorporation of the root node maintenance decisiaRg scheduling of larger watercourses. Moreover, we extend the
in the state space allows HPS Benders cuts that are construgi@she by allowing sales of both energy and reserve capacity,
for different suggested maintenance schedules to be shareglsguming that the producer is a price-taker in both markets.
each node. This state space augmentation has similarities toWe consider inflow, energy price and reserve capacity price
multi-lag Benders decomposition approach presented in [28k stochastic variables. We assume that the system is confined
An HPS Benders cut contribution obtained from the sulim a geographical area that can be covered by a single power
problem solved at node in (3) and passed backward to nodéalance equation (without internal transmission bottlenecks).
a(n) will take the form: Thus, the hydropower producer can optimize the operation
of a single watercourse indvidually without including other
generation or demand obligations that are part of its portfolio.
Qa(n) = Ta(n) (va(n) — v,’;(n)) The length of a decision period is one week.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TPWRS.2018.2840043

A hybrid SDP/SDDP approach is applied to decompose theThe MS Benders cut coefficientg;, and, used in (2d) are
overall HPS problem, see e.g. [30], [31] for further detailsbtained after one backward iteration as probability weighted
The price processes are represented in a Markov chain usivgrages over all sampled scenarios D).

discrete states (price clusters), and embedded in the SDDP

algorithm as in ordinary dynamic programming. The weekly — 7ht¢ = Z Prynne vte Tr,VheH (8)
price processes are assumed independent of the inflow. Note n€Dg, T (n)=t

that the combined SDP/SDDP algorithm generally requires , = 0 — Z VhteThy (9)

the stochastic processes being modelled in the SDP part to

teTr

be independent of those modelled in the SDDP part. In our
experience, for a regional system (e.g. a single watercougeHPS Subproblem

within a price zone) it is difficult to find a significant cor- o weekly HPS subproblem is formulated as an LP prob-

relation between local inflow changes and the correspondi described in (10), which is an extension of (3). The
average spot price change. The HPS Benders cuts Can%ulaﬂon is similar to’ that used in [33] '

shared among different system states within a given wee or a given nodes, price clusterp = P(n) and weekt —

and price cIuTtefrf, according to [32], to efficiently reduce the,, ) ye realization of weekly inflows, ,, the weekly average
computauona effort. - ) ~energy price\”, and the weekly average reserve capacity price
Since only a sample of the “true” scenario tree is visited iRC gre known. The amount of energy sold to the spot market

the forward and backward iterations, the construction of HPa%d capacity to the reserve market is optimized for the whole
and MS Benders cuts differs slightly from what was presentggiar course.

in Section II.

@{;I = maX{Z Z (C,f)\fekh + CE&?@M) + Ozn}

A. HPS Solution Strategy

keK heH
The HPS solution strategy is briefly described below, em- (10a)
phasizing on the ngvel parts. . . Vkh + Z ab .+ ao, +ab,— (10b)
1) Forward Iteration: In the HPMS forward iteration the s€Sy,
root node MS problem described in (2) is solved first to obtain
a trial maintenance schedule. An upper bound is obtained Z (Z q,f;s +q,fj +qu> =Vg—1,h + Tlnn Yk, h
from the solution of the MS problem. Subsequently, a set JEQL \sES;
of scenarios is sampled for the stochastic variables. Weekly ekh — Z NhsQins =0 Vk,h (10c)
inflows are sampled from a lag-1 autoregressive model, and ferd
weekly average energy and reserve capacity prices are sampled 1
based on the conditional transition probabilities in a discrete Ckh — —exn < OVk, h (10d)
Markov chain, as described in [10]. For a given nodethe le
HPS subproblem described in Section 11I-B is solved. The cen + —ewn < GpVk, h (10e)
simulated state at the end of the week is passed forward as ijk
an initial state for the next week. The forward simulation Vkh — ——Ckn > Vi, Yk, b (10f)
. . . . Nhs
gives an updated set of state trajectories and an expected profit
for the sampled scenarios, which serves as the lower bound. An — Z TnhtUkh (109)
Convergence can formally be declared when the upper bound heH
is within a predefined confidence interval of the lower bound. < Bne + Z ]I”n/l,,;y,n/he:c*T(n,), k=K, l¢c Ef
2) Backward Iteration: HPS Benders cuts at the end of the n’ €D ,\n
planning horizort = |7| can be obtained from a predefined Zhe =I5y Yok (10h)
final value function®. Fort =|7]—1---1 in the backward D ~D .
iteration one loops through eal:h|discrete price cluster and each 0 =g = (1 _ n)@ns kB Vs € S (10?)
state trajectory obtained from the forward iteration. Starting Vin < vkn < Vin vk, h (10j)
from the state at the end of week- 1, for each realization 0<q¢b, <QF  Vkh (10k)
of stochastic variables one computes the optimal operation for 0<cun <Oy V&, h (101)
weekt by solving (10). From the sensitivities of the objective g X
Qn; €kh, Gip, 2ht € R (10m)

function to the initial state values, new HPS Benders cuts at

the end of week — 1 are obtained. The objective (10a) is to maximize the profit from both
We denote all scenario tree nodes visited in a backwamthrkets, subject to constraints (10b-10m). Energy and reserve

iteration ¢ asn € Dy, i.e., sampled descendant nodes se@apacity prices corresponding to a specific time gtepithin

from the root node. For ease of formulation we include thtbe week are found by scaling the weekly average values by

Markov chain representation of market prices in the scenapeedefined expected profiles.

tree notation, so that the sBf), comprises all price clusters in  The water balance equation for a specific reseroand

the discrete Markov chain in addition to the sampled inflowime stepk is formulated in (10b).
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;
Electricity generatiorey;, in (10c) and capacity allocation 145 896
. . . 406 1240
crr 1N (10d)-(10e) are determined per plant. The generation
in (10c) can be seen as a simplified representation of the ® 60| [@D120]

generally nonconvex hydropower production function. See ‘
e.g. [34], [35] for more detailed representations.

Allocated capacity should be spinning and symmetric. The % %

spinning requirement is taken care of in (10d), ensuring that a

plant cannot offer more reserve capacity than what is already |@ 20 | |@ 330|

spinning. Eqn. (10e) ensures that the generation capacity sold 7‘5 1‘1

in the two markets does not exceed the plant’s installed 170 344

capacity. Eqn. (10f) ensures that there is enough water in

the reservoir to deliver up-regulation reserves at the lowest @ 0] [©a0]

efficiencyn,s for the entire time period in question. 87 \ e ]
The profit obtained for the current week is balanced against 482 epd

the future expected profit,,. This variable is constrained by

HPS Benders cuts in (10g). The HPS Benders cuts should
relate to all state variables, i.e., decision and stochastic vari- .

. ig. 3. Watercourse topology and technical data.
ables that define the system state passed on to the subsequ%nt
week. Although not explicitly represented here, it should be
noted that inflow is also a state variable due to the time Conceptually, one could run each case with a scheduling
coupling in the autoregressive inflow model. As inflow i%iorizon long enough to make the impact of end-valuation of
not a decision variable, its contribution to the cut will entefeservoirs negligible. In order to obtain acceptable computa-
the right-hand side in (10g), as described in [31]. The HRf®n times, we adopted an approximate and practical approach.
Benders cuts are built and stored for each price cluster in a seket of cuts of type (10g) was used to ensure that state
/.‘,f in each backward iteration of the algorithm. In (10g) theariables at the end of the scheduling horizon were valuated.
cut coefficientsy,,,, obtained from (10h) are averaged oveThese cuts were obtained as a result of a few initial model
all descendant nodes, e.g. combinations of descendant priges for case A with a time horizon of four years, and the
clusters and sampled inflow nodes. The B¢}, contains all same set of cuts was used for all simulated cases.
descendant nodes seen frenthat are visited in a particular Energy and reserve capacity price scenarios were obtained
backward iteratior?. from the EMPS model, which is a fundamental hydrothermal

It is important that the HPS subproblem has a feasibigarket model [36]. The EMPS model was run on a system
solution for all possible states, and thereby ensure that tescription of the Nordic power system, using 80 historical
HPMS problem has relatively complete recourse. During iaflow years, and with reserve capacity constraints per price
maintenance period for a given station, upstream reservoine. We extracted 80 energy and reserve capacity price sce-
may experience a constrained release capacity. In the HRios from the simulation, and from these scenarios a discrete
subpoblem described above, the spillage variajgle has price model comprising 6 price nodes per stage (3 energy
no defined upper bound and will therefore serve as a slaghd 2 capacity price clusters) was identified by following the
variable in case both the dischargg , and bypassg;;, reach approach described in [10]. The lag-1 autoregressive inflow
their upper bounds in (10i) and (10Kk), respectively. model was fitted using a single inflow series comprising 80
historical years, and the model error was sampled from a
normal distribution.

A. Case Description A total of 200 scenarios of inflow and prices were re-
A computer model was established implementing theampled in each forward iteration, and 12 discrete inflow error
HPMS algorithm described in Section Il using the combinegrms were sampled at each stage in the backward iterations in

SDP/SDDP algorithm described in Section Ill to solve the HPtBe SDDP-part of the algorithm. A total @H0 x 104 = 20800
problem. The model was tested on a Norwegian watercoutsES subproblems are solved in the forward iteration and
comprising 7 hydropower reservoirs with corresponding pow200 x 12 x 3 x 104 = 748800 in the backward iteration
plants, with a total capacity of 986 MW. An illustration of thewhen considering 3 price clusters. In general, increasing the
topology and specification of some technical characteristicsnember of scenarios in the forward iteration will improve the
provided in Fig. 3. For each reservoir shown in the figure thmnvergence properties at the cost of higher computational
average annual inflow and storage capacity are stated, botkefiort in each iteration.

Mm3. Each power plant is identified with a number and its The model was implemented i€++, using the Gurobi
installed capacity in MW. 7.5 library [37] for solution of both the MILP and the LP

A scheduling horizon of 2 years was applied with weeklgroblems. All tests were carried out on an Intel Core i7-
decision stages. Each week was divided into 21 time stef@40MX processor with 3.30 GHz and 32 GB RAM.
allowing for energy and reserve capacity sales. Each plant is/Ne ran 4 cases A-D, see Table | separating between whether
allowed to commit a maximum of 10 % of its installed capacitynaintenance scheduling was considered and whether sales of
to the reserve market. reserve capacity was allowed. A maintenance period of 3 con-

IV. CASE STUDY
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secutive weeks was required, lettifg; comprise weeks 15-
45. In all cases the simultaneous scheduling of maintenance in
two plants are considered, which to our knowledge represents g
a realistic two-year case study. The MS problem comprises
1 continuous and 62 binary variables, and is constrained by
64 linear constraints without counting the MS Benders cuts.
The HPS subproblem comprises 1247 continuous variables and
1078 linear constraints without counting the HPS Benders cuts.
The total computation times are indicated in Table I. Althoughs
not exploited in this work, the algorithm is well suited for
parallel processing, see e.g. [38].

7600

750000
|

TABLE |
SIMULATED CASES.

740000

Maint. Time
Case | Included | Plants Markets Iter. | [hours]

v 4,7 Energy + Capacity| 340 168
v 4,7 Energy 323 81
- - Energy + Capacity| 40 20
v 6,7 Energy + Capacity| 520 263

Future Expected Profit [MEur:

730000

Ol O|m| >

720000

B. Results

Both cases A and B concludes on co-scheduling the main- ‘ ‘ ‘ ‘ i
tenance of plants 4 and 7. In case A the optimal maintenance 20 40 60 80 100
period for both plants are in weeks 42-44, whereas the optimal Iteration no.
schedule is weeks 29-31 for both plants in case B. The

higher reserve capacity prices in the summer period mak&§ 4. Convergence characteristics. Upper bounds for atsand lower
it profitable to postpone maintenance to the autumn in cageind for case B, considering the 100 first iterations.

A. The serial connection between plants 4 and 7 explains

why itis profitable to co-schedule maintenance for these tWOaintenance is considered. A stable maintenance schedule

plants. A three-week maintenance period at plant 4 Ieads0\(/)er several iterations is needed to ensure that the HPS
loss of water due to the large inflow and upstream discharge :
Eenders cuts are built around that schedule.

capacity compared to the reservoir size. Thus, it is wise oIn cases A B and D we have allowed the model to

avoid discharging ”0_”"' plant 7 during the _mau_ntenance_perl%(;(plore 29 maintenance starting weeks (weeks 15-43) for
of plant 4. When testing other plant combinations, e.g. in case . o
. .each of the two plants considered, giving a total of 841
D for plants 6 and 7 which are arranged parallel, co-scheduling = . L . .
. ) . possible combinations. Fig. 5 shows the models suggestions
of maintenance is no longer optimal.

D . . for the first maintenance week for case B in all iterations,
The convergence characteristic of the algorithm is shown i X . )
. . : efore stabilizing at the optimal solution (starting week 29
in Fig. 4, comparing the upper bounds for all cases fqr .

; . . . or both plants). The figure shows that a modest subset of all
the first 100 iterations. The lower bound for case B is also__, . = . . .
) S combinations are tested before arriving at the optimal solution,
included to indicate that the cost gap gradually closes as

. : . . . art:d many of these are only visited once. Moreover, Fig. 5
the iteration number increases. From a theoretical point ; o
sﬁqows that the diagonal elements are visited more frequently,

view, the algorithm should converge within a pre-deflnelﬁl the different timings for co-scheduling of maintenance are

confidence interval, as discussed in [39]. However, throu% . . : :
o ; xplored. In case D maintenance is required for two reservoirs
initial testing on a small-scale system, we found that thiS

o o - codmected in parallel, and we observed that a wider search
convergence criterion was sensitive to the specific case an . L ;

L . was carried out for that case, avoiding co-scheduling. Thus,
the number of scenarios, inflow error terms and price clusters

used. Thus, we used the stabilization of the upper bound as foavergence was slower in case D than in cases A and B, as

convergence criterion. As discussed in [40], the stabilizatiérﬁ&cated in Table 1.

of the lower (minimization problem) bound indicates that ]

further runs of the algorithm do not significantly improve th&- Discussion

constructed policy, and may serve as a practical convergencét is possible to improve the computational performance

criterion. The number of iterations required for convergenad the model by some straightforward adjustments. Typically,

are shown in fifth column in Table I. As expected, case the MS problem defined in (2) can be further constrained by
(with no maintenance requirement) converges in significanflycorporating the expert knowledge and specific requirements
less iterations than the other cases. The storage dynamics faach the producer. Moreover, to avoid starting from scratch,

system complexity slow down the convergence process whaeme can run the case to convergence (with no or fixed
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dropower scheduling problem, the results indicate that the
proposed method is capable of efficiently exploring the search
space of possible maintenance periods for multiple plants.

40-

REFERENCES

[1] J. W. Labadie, “Optimal operation of multireservoir systems: State-of-
the-art review,"Journal of Water Resources Planning and Management,
vol. 130, no. 2, pp. 93-111, 2004.

[2] G. Steeger, L. A. Barosso, and S. Rebennack, “Optimal bidding strate-
gies for hydro-electric producers: A literature surve}eEE Transac-

tions on Power Systems, vol. 29, no. 4, pp. 1758-1766, 2014.
[3] A. Froger, M. Gendreau, J. E. Mendoza, and E. Pinson, “Maintenance
) count scheduling in the electricity industry: A literature reviewgUropean
I Journal of Operational Research, vol. 251, no. 3, pp. 695-706, 2016.
% I [4] S. Stage and Y. Larsson, “Incremental cost of water poweahsactions

of the American Ingtitute of Electrical Engineers, vol. 80, no. 3, pp. 361—
364, 1961.

[5] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic
optimization applied to energy planningylathematical Programming,
vol. 52, pp. 359-375, 1991.

[6] J. R. Birge and F. LouveauxXntroduction to Stochastic Programming,
2nd ed. Springer, 2011.

[7] A. Philpott and V. de Matos, “Dynamic sampling algorithms for multi-
stage stochastic programs with risk aversioBfiropean Journal of
Operational Research, vol. 218, no. 2, pp. 470-483, 2012.

[8] S. Rebennack, “Combining sampling-based and scenario-based nested
Benders decomposition methods: application to stochastic dual dynamic
programming,”Mathematical Programming, vol. 156, no. 1, pp. 343—
389, 2016.

[9] H. Poorsepahy-Samian, V. Espanmanesh, and B. Zahraie, “Improved
inflow modeling in stochastic dual dynamic programmindptirnal of

2 ® s Water Resources Planning and Management, vol. 142, no. 12, 2016.
Plant 4 [10] A. Helseth, M. Fodstad, and B. Mo, “Optimal medium-term hydropower
scheduling considering energy and reserve capacity markdgE
Fig. 5. Suggested first week of maintenance for plants 4 and case B Transactions on Sustainable Energy, vol. 7, no. 3, pp. 934-942, 2016.
counted over all iterations. [11] A. Street, A. Brigatto, and D. M. Valladao, “Co-optimization of energy

and ancillary services for hydrothermal operation planning under a gen-
eral security criterion,”JEEE Transactions on Power Systems, vol. 32,
. . no. 6, pp. 4914-4923, 2017.
maintenance plans) and use the resulting HPS Benders (fﬁf J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer

as a starting point for the algorithm. We also believe that = programming,’Mathematical Programming, 2018.
computational improvements can be seen by allowing multipﬂl@] S. P. Canto, “Application of Benders decomposition to power plant

. . L : preventive maintenance schedulinggtiropean Journal of Operational
iterations within the HPS problem for the same maintenance peen vol. 184, no. 2, pp. 759-777, 2008.

schedule before creating a MPS Benders cut, similar to th@] J. F. Dopazo and H. M. Merrill, “Optimal generator maintenance
reasoning in [21]. Finally, it should be noted that we did scheduling using integer programmingEEE Transactions on Power

s . . Systems, vol. 94, no. 5, pp. 1537 — 1545, 1975.
not conduct sensitivity analysis on the number of scenarigg; jyelien, T. Al-Khamis, S. Vemuri, and L. Lemonidis, “A decomposition

sampled in the forward iteration in the presented case study, approach to unit maintenance schedulingEE Transactions on Power
and that adjusting this number may improve computational —Systems, vol. 7, no. 2, pp. 726-733, 1992. _
erformance [16] A. J. Conejo, R. Garcia-Bertrand, and M. Diaz-Salazar, “Generation
p : maintenance scheduling in restructured power systefBEE Transac-
tions on Power Systems, vol. 20, no. 2, pp. 984-992, 2005.
[17] Y. Wang, D. S. Kirschen, H. Zhong, Q. Xia, and C. Kang, “Coordination
V. CONCLUSIONS of generation maintenance scheduling in electricity marketSEE

A new method suitable for solving the hydropower mainte-  Transactions on Power Systems, vol. 31, no. 6, pp. 4565-4574, 2016.

heduli bl f fit Lo d ori é18] B. Mo, E. Solvang, J. Heggset, D. E. Nordgard, and A. Haugstad, “Inte-
nance scheduling problem Tor a proit maximizing and price- grated tool for maintenance and refurbishment planning of hydropower

taking producer considering both the markets for energy and plants,” inHydropower in the new millenium: Proc. 4th Int. Conference
reserve capacity was presented. The method uses Benderson Hydropower Development, Bergen, Norway, 2001.

d it inciole t dinate the timi f e[1 ] R. M. Chabar, S. Granville, M. V. F. Pereira, and N. A. lliad@p-
ecomposition principle 10 coordinate the uming of POWET ~ i ization of Fue Contract Management and Maintenance Scheduling

plant maintenance with the medium-term scheduling of the for Thermal Plants in Hydro-based Power Systems, ser. Energy, Natural
hydropower system. Resources and Environmental Economics. Springer, Berlin, Heidelberg,
e ) . 2010, ch. 13, pp. 201-219.
Traditionally, maintenance and hydropower scheduling 3R] L. S. M. Guedes, D. A. G. Vieira, A. C. Lisboa, and R. R. Saldanha,
treated as separate or at least loosely coupled tasks, primarily “A continuous compact model for cascaded hydro-power generation and

due to the computational complexity. The pI’OpOSGd method Preventive maintenance schedulingjternational Journal of Electrical
Power & Energy Systems, vol. 73, pp. 702-710, 2015.

was applied in a case study of a Norwegian Watercour?ﬁ] N. Campodonico, S. Binato, R. Kelman, M. Pereira, M. Tinoco, F. Mon-
demonstrating that an optimal solution to the hydropower toya, M. Zhang, and F. Mayaki, “Expansion planning of generation and
maintenance scheduling problem can be found by coordinating interconnections under uncertainty,” 8nd Balkans Power Conf., 2003.

. . L% N. Newham, “Power system investment planning using stochastic dual
the maintenance and hydmpower SChedu“ng tasks. Altho dynamic programming,” Ph.D. dissertation, University of Canterbury,
the convergence rate is significantly lower than for the hy- Christchurch, New Zealand, 2008.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TPWRS.2018.2840043

10

[23] F. Thomé and C. Metello, “Integrated stochastic investment & operatioBirger Mo received the M.Sc. degree in 1986 and the Ph.D. degree in 1991 in

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

strategy,” PSR, PSR Technical Report, 2016.

engineering cybernetics from the Norwegian Institute of Technology. He has

J. F. Benders, “Partitioning procedures for solving mixed variablesince 1986 been employed at SINTEF Energy Research. His main interests
programming problems Numerische Mathematik, vol. 4, pp. 238-252, are short-term forecasting, production planning and risk management.

1962.

P. L. Carpentier, M. Gendreau, and F. Bastin, “Managing hydroelectric
reservoirs over an extended horizon using benders decomposition with a
memory loss assumption,EEE Transactions on Power Systems, vol. 30,

no. 2, pp. 563-572, 2015.

M. V. F. Pereira and L. M. V. G. Pinto, “Stochastic optimization of a
multireservoir hydroelectric system: A decomposition approadiafer
Resources Research, vol. 21, no. 6, pp. 779-792, 1985.

J. Jacobs, G. Freeman, J. G. Grygier, D. Morton, G. Schultz, K. Staschus,
and J. Stedinger, “SOCRATES: A system for scheduling hydroelectric
generation under uncertainty®nnals of Operations Research, vol. 59,

no. 1, pp. 99-133, 1995.

A. M. Geoffrion, “Generalized Benders decompositiodfurnal of
Optimization Theory and Applications, vol. 10, no. 4, pp. 237-260, 1972.
A. Diniz and M. E. P. Maceira,Applications in Finance, Energy,
Planning and Logistics. World Scientific Publishing, 2012, ch.
Multi-Lag Benders Decomposition for Power Generation Planning with
Nonanticipativity Constraints on the Dispatch of LNG Thermal Plants,
pp. 443-464.

A. Gjelsvik, M. M. Belsnes, and A. Haugstad, “An algorithm for stochas-
tic medium-term hydrothermal scheduling under spot price uncertainty,”
in Proc. 13th Power System Computation Conference, Trondheim, Nor-
way, 1999.

M.Pereira, N.Campodobnico, and R.Kelman, “Application of stochastic
dual DP and extensions to hydrothermal scheduling,” PSR, Tech. Rep.
PSR TR 012/99, 1999.

G. Infanger and D. P. Morton, “Cut sharing for multistage stochastic lin-
ear programs with interstage dependendjdthematical Programming,

vol. 75, no. 2, pp. 241-256, 1996.

A. Helseth, B. Mo, M. Fodstad, and M. Hjelmeland, “Co-optimizing
sales of energy and capacity in a hydropower scheduling model,” in
Proc. of IEEE PowerTech, Eindhoven, The Netherlands, 2015.

A. Diniz and M. E. P. Maceira, “A four-dimensional model of hydro
generation for the short-term hydrothermal dispatch problem considering
head and spillage effectd EEE Transactions on Power Systems, vol. 23,

no. 3, pp. 1298 — 1308, 2008.

A. Borghetti, C. D'’Ambrosio, A. Lodi, and S. Martello, “An MILP ap-
proach for short-term hydro scheduling and unit commitment with head-
dependent reservoir/[EEE Transactions on Power Systems, vol. 23,

no. 3, pp. 1115-1124, 2008.

O. Wolfgang, A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, and
G. Doorman, “Hydro reservoir handling in Norway before and after
deregulation,”"Energy, vol. 34, no. 10, pp. 1642-1651, 2009.

Gurobi Optimization, “Gurobi optimizer reference manual,” 2017.
[Online]. Available: http://www.gurobi.com

R. J. Pinto, C. L. T. Borges, and M. E. P. Maceira, “An efficient parallel
algorithm for large scale hydrothermal system operation planni&fE
Transactions on Power Systems, vol. 28, no. 4, pp. 4888-4896, 2013.

A. Philpott and Z. Guan, “On the convergence of stochastic dual dy-
namic programming and related method3gerations Research Letters,

vol. 36, no. 4, pp. 450-455, 2008.

A. Shapiro, “Analysis of stochastic dual dynamic programming method,”
European Journal of Operational Research, vol. 209, no. 1, pp. 63-72,
2011.

Arild Helseth (M’10) was born on Stord, Norway in 1977. He received the
M.Sc. and Ph.D. degrees in electrical power engineering from the Norwegian
University of Science and Technology. Currently he works at SINTEF
Energy Research with hydro-thermal and hydropower scheduling models and
methods.

Marte Fodstad holds a Ph.D. in Industrial Economics from the Norwegian
University of Science and Technology. She has for more than 10 years been a
research scientist at the research institute SINTEF. Her main area of research
has been operations research applied within the natural gas and hydro power
industries.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



