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Here, we present the concept of an open virtual prototyping
framework for maritime systems and operations that enables
its users to develop re-usable component or subsystem mod-
els, and combine them in full-system simulations for proto-
typing, verification, training, and performance studies. This
framework consists of a set of guidelines for model coupling,
high-level and low-level coupling interfaces to guarantee in-
teroperability, a full-system simulation software, and exam-
ple models and demonstrators. We discuss the requirements
for such a framework, address the challenges and the possi-
bilities in fulfilling them, and aim to give a list of best prac-
tices for modular and efficient virtual prototyping and full-
system simulation. The context of our work is within mar-
itime systems and operations, but the issues and solutions we
present here are general enough to be of interest to a much
broader audience, both industrial and scientific.

1 Introduction
With operations that are becoming increasingly complex

and demanding, volatile economic conditions, stricter envi-
ronmental and safety regulations, and decreasing project lead
times, simulation methods have become a key indicator of
merit in early design phases within the maritime industry.
They allow for a quick exploration of the design space and
help to advance concepts into certain directions [1, 2]. Sim-
ulation methods also expose concept, interface, and safety
flaws, which, in turn, helps reduce risks and enhance opera-

tional performance and efficiency.

Traditional ship design is a sequential process [3]: De-
velopment is driven step-by-step and iteratively with each en-
gineering discipline using its own set of tools that are rarely
inter-operational. This complicates system level analysis and
verification significantly, and obscures errors and issues until
late in the design process when they are difficult and expen-
sive to fix. Because of this, there is now an increasing inter-
est in being able to fully integrate simulation techniques into
the ship design process for prototyping, verification, training,
and performance studies [4]. Through the development of
virtual prototypes it is possible to test the characteristics and
dynamics of a proposed concept early on, and expose possi-
ble issues long before the integration and prototyping stages,
during which they usually surface. This is especially im-
portant for the maritime industry which—unlike other indus-
tries such as automotive, aerospace, and railway—typically
has to provide one-of-a-kind solutions. Because of this, it is
hard to learn lessons and advance with a traditional sequen-
tial process, when designs are unique and different each time
around.

Virtual prototyping also holds the promise of substan-
tially simplifying the search for an optimal design and help-
ing to keep costs, risk factors, and environmental impacts
low. For a typical offshore supply vessel, for example, the
power consumption of the on-board equipment is significant
and will, to a large extend, determine the dimensions of the
energy systems. At the same time, there is an incentive to



minimize these dimensions from economic and environmen-
tal standpoints to keep the entire vessel as small as possible.

If the optimization of the overall system performance
is the goal, ship designs can, generally1, not simply be op-
timized for the performance of individual components and
subsystems, but need to be optimized with respect to total
operational performance. Only with the interactions between
components, the surroundings, control systems and software,
and operators properly accounted for, is it possible to choose
a system design with desirable characteristics—such as fuel
efficiency, maneuverability, and safety. With more advanced
operations requiring more power, interaction, and timing,
system performance simulation will become even more im-
portant in the future. Full-system simulation, however, re-
mains a challenging and elusive task for at least two reasons:

1. Typical maritime systems and operations are difficult
and complex to model and simulate by nature: they are
characterized by intricate interactions between a wide
range of physical and engineering domains, with dynam-
ics taking place on vastly different time scales, see Fig. 1.
Compare, for example, the slow dynamics of large me-
chanical systems to the fast response of electronic com-
ponents.

2. This complexity and diversity is reflected in a simulation
landscape that is riddled with specialized tools for differ-
ent physical and engineering domains, with different in-
terfaces and incompatible model representations. Some
existing simulation tools for maritime applications are
highly advanced in terms of quality, functionality, and
usability. But they are mainly developed with research
and the optimization of components and subsystems in
mind, and lack interconnection capabilities. General
software solutions, on the other hand, are too inflexi-
ble, and offer model development and configuration that
is too time-costly or inaccurate. Moreover, the mod-
els themselves span a wide range of complexities and
accuracies, including continuous as well as discrete be-
havior, and different focuses depending on the analyzed
phenomena. Consequently, understanding how different
subsystems interact with each other and how they influ-
ence overall system behavior becomes all the more chal-
lenging.

Traditionally, simulations of closely-coupled subsys-
tems are constructed from the ground up, resulting in mono-
lithic simulations for custom interfaces that are too applica-
tion specific, too customized, and too costly in terms of de-
velopment time. The ability to assemble re-usable and in-
terchangeable subsystem models into virtual prototypes in
a plug and play manner—regardless of the environment in
which they are developed—should cut down on development
times significantly and enable rapid innovation. Undoubt-
edly, this would be a big step forward for the maritime in-
dustry.

1Overall system performance can only be optimized in terms of the in-
dividual subsystems’ performance if those subsystems are entirely indepen-
dent of each other. A simplification which will not hold for all but the most
simple systems.

Fig. 1. Maritime systems and operations include a wide range of dif-
ferent engineering domains and physical systems with varying com-
plexity and time scales. This, naturally, makes full-system simulation
a challenging endeavor.

The integration of multi-physics simulations, human be-
havior, and multiple parallel maritime operations has already
been successfully demonstrated in operational training simu-
lators [5]. However, to date there are no universally agreed
upon methods or standards supporting total systems inte-
gration and the analysis of operational performance. The
project Virtual Prototyping of Maritime Systems and Oper-
ations [6, 4] (ViProMa) was initiated within the Norwegian
maritime industrial cluster by independent research organiza-
tions, universities, and industry partners2 with the goal of de-
veloping an open, standardized framework and architecture
for system simulation and virtual prototyping as a new plat-
form for product development and cooperation: the Virtual
Prototyping Framework (VPF). This framework includes

• guidelines for model coupling,
• high-level interfaces for coupling models from different

engineering and physical domains,
• low-level interfaces for coupling models from different

tools,
• a full-system simulation software,
• and example models and demonstrators.

It aims to make the communication between costumers, de-
signers, and product developers more efficient throughout
the design process. It also facilitates the consistency and
availability of objective Key Performance Indicators (KPIs)
if they are integrated into the prototyping system.

1.1 Outline
In this paper, we discuss the development of a com-

mon technology platform and infrastructure supporting vir-
tual prototyping and simulation-oriented work processes for
maritime systems and operations. The ViProMa project
serves as an exemplary framework that allows us to have a
closer look at the knowledge gaps and challenges with re-

2SINTEF Ocean, NTNU, VARD, Rolls-Royce Marine, and Det Norske
Veritas.



spect to the simulation of entire maritime systems and opera-
tions. The aforementioned guidelines, which are at the heart
of the VPF, are continuously summarized and emphasized on
throughout the text. While the context of the present work
is maritime systems and operations, we would like to empha-
size that the challenges discussed and the solutions presented
here are broadly applicable. They should, thus, also be of in-
terest and value to people outside of the maritime sector.

First, we give a brief overview of the requirements for
a virtual prototyping framework for the maritime industry
in section 2. In section 3, we discuss the development of
a common architecture for system simulation (the VPF). We
review different simulation approaches and justify our choice
of using co-simulation (simulator coupling) in ViProMa. We
then touch upon the formidable task of defining standard-
ized domain model interfaces in section 4, in order to es-
tablish a modular framework with high interoperability and
re-usability and a focus on maritime applications. Section 5
brings these concepts together in order to elaborate on the
construction of full-system models and the underlying chal-
lenges. We then discuss our decision to write our own in-
house co-simulation software in section 6, where we also
present the challenges faced and the progress made so far.
Finally, we provide a conclusion and share our thoughts on
future developments in section 7.

2 Virtual Prototyping Framework Requirements
The requirements for a framework for virtual prototyp-

ing in the maritime industry are shaped by its most important
use cases. In terms of the ViProMa project, these are:

Vessel design. Comparison and optimization of concepts
with respect to fuel efficiency, capabilities, operabilities,
availability, maintainability, and opportunity for future
expansion. This also includes virtual sea trials, and the
testing of control systems and station keeping abilities.

Crew training. Extending the possibilities towards higher
realism and the inclusion of harsher environments, and
increasing the awareness of vessel and equipment limi-
tations.

Decision support. Choice of vessel for a specific voyage,
and aligning ship capabilities with weather windows and
equipment capabilities with specific operations.

Requirements are also dictated by the desired workflow that
such a framework should facilitate: After a model of a sub-
system has been developed, it is connected to the full-system
simulator. A scenario is then selected, the full-system simu-
lation run, and behavior and capabilities evaluated.

Within the ViProMa project, this lead to the following
core requirements imposed on the VPF. Note that while these
are specific to the project and the maritime industry, most of
them are highly relevant to a much broader area of applica-
tion.

1. There has to be support for distributed and cross-
platform operation due to heterogeneous technologies,
tools, and platforms, and the possibility for workload

distribution.
2. Human-in-the-Loop and Hardware-in-the-Loop, and,

thus, real-time operation, have to be supported for in-
tegration with training simulators, dynamic positioning
(DP) and other control systems, and various types of ma-
chinery and equipment. This also helps to save time in
factory acceptance tests.

3. The ability to use components as black boxes to protect
intellectual property and sensitive information has to be
implemented.

4. The framework must be license-free with no restrictions
on commercial use to prevent vendor lock-in, lower the
barrier of use, and guarantee a widespread commitment.

5. Increasingly rigid time constraints in the industry de-
mand sufficient performance with regards to the overall
prototyping process, as well as the simulations alone.
In addition, strategies to achieve reasonable accuracy
and stability of full-system simulations need to be es-
tablished and implemented.

6. The framework has to be sufficiently easy to use and pro-
vide well-defined interfaces in order for the industry to
actually adopt and use it. This is also crucial in light of
future development and maintenance of the framework.

7. It should have a complete component database contain-
ing at least generic domain models of varying model
complexity. Because final designs are often re-used to
save money and time, the database should also be easily
searchable.

The following sections are devoted to addressing the chal-
lenges and possibilities in realizing these core requirements.
Due to limitations in funding and time, however, some of the
requirements listed here were only partially or not at all ful-
filled within the scope of the ViProMa project. This will be
commented on in Sec. 7.

3 Distributed Co-Simulation
In setting out to prototype and simulate a complex mar-

itime system (such as a modern offshore supply vessel),
and capture all its relevant dynamics and interactions, one
quickly realizes that the traditional monolithic simulation ap-
proach is too inflexible, too costly, and too inefficient. A
model of an entire vessel usually takes a long time to get
ready for simulation, if constructed from the ground up, and
re-use is often prohibited when faced with similar problem
sets due to the developed model being too customized and
too application-specific.

It is clear then, that a modular approach, in which mod-
els of the relevant subsystems are interconnected and simu-
lated together, is favorable to cut down on cost and devel-
opment time. This also means that the process of making
changes to a subsystem should be effortless, in the sense that
it does not require modifications of any other parts of the
full-system model (i.e., the open-closed principle should be
adhered to). There are, generally, three methods to combine
several models [7]:



1. The use of a common modeling language into which all
models are translated for the purpose of the simulation,

2. the exchange of models between tools to run a simula-
tion in one of them (model exchange),

3. and co-simulation (simulator coupling).

Considering the requirements discussed in Sec. 2, the first
two modeling approaches have several drawbacks:

• General software solutions are, typically, too inflexible,
and offer model development and configuration that is
too time-costly or inaccurate.

• In general, they neglect the availability of matured and
specialized domain-specific analysis software for mar-
itime applications.

• Users are reluctant to change modeling languages or
tools, as doing so is a major undertaking in practice,
and may render investments in tool chains and training
worthless.
• The choices for a suitable common modeling language

or tool are strongly limited if the development of an open
framework for systems simulation and virtual prototyp-
ing is the goal.

In addition, the use of a common modeling language some-
times means abandoning the black box approach that protects
Intellectual Property Rights (IPRs) and sensitive information.
Model exchange, however, may play a vital role in future de-
velopments for full-system simulation, and we shall touch
upon this briefly in Sec. 5.3.

Fig. 2. In a co-simulation setting, different tools and models are in-
terconnected and used independently and in parallel to form a full-
system simulation.

As mentioned previously, the fact that typical maritime
systems and operations are comprised of a wide range of
physical and engineering domains naturally leads to a rather
heterogeneous simulation landscape, with specialized tools
and proprietary model representations. While this may seem
like a rather poor starting point for full-system simulation
and virtual prototyping, it is precisely this modular struc-
ture of complex engineering systems, in conjunction with

the availability of well-established domain- and application-
tailored software, that lends itself quite well to co-simulation,
see Fig. 2. The remainder of the present section is devoted to
a discussion of the co-simulation approach and a brief review
of existing co-simulation software and standards.

3.1 Co-Simulation
The basic idea behind co-simulation is the construction

of systems from loosely-coupled stand-alone models and the
simulation across different subsystems. Co-simulation facil-
itates the independent exchange and modification of com-
ponents, and the use of the most suitable tools and solvers
for any given subsystem. This also extends to the possibil-
ity of separately taking care of initialization, pre-processing,
time integration, and post-processing with different special-
ized tools. This is very advantageous, because it allows for
rapid and accurate model development that makes efficient
use of already available modeling software and languages
without major investments in new tool chains or training. Co-
simulation further has the potential benefit of significantly re-
ducing simulation time by using model-specific solvers and
internal step sizes, and by allowing for the distribution of
computational loads onto different computers or processor
cores. The possibility to conveniently hide internal dynamics
and protect sensitive information is another attractive trait of
simulator coupling, especially from an industrial perspective.

Guideline 1 (Model coupling). Use co-simulation to con-
struct full-system models from loosely-coupled stand-alone
models and modules.

Mathematically, co-simulation corresponds to the mod-
ular time integration of subsystems that are assumed to be
independent in between discrete communication points ti ∈
{t0, t1, . . . , tN}. The interactions between the subsystems are
only realized at these time points, and are expressed in the
form of interface constraint equations,

uuu(ti) = LLLyyy(ti), (1)

where LLL is a connection graph matrix relating the inputs uuu
and the outputs yyy. This happens at a rate corresponding to
a macro step size ∆ti, such that ti+1 = ti +∆ti. In general,
there is no guarantee that the pieces play together nicely,
though. Time synchronization and data exchange are impor-
tant tasks, consequently, and sound and efficient communica-
tion between subsystems implies an adequate understanding
of the architecture.

Remark 1.1. Be cautious when selecting coupling method
and co-simulation (macro) step size to avoid accuracy and
stability issues.

Because input variables are unknown to the subsystems
during the time integration ti → ti+1 and, thus, need to be
approximated (and are often held constant), co-simulation
brings its own set of stability and accuracy issues. Most
commonly, this is remedied by selecting a sufficiently small



macro step size. At the same time, demands to keep the com-
putational cost within reasonable bounds may, generally, re-
quire a lower limit, especially for real-time applications.

Remark 1.2. For linear systems, the macro step size can be
chosen from the eigenfrequencies, but it may be very difficult
to find a good choice for nonlinear problems.

In addition, there are several other subtleties and chal-
lenges to co-simulation accuracy and stability. For example,
the presence of algebraic loops can result in instability [8],
and the presence of different time integration methods can
actually decrease the overall accuracy of the full-system sim-
ulation to below the minimum accuracy of the individual sub-
systems [9]. In general, the development of an efficient and
robust co-simulation method that is easy to use and gener-
ally applicable is still ongoing research [10]. Additionally,
it is not always clear beforehand where to draw subsystem
boundaries, and how to choose a set of ‘good’ interface con-
straint equations. Such factors can play a significant role in
determining stability and accuracy, as we shall see in Sec-
tion 5.

The ViProMa project tried to address many of these is-
sues through original research:

1. A novel Energy-Conservation-based Co-Simulation
method [11, 12] (ECCO) was developed within
ViProMa. It gives readily available feedback on global
simulation quality, and significantly improves the accu-
racy and efficiency of non-iterative co-simulations. We
shall discuss it briefly in Sec. 4.1.2.

2. Additionally, an analysis tool for global stability in lin-
ear distributed dynamical systems has been proposed by
combining dynamic stability and solver stability [13],
both of which are intimately linked through local and
global time steps. Under certain conditions, an alge-
braic solution of the total system can be constructed, and
probed for global stability. However, this procedure can
be very time consuming, and is only applicable for linear
dynamical systems. Extensions to nonlinear dynamical
systems have been studied as well, but the correspond-
ing work is still ongoing.

The task of establishing an efficient and robust general-
purpose co-simulation methodology is far from completed,
however. Especially numerical stability is a nontrivial sub-
ject to study due to the inherent complexities (different solver
methods of various orders, different coupling schemes of var-
ious orders, the presence of direct feed-through and algebraic
loops, et cetera).

There exist non-iterative (explicit) and iterative (im-
plicit) schemes to couple subsimulators in a co-simulation,
and time steps can be performed in parallel (Jacobi scheme)
or in serial (Gauss-Seidel scheme). The simplest and most
straight-forward of all schemes is the explicit one with con-
stant input approximation. It is easiest to realize, keeps the
exchange of coupling data to a minimum, and does not re-
quire the repetition of entire macro time steps (rollback). Be-
cause of this, it is frequently used in industrial applications,
and has also been the main focus for the ViProMa project so

far. It does, however, exacerbate the aforementioned stabil-
ity and accuracy issues that co-simulation brings about natu-
rally.

3.2 Existing Co-Simulation Software and Standards
Among existing solutions for performing distributed co-

simulations, the most prominent one is probably the High-
Level Architecture (HLA). HLA is not one specific software
package; rather, it is a standard which describes a general-
purpose co-simulation architecture. It was initially devel-
oped by the US Department of Defense for use in wargaming
and training simulations, and was eventually made an IEEE
standard. The latest version of this is IEEE 1516-2010, com-
monly called HLA Evolved [14]. Several HLA implementa-
tions exist today, both commercial and free.

Similar architectures include the Distributed Interactive
Simulation [15] (DIS), which is the precursor of HLA and
is even more geared towards military applications, and the
Common Simulation Interface [16] (CSI) developed by SIN-
TEF Ocean for the purpose of maritime vessel simulations.

These architectures are designed around the concept of
a federation, which is a group of independent subsystems
(federates) that communicate through a common Run-Time
Infrastructure (RTI). The RTI is responsible for routing sig-
nals between the federates and for time synchronization. The
federates may be numerical simulations, hardware interfaces,
human interfaces, et cetera. Oft-stated advantages of HLA
include interoperability, in that federates may run on differ-
ent platforms and use different simulation methods, and re-
use, in that federates used for one simulation may be easily
re-used in another. However, because the wire protocol be-
tween the federates and the RTI is not standardised, a feder-
ate created for one HLA implementation generally can’t be
used with a different implementation. This, along with other
reasons which will be explored in Section 6, is why HLA
was deemed unsuitable for the VPF.

Another standard we will mention here is the Functional
Mock-up Interface (FMI), which, unlike HLA, offers a way
to make subsystems binary compatible with each other, thus,
removing the need for recompilation and facilitating model
sharing and co-simulation. FMI has become a key compo-
nent of the VPF, and we shall therefore describe it in more
detail in section 4.2.

4 Simulator Interfaces
In order to ensure interoperability, modularity, and re-

use between different models and simulators, well-defined
interfaces are needed. Such simulator interfaces are a set of
conventions that, if adhered to, allow a simulator to be cou-
pled with other simulators using some co-simulation middle-
ware. Here, we distinguish between two levels of interfaces,
which we shall refer to as high-level and low-level interfaces.

A high-level interface is concerned with the concepts
which are being modeled and simulated. That is, it deals with
what a simulator represents on a physical level and the physi-
cal interpretation of data exchanged between simulators. For



example, it is crucial that the value of an output variable
which represents a force in units of kN in one simulator is not
used for an input variable which represents a force in units
of N in another—or one which represents, say, a voltage. A
high-level interface could prevent this by either mandating
that certain quantities must have specific units, or by defining
some mechanism whereby the units can be communicated,
so that the co-simulation middleware can make the necessary
value adjustments and/or prevent invalid connections. On top
of this, the interface can define groups of variables which to-
gether have some physical significance. An example of these
are power bonds, which are pairs of variables that represent
different means of power transfer between entities. Power
bonds are discussed further in section 4.1.

Finally, at the highest level, one can define interfaces
that represent categories of components or subsystems in
the system being simulated. For example, one could define
that an ‘engine’ has a power bond for rotational mechanical
power and an output variable which represents fuel consump-
tion. Then, any simulator which adheres to this interface
could be used to represent an engine, and could be replaced
with any other simulator that has the same interface. This
opens great possibilities for ‘plug-and-play’ construction of
complex system models and, consequently, rapid evaluation
and optimization of different designs.

The high-level interfaces are necessarily underpinned by
one or more low-level interfaces, which are concerned with
the finer details of how the co-simulation middleware inter-
acts with the simulators. At the lowest level, the physics
involved are completely disregarded, and there is nothing
preventing one from, for example, coupling a force variable
with a voltage variable; the interface deals in bits and bytes,
not newton and volt. One example of a low-level interface
is what is known as an application binary interface (ABI).
Among other things, an ABI defines how different types of
data, such as integers, real numbers and textual data, are
represented in computer memory. Complementary to this is
an application programming interface (API), which specifies
the names of program functions, which data they receive and
return, and, to some extent, what the functions do. For the
VPF, the choice fell on the Functional Mock-up Interface,
which defines a simulator API and more. This is discussed
further in section 4.2.

4.1 High-Level Interfaces
Power and energy are the universal currencies of phys-

ical systems. Energy is conserved and continuous: energy
flows out of, or into, a system are always accounted for by
appropriate energy storage and dissipation. This is the theo-
retical foundation of bond graph theory [17, 18], which bal-
ances energy flows for each subsystem separately. This way,
they can be connected together in a modular fashion, while
satisfying energy conservation and continuity for the entire
system. The energetic couplings between (sub)systems are
realized with so-called power bonds, which are defined by a
pair of power variables: a flow and an effort. Their prod-
uct is always a physical power—such as force and veloc-

ity, pressure and flow rate, or voltage and current. The use
of power bonds provides a complete and universal, energy-
flow-centered connectivity between mathematical models of
different engineering and physical domains. As pointed out
recently [11], they are thus perfectly suited for high-level in-
terfaces for co-simulation.

Guideline 2 (High-level interfaces). Properly define and use
high-level interfaces to guarantee interoperability of simula-
tion models. Make use of power bonds to model the flow of
energy between subsimulators whenever possible. The use of
SI units is highly advised. If other units are used, explicitly
and clearly document so.

4.1.1 Power Bonds for Co-Simulation
A power bond between two coupled simulators is real-

ized by connecting two input–output pairs. For example, a
model of an electric generator could have a voltage as an
output, which a connected electric consumer model would
receive as an input. In turn, the consumer would output an
electric current, which the generator model accepts as an in-
put. These two exemplary models are then coupled via a
power bond.

Demanding that physical couplings between simulators
are realized through power bonds has a major advantage:
it allows to study the flow of energy between the subsys-
tems directly using nothing but the simulator coupling val-
ues. In fact, it makes it possible to directly observe if and
where the conservation of energy is violated throughout a co-
simulation, which, in turn, helps identify potential simulation
issues, and provides valuable and immediate feedback about
the quality of the results.

4.1.2 Residual Energies and Energy Conservation
In general, energy is incorrectly transferred between two

coupled simulators due to the fact that their states are evolved
independently of each other between discrete communica-
tion time points, see Fig. 3. In effect, energy is either created
or destroyed through the co-simulation coupling during each
macro time step [19]. This residual energy directly alters
the total energy of the overall coupled system [11]. It thus
changes its dynamics, deteriorates simulation accuracy, and
may pose a threat to numerical stability.

Guideline 3 (Error estimation). Use an error estimation
method to assess and control co-simulation coupling errors,
and guarantee the quality and validity of the simulation re-
sults.

Remark 3.1. The use of the Energy-Conservation-based Co-
Simulation method (ECCO) for reliable co-simulation error
estimation is recommended. It is easily implemented, com-
putationally inexpensive, and does not require the repetition
of entire co-simulation step sizes.

If power bonds are used, such energy residuals are con-
veniently calculated from the coupling variable values alone.
These concepts are exploited by ECCO to obtain global error
estimates. Unlike virtually all other proposed co-simulation



S1 S2Pk1
Pk2

δPk

Fig. 3. A residual power δPk =−(Pk1 +Pk2) emerges and distorts
the dynamics of the full system when energy is exchanged between
two subsimulators, S1 and S2, in a co-simulation

schemes, ECCO requires neither rollback nor any specific in-
formation on model implementations.3 Consequently, it does
not prohibit the use of commercial or legacy software (which
often makes rollback inefficient or impossible), and it helps
protect IPRs. Because of this, it is especially attractive from
an industrial perspective. In addition, it accurately tracks cou-
pling errors, even for relatively very large time steps, beyond
which stability is already compromised, see Fig. 4.

10-4 10-3 10-2 10-1
10-1

100

101

102

103

104

105

Dt

D
P

0.05 0.075 0.1
100

1020

1040

Fig. 4. Energy-conservation-based error estimation (red) compared
to the actual error in the power ∆P (gray) as a function of the co-
simulation step size ∆t for the benchmark model in Ref. [11]. The
critical step size is ∆t ≈ 0.059s

Remark 3.2. It is advisable to use methods which adaptively
control the co-simulation step size. The use of ECCO for
step size control is recommended to ensure approximately
accurate energy transfers between subsimulators.

An adaptive control of the macro step size can easily be
realized based on ECCO’s error estimate. This can improve
the accuracy and efficiency of co-simulations substantially:
depending on system reticulation and subsimulator-internal
solver accuracies, reductions in the error of 93 % or more can
be observed in benchmarks—at no additional computational
cost [11, 12]. In practice, models may not support variable
macro step sizes, however, generally leaving the potential for
more accurate and more efficient co-simulations untouched.

3 To the best of our knowledge, the only other co-simulation method for
error estimation and adaptive step size control with these qualities is the one
described in Ref. [20].

Remark 3.3. If power bonds are not applicable, other co-
simulation methods for error estimation and adaptive step
size control can be used, see Ref. [11] and references
therein. Almost all of these require the repetition of entire
co-simulation step sizes and simulator-internal information,
however.3

4.2 Functional Mock-up Interface
The Functional Mock-up Interface (FMI) is a tool inde-

pendent standard for the exchange of dynamic models and
for co-simulation [21]. The first version of the standard was
published in 2010 as a result of the ITEA2 project MOD-
ELISAR. Since 2011, maintenance and development of the
standard have been performed by the Modelica Association,
and a second version of the standard was released in 2014
[22].

FMI specifies that models should be packaged as func-
tional mock-up units (FMUs), which are archive files that
contain model code for one or more platforms, along with
metadata and documentation. The standard defines the for-
mat and structure of files and directories in an FMU, as well
as the APIs that must be implemented by the model code.
These APIs are defined in terms of the C programming lan-
guage which, being the lingua franca of programming, al-
lows FMUs to be written in, and used from, practically any
other language.

The FMI standard consists of two main parts: FMI for
Model Exchange and FMI for Co-Simulation. FMI for Model
Exchange specifies an interface for models that represent dif-
ferential, algebraic, and discrete equations, which are typi-
cally coupled with and solved together with other models in
some simulation software. Important here is that the solver
is supplied by the simulation software and is not part of the
FMU code. In contrast, FMI for Co-Simulation, which we
shall focus on here, defines an interface for models which
are bundled with their own solvers, and which can, there-
fore, be seen as separate simulators in themselves. Several
such ‘subsimulators’ will typically be coupled together in a
co-simulation environment, a piece of software that enables
data exchange between the subsimulators, and keeps them
synchronized in time. All data exchange takes place at com-
munication points (sometimes called synchronization points),
between which each model is solved independently from the
others by its own solver. Note that we use the terms ‘model’
and ‘simulator’ freely here; in practice, there is nothing pre-
venting these entities from being interfaces to hardware such
as sensors, actuators, or devices for human input.

FMI for Co-Simulation is based on a master/slave model
of communication and control, where subsimulators are
slaves that are controlled by a master algorithm. The sub-
simulators do not have any information about each other, nor
about the simulation environment, except for the values they
receive for their input variables. Thus, they have no knowl-
edge about or control over which other subsimulators they
are coupled to; the data is routed by the master algorithm.

The FMI standard is a fitting choice for maritime appli-
cations for three main reasons:



1. It was created in collaboration with the automotive in-
dustry for many of the same reasons that we aim to de-
sign the VPF for the maritime industry.

2. The standard is already supported by a large number
of tools, for example by Dymola, JModelica.org, SIM-
PACK, SimulationX, and Simulink.

3. FMI is completely open and free to use for any purpose.

Finally, a decisive reason to choose FMI was that the alter-
native seemed to be to define a new interface and, to a large
extent, reinvent the wheel.

Guideline 4 (Low-level interfaces). Use the Functional
Mock-up Interface to ensure compatibility between different
simulation tools and languages. Packaging subsimulators as
functional mock-up units makes them tool independent and
re-usable.

It should be emphasized at this point that FMI only spec-
ifies how the (co-)simulation software interacts with the mod-
els; it is not in itself a simulation software, nor does it spec-
ify or restrict any other parts of the architecture of such a
software. More to the point, in a distributed co-simulation
setting, FMI does not say how, or in what format, data are
transported between the simulation nodes, nor how the nodes
are time synchronized. As such, FMI support can be imple-
mented in almost any type of simulation software, and, in-
deed, the number of tools that support this standard is large
and growing quickly [23].

Remark 4.1. Whether or not any given FMU is compliant
with the FMI standard can be checked with the free FMU
Compliance Checker [23].

As an interesting side note, Awais et al. have proposed to
use HLA as a co-simulation environment for FMI-based com-
ponents [24]. This is despite the fact that HLA’s federation
model stands somewhat in contrast to FMI’s master/slave
structure: federates are not passive slaves that simply wait to
be given anonymous input data, but instead actively request,
by name, the data they require. The findings by Awais et al.
appear to reflect this. Their conclusion is that it is technically
possible to use HLA as an FMI master, but to be able to make
properly generic ‘FMU federates’, the FMI standard must be
extended so that the name mapping between federation data
and FMU variables can be specified in the FMU metadata.

One aspect of FMI which should be mentioned here, as
it has an impact on the model structures discussed in Sec. 5,
is the fact that FMUs are, for most practical purposes, closed
for modification. That is, once an FMU has been created,
there is no simple way to modify its behavior nor its external
interface. The model code is typically stored in compiled bi-
nary code form, and the numbers, types, and names of input
and output variables are fixed. In some contexts, this puts se-
vere limits on scalability. For example, imagine that we have
an FMU that models a body which is acted upon by external
forces. Then, we have to decide upfront, at model construc-
tion time, on a maximum number of force inputs. If more
forces are needed, the model source code must be modified
and a new FMU compiled, or the force summation (and pos-
sibly coordinate transformations) must take place externally.

Also note that while FMI shows enormous potential
and is continuously and actively refined, it also has various
deficiencies. Some aspects of co-simulation are altogether
poorly addressed by the standard, and because limitations are
often rather subtle, it is well worth pointing them out. For ex-
ample, it is possible to design FMUs and master algorithms
that are standard compliant but exhibit nondeterministic and
unexpected behavior [25]. It is also not directly clear how
non-continuous models can be encoded as FMUs [26,27,28].
Furthermore, FMI 1.0 has no general rollback mechanism
beyond the previous macro time step, while FMI 2.0 makes
rollback only optional, and error control is not addressed by
FMI at all [25].

5 Model Construction
Let us now bring together the theoretical concepts and

principles from the previous Sections 2–4, and apply them
to the construction of full-system models from stand-alone
components and submodels. We shall first elaborate on some
general considerations and common challenges, before we
reap the fruits of our efforts and move on to discuss some
model examples at the end of the present section.

5.1 Subsimulators
Subsimulators represent the various components which

are connected together to form a full-system simulator. It
is important to note that this concept does not only include
time-dependent physical systems. The actual functionality of
a subsimulator is at the complete discretion of its developer,
and includes:

• mathematical models of physical systems evolving over
time,

• control system implementations,
• scenario controllers (units which control and steer a sim-

ulation, e.g., by changing parameters during runtime),
• hardware interfaces (e.g. to allow direct hardware input

to the simulation),
• and bridging to other software or co-simulations.

This list is not exhaustive by any means, and several other use
cases are possible. That some of these may warrant the use
of a different concept will be the subject of Section 5.5. But
first, let us discuss the boundaries between subsimulators.

5.2 System Boundaries
When modeling a complex system composed from many

different subsystems in a co-simulation environment, one of
the many challenges is to determine where to draw the bound-
aries between the separate modules. To exemplify this, con-
sider simulating a ship which consists of a power system,
propulsion units, and a hull. A few examples of how to di-
vide such a system into different subsystems are shown in
Fig. 5: One option is to include everything in one single sub-
simulator, but this makes changes difficult or impossible to
perform for users not having access to the subsimulator im-



plementation. By splitting the total system into several parts,
the modularity will increase, but so will the complexity.

Where to draw the line is very much up to the designer,
but it should be motivated by what is under investigation.
Typically, a higher level of modularity makes it easier to in-
clude individual models of high fidelity. Therefore, a seem-
ingly good rule-of-thumb is to keep modularity and fidelity
high in parts of the system that are of interest, while lowering
them for the rest of the system. This is exemplified by Fig. 6
which shows a model with high modularity in the power sys-
tem. The entire remainder of the ship is captured inside only
one subsimulator, by contrast, and its only purpose is to pro-
vide ‘good-enough’ dynamics to give studies of phenomena
in the power system the necessary embedding. Keep in mind,
however, that there needs to be a trade-off between this mod-
eling modularity on one hand, and accuracy and stability on
the other: as discussed in Sec. 3.1, higher modularity may,
generally, decrease the overall accuracy for the part of the
system under investigation, and, therefore, for the entire co-
simulation.

Guideline 5 (System reticulation). Try to obtain a good
balance between modularity, complexity, accuracy, and nu-
merical stability when splitting up a given system for co-
simulation. Beware of time delays between subsimulators,
and consider that accuracy may suffer with increasing mod-
ularity. At the same time, try to provide a sufficient level of
modularity to facilitate interoperability and re-usability of
models.

Remark 5.1. The way a given system is split up for co-
simulation generally affects accuracy and stability. An ill-
chosen system reticulation can cause a significant deteriora-
tion of the quality of the co-simulation results, or even an
entirely unstable simulation.

As an example, consider the two different system retic-
ulations for the simple linear quarter car benchmark model
studied in Ref. [11]: Mean global errors can easily vary by
a factor of ten between different reticulations, and relatively
large (constant) macro step sizes, which cause no issues with
one reticulation, lead to instability with the other. Another
practical example is given by the development of a Dynamic
Positioning (DP) controller for ViProMa. The two main parts
of such a controller are a high-level motion controller and
a Thrust Allocation Algorithm (TAA). The initial DP con-
troller design kept the high-level motion controller and the
TAA in two separate subsimulators. This seemed like a good
idea from a modularity perspective, because it allowed to
easily swap out or modify either of the two independently.
However, experience showed that the additional macro time
step delay introduced by splitting the DP controller this way
made the two parts much more difficult to tune, and fragile
to changes in the macro time step size. Putting both, the high-
level motion controller and the TAA, inside one subsimulator
greatly improved the tunability and robustness.

5.3 Tight Coupling
Another important issue, which kept resurfacing when

establishing the VPF, is how to sensibly deal with tightly-
coupled subsystems. Consider, for example, the rigid me-
chanical connection between a vessel’s hull and crane. Ide-
ally, such a connection calls for solving the hull–crane sys-
tem as one, and the straight-forward (explicit) co-simulation
of both as separate subsimulators with separate solvers is un-
feasible. In other words, it may be best to simply refrain
from splitting tightly-coupled systems for co-simulation alto-
gether.

Guideline 6 (Tight coupling). Avoid exposing tight cou-
plings on the system level whenever possible in order to min-
imize coupling errors and avoid issues with numerical stabil-
ity.

This, however, challenges the general and modular vir-
tual prototyping and full-system simulation approach that is
so desirable from a practical point of view. It may still be
possible to allow for sufficient flexibility in a large number
of applications if generic models are used that offer sufficient
parameterization. But in some cases it may simply be imprac-
tical to avoid exposing tight couplings between subsimula-
tors, and several strategies have been proposed as solutions:

1. The most common approach is to include dampers and
springs in one of the models. This works fine in practice,
but has some notable drawbacks: Firstly, suitable param-
eters need to be found to configure these additional el-
ements. This, secondly, means that the relatively stiff
springs and strong dampers required introduce relatively
small time constants, which can easily become a chal-
lenge for co-simulation.

2. A possibly very fruitful approach is to implement tightly-
coupled subsystems using model exchange. Then, the
models can be shared and modularly integrated, while
they are being solved jointly by one solver. While this
generally still satisfies the black box criterion, it may
mean abandoning well-established simulation tools for
some users. It could also proof difficult to find appropri-
ate open software solutions enabling the use of model
exchange in a co-simulation environment.

3. Yet another way of dealing with rigid coupling is to
use advanced iterative co-simulation approaches utiliz-
ing subsimulator outputs along with their respective Ja-
cobians. An example of this is the Interface Jacobian-
based Co-Simulation Algorithm [29], in which coupling
conditions are solved iteratively with Newton’s method.
Unfortunately, such approaches are presently mainly of
academic interest: generally requiring Jacobians from
subsimulators—along with their ability to redo macro
time steps—is simply an unrealistic condition short-
term and medium-term.4

4. Finally, one can neglect the effects of one of the subsys-
tem on the other. For example, a hull simply dictates
the position of a crane attached to it, while the forces

4In the long run, however, such co-simulation techniques are very
promising, and will hopefully become the status quo.



Fig. 5. Different levels of modeled modularity of systems on board a ship

Fig. 6. Example of system modularization for a ship model with a
special focus on power-system dynamics

sent back to the hull are only due to the crane’s inertia.
This approach is only sufficient, however, if an accurate
representation of the forces is not desired.

As reflected by these choices, tight coupling is a complex
and sensitive issue for virtual prototyping and co-simulation,
and requires further research. For the time being, the best
course of action will be determined by the case at hand, and
can hopefully be found with the examples given here.

5.4 Connections
Connections define the interactions between subsimula-

tors and are intimately interrelated with the system reticula-
tion. Therefore, they need to be treated and implemented
carefully. Mathematically, connections are expressed via the
connection graph matrix LLL of Eq. (1), but in a co-simulation
they are only enforced at discrete communication time in-
stances. This, naturally, creates challenges for accuracy and
stability, as discussed in Sec. 3.1.

As we have just seen, system boundaries need to be cho-
sen sensibly, as to not compromise modularity, simplicity, ac-
curacy, and numerical stability. At the same time, factual
interactions between parts of a system and with the environ-
ment need to be captured accurately, given their relevance
to the use case at hand, available computational capabili-
ties, and modeling abilities and knowledge. Physical con-
nections between subsystems are implemented as high-level
interfaces between subsimulators, as discussed previously in
Sec. 4.1. In doing so, ensuring the compatibility and correct
wiring between the corresponding subsimulator inputs and
outputs is of great importance. Let us elaborate on this point
in the next two Sections 5.5 and 5.6.

5.5 Function Units
In order to connect the output of one subsimulator to the

input of another, it may be necessary to apply some simple
transformation in between. For example, in order to match
an output’s unit to that of an input, a conversion from rad/s
to rpm could be needed, or a simple summation, to satisfy
Kirchhoff’s circuit laws or compute the net force acting on a
body (see Fig. 7). Another example includes cases where the
number of connections for a given subsimulator is variable
or unknown.

In order to maintain modularity and ease-of-use, such
transformations should not take place inside the subsimula-
tors, nor should they be taken care of by a master, or hard-
coded into the signal routing. One solution is to deploy a
subsimulator between the others, dedicated to translating its
input into an appropriate output form. While this does work,
it has the unfortunate drawback in that it leads to an addi-
tional time delay between the original output and input the
length of one macro time step.

To avoid this, the theoretical concept of so-called Func-
tion Units (FUs) was introduced. These act very much like
subsimulators, but they are time independent and perform
their calculations in between macro time steps, at commu-
nication points. Transformations between inputs and outputs



are, thus, carried out efficiently between time steps, can be
easily applied in a modular and flexible fashion, and do not
introduce unwanted time delays. In addition, Function Units
are also well suited to represent dynamics on timescales that
are much shorter than the ones that are relevant for the prob-
lem being studied. For example, in a simulation of a ship
and its propulsion machinery, many electrical infrastructure
components, such as switchboard breakers, would be ideal
candidates for Function Units.

Guideline 7 (Function Units). Use dedicated time indepen-
dent submodules for unit conversions, coordinate transfor-
mations, signal algebra, and other generic operations be-
tween subsimulators during a simulation, as well as to in-
clude (approximately) instantaneous phenomena. This en-
sures modularity and ease-of-use, and avoids unnecessary
time delays.

Mathematically, this concept corresponds to a general-
ization of the connection graph matrix of Eq. (1), such that

uuu(ti) = LLL
(
yyy(ti), ti

)
, (2)

where LLL is now, in general, a function of the outputs yyy and
the time. Common linear transformation—such as unit con-
versions, summations, and coordinate transformations—may
still be simply expressed in the form given by Eq. (1), how-
ever.

It needs to be emphasized at this point that the concept
of Function Units is mainly a theoretical one, and is still
awaiting proper practical verification. Yet, their versatility
and independence on time makes them essentially indispens-
able for constructing complex full-system models from re-
usable stand-alone subsimulators: virtually any type of code
can be put inside an FU, and changes can quickly and easily
be made on the system level after all the subsystem modeling
is done.

5.6 Hybrid Causality
The computational causality of a subsystem also plays

an important role in defining the connectivity with other sub-
systems. In some cases, the causality and, thereby, the con-
nectivity of a subsimulator are difficult to determine before-
hand without knowledge of the connecting environment.

To illustrate this causality–connectivity dependency,
consider a simple mass–damper–spring system. Using inte-
gral causality, it may be written as

ẋ1 = x2,

ẋ2 =
1
m
(τ−dx2− kx1),

(3)

where x1 and x2 are the position and the velocity of the sys-
tem, respectively, m is the mass, d is the damping coefficient,
k is the spring stiffness, and τ is an excitation force given to
the system as an input. If power bonds are used to connect

to other subsimulators in accordance to Guideline 2, the out-
put of the mass–damper–spring system is given by x2. But
Eq. (3) can also be written using differential causality, such
that

ẋ1 = v,

τ = m
dv
dt

+dv+ kx1.
(4)

Input and output have been switched, with the velocity v now
constituting the input, while the output is given by the force
τ. Both these causality options, and, thereby, connectivity
options, may be equally relevant, depending on the subsimu-
lator environment in the full system. Note that one state was
lost from switching from integral to differential causality.

Different strategies exist to resolve conflicts in computa-
tionally causality between subsimulators: The model in ques-
tion can simply be implemented with a specific causality and
connectivity. This is a quick and easy fix, but it is depen-
dent on the full system specifics, and not very attractive from
a modularity point of view. Alternatively, the interface con-
straint equations (1) can be solved iteratively. As mentioned
in Sec. 3.1, it is often preferred to avoid the repetition of
entire co-simulation time steps, however, and to employ ex-
plicit co-simulation schemes instead. This leaves us with
the final option of implementing the subsimulator as a hy-
brid causality model, that is, with the possibility to switch
between different causality options—in some cases even on-
line during a simulation.

Guideline 8 (Hybrid causality). For subsimulators where the
preferred causality–connectivity option is difficult or impos-
sible to determine without prior knowledge of the connect-
ing environment, the subsimulators may be implemented as
hybrid causality models to ensure compatibility with other
subsimulators in the co-simulation environment.

Remark 8.1. There are a few subtleties when switching
causality on-line during a simulation: For one, the state space
changes, which either requires a solver that is suited for both
systems, or the switching of the solver along with the model.
Secondly, initial conditions need to be chosen carefully in
order to not violate the conservation of energy, and to avoid
discontinuities in the input and output signals.

Hybrid causality models can be implemented in sev-
eral different ways. For example, two models with different
causality options can be implemented in parallel as one sub-
simulator and switched between. The switching itself can
depend on logical choices, and active and passive inputs and
outputs. Note that the submodel with differential causality
may need to be solved by a more advanced numerical solver.
A different approach [13] is the use of a low-pass filter—
effectively acting as an integrator—to regain the state that
is lost when switching from integral to differential causality,
as in the case exemplified by Eqs. (3) and (4). This method
keeps the number of states in the system constant and re-
moves any need for iterations.



A typical application of hybrid causality models within
the realm of maritime systems is the modeling of weak ma-
rine power grids containing more than one energy source
(such as generators, batteries, or fuel cells). Because only
one source can determine the power grid voltage, the sources
need to be implemented as hybrid causality models, in gen-
eral. This is especially true if they are to be added and re-
moved from the grid during the simulation [30].

5.7 Model Examples
Now that we have set the stage, let us demonstrate the

application of the concepts discussed so far by use of exam-
ples from the ViProMa project. An extensive presentation
and discussion of these use cases is given in Refs. [31, 32].
Here, we will focus on their key points in light of the previ-
ous discussions.

5.7.1 Vessel Model
First, consider the system shown in Fig. 7, with a hull

model connected to propulsor models and a model of the
environment. In addition, a crane model is shown to illus-
trate the fact that there may be multiple subsystems acting
on the hull with a significant force. All of these are realized
as subsimulators (green). Additionally, FUs (blue) take care
of some simple signal algebra and additional time indepen-
dent calculations.

The power bonds connecting the crane and trawl models
to the hull are realized as force–velocity variable pairs, where
the velocity is a part of the hull output states. The propulsor
models here are RPM controlled, and so the variable pairs
constituting the corresponding power bonds are of the type
torque–angular velocity. They are thought to be connected to
an actuator which drives them (e.g. el-motor or diesel engine,
not shown). All propulsor subsimulators are also connected
to an FU labeled Additional propulsor calculations. Its func-
tion is to sum up all the forces, and to perform additional
calculations to determine the thrust loss for each propulsor
individually. Another FU, labeled External hull forces, sums
up all the forces acting on the hull, and applies the resulting
net force to its center of gravity. In order to do so, it also
requires knowledge about the various points of attack for the
forces, which it receives via the additional position signals.
All of these calculations are time independent and, thus, are
conveniently put inside of Function Units. Doing so also
brings about all the benefits of FUs discussed in Sec. 5.5: a
flexible number of inputs and outputs (to connect any num-
ber of subsimulators), the possibility to quickly modify the
signal algebra (to alter the thrust loss calculations, for exam-
ple), and (quasi-)instantaneous execution without any delay
in logical time.

Note that the dynamic interaction between the hull and
the crane is considered tightly coupled, and has been dis-
cussed in detail in Ref. [33] in which the hull–crane system
has been modelled within one subsimulator, in accordance
with Guideline 6. Alternatively, the hull–crane interaction
can be exposed on the co-simulation level [13] (as shown in
Fig. 7), keeping in mind the discussions from Sec. 5.3.

Fig. 7. Illustration showing how propulsors, crane, trawl, and envi-
ronment subsimulators have been connected for ViProMa. The sys-
tem includes subsimulators (green) as well as Function Units (blue).

The current state of environment modeling—specifically
waves—in the ViProMa project is that principal data, such
as wave height, wave period, and wave spread, are specified
for each dependent subsimulator individually. [32, 34] In the
present example, this is the case for the Hull and Additional
propulsor calculations subsimulators, both of which use the
same underlying implementation to realize the wave spec-
trum from that data. In the future, we would like to centralize
wave spectrum construction in one location, and pass it on to
subsimulators as required. [31] This is challenging, however,
because the amount of data for wave realization can be as
large as 16384 wave components.

5.7.2 Power Plant
A central component of an offshore vessel is its power

plant which, for example, supplies the vessel’s auxiliary and
propulsion systems. An example of such a power plant
model, which connects Diesel Electric Generator, Switch-
board, and EL-motor models, is shown in Fig. 8. The fre-
quency signals between the diesel electric generator mod-
els and the switchboard are necessary because these specific
models are using the direct-quadrature-zero transformation



Fig. 8. Illustration showing how a diesel electric generator, a switch-
board, and an electric motor subsimulator have been connected in
ViProMa. The system includes subsimulators (green) as well as
Function Units (blue).

(dq0), and the switching signals are used to swap the (com-
putational) causality of the models. As explained in Sec. 5.6,
the latter is needed because only one generator model can set
the voltage for the switchboard in a weak power grid [35]
when they are coupled in the manner depicted. The FU in
this example represents a switchboard, which acts as a sum-
mer or splitter for the current or voltage, respectively, and
also captures simple circuit breaker functionalities. In some
cases, a physically more accurate model of a breaker may be
needed and a subsimulator deployed instead, but the breaker
dynamics are commonly discretized as quasi-instantaneous
events and have no effect on the rest of the system (provided
they are power conserving).

5.7.3 HI(cs)L: Hardware in the Co-Simulation Loop
An important use case from an industrial perspective is

the direct connection between simulation and hardware for
design, proofing, and stress testing. In Refs. [32, 30], an Ar-
duino UNO microcontroller [36] was connected via FMI to
a co-simulation to act as a DP controller and control the po-
sition of a simulated offshore vessel in operation. In addi-
tion to the microcontroller, a model-predictive control-based
thrust allocation algorithm [37] was included to obtain realis-
tic power consumptions and dynamical responses.

Fig. 9 illustrates the setup of the entire simulator whose
aim was to study the effects of control system tuning. It in-
cluded a vessel model, a position reference system, the thrust
allocation algorithm, a power plant, the hardware DP con-
troller with its FMI interface, a wave filter (filtering out most
of the oscillatory wave forces), propulsors, and electrical mo-
tors controlled by simple local PID controllers. The results
from this case study [31, 32] demonstrated that the tuning of
the DP controller and the thrust allocation algorithm had a
substantial influence on the power consumption.

6 Simulation Software
To support and demonstrate the use of the Virtual Pro-

totyping Framework, the ViProMa project has developed
Coral, a co-simulation software built from the ground up
with FMI support and all the requirements described in sec-
tion 2 in mind. Being designed for FMI, it has the same mas-
ter/slave structure that we described briefly in section 4.2.

This software has two primary responsibilities: The first
is communication, in that it transports data between subsim-
ulators, possibly over a network, ensuring that output values
are routed to the correct input variables. The second is syn-
chronization, in that it issues commands to all the subsimu-
lators that tell them when to perform a new time step, and
how far to simulate before reaching the next communication
point.

Since Coral supports distributing simulations over a net-
work, it becomes necessary to actually start the slave pro-
grams on each computer when a new simulation is run. This
is handled by a small server program called a slave provider,
which runs on each of the machines that are set up to partic-
ipate in simulations. This program is responsible for load-
ing the FMUs available on that machine, publishing infor-
mation about them on the network, and spawning slaves at
the request of a master. An FMU is a bit like a class in
object-oriented programming terminology, in that it repre-
sents a ‘blueprint’ for a model, and several instances of that
model—slaves, in other words—can usually be created from
one FMU. Each such instance then typically has its own state,
as well as its own inputs and outputs.

Currently, the Coral slaves simply log their own simu-
lation results directly to file. However, in the near future, a
new type of simulation entity called observer will be added
to the system. Unlike slaves, observers are privy to a lot of
information about the structure and state of the simulation:
which units are on-line, their inputs and outputs, and so on.
Observers have no output values; in fact they have no way
of affecting the course of the simulation at all. Typical ex-
amples of systems which could be implemented as observers
include visualization systems and data loggers.

Coral is implemented as a software library for the C++
programming language, so it can be embedded in programs
that need to perform co-simulations. It also comes with a set
of command-line tools that allow users to run simple simula-
tions which are configured via text files, and which double as
examples that demonstrate how the C++ APIs may be used.
See Fig. 10 for an overview of the software structure. The
software has been released under a permissive open-source
license, and is available for download from the project’s web
site [6].

One may rightfully ask why it was deemed advanta-
geous to create a new co-simulation software from scratch,
rather than use an existing one, such as, for example, one
of the many HLA implementations. The answer is that we
were unable to find an existing software that fulfilled all the
requirements described in section 2 to our satisfaction. In
addition, a goal of the ViProMa project was to research and
develop novel simulation methods and technologies, and in
this respect it is very useful to start with a blank slate and to



Fig. 9. Hardware-in-the-Loop co-simulation case study with an Arduino UNO microcontroller as a DP controller.

have a code base which is under our full control.
While Coral is still an immature piece of software, it al-

ready fulfils the main VPF requirements, and has been used
with great success in several case studies [31, 32]. Currently,
its most prominent deficiency with respect to the VPF is that
the Function Unit concept has yet to be implemented. So far,
this has been worked around by carrying out transformations
and other time-independent operations within the subsimula-
tors, but, as was pointed out in Sec. 5.5, this solution does
not scale. Along with observers, FU support is on the top of
the to-do list for future Coral development.

7 Conclusion
While it is widely recognized that new ship designs

need to be optimized with respect to the overall operational
performance—rather than the performance of components
and subsystems—the simulation landscape is riddled with
specialized tools for different physical and engineering do-
mains and incompatible model representations. General soft-
ware solutions, on the other hand, often fall short of provid-
ing the flexibility, efficiency, and accuracy needed for model
construction in an increasingly competitive environment. To
date, there are no universally adopted standards and tools
supporting total systems integration and the analysis of op-
erational performance.

In the present paper, we discussed the development of
an open and standardized technology platform and infras-
tructure for virtual prototyping and full-system simulation
for maritime systems and operations: the Virtual Prototyp-
ing Framework (VPF). Its vision is to facilitate the rapid de-
velopment and sharing of subsystem and component models,
and their joint simulation to assess full-system performance,
optimize and verify designs, and establish a new arena for
collaboration in the maritime industry. The biggest knowl-
edge gaps and challenges were exposed, and solution strate-
gies offered, with a focus on high interoperability, modular-
ity, and re-usability. The application of the VPF, its guide-
lines, and its interfaces was demonstrated by use of model
examples from the Virtual Prototyping of Maritime Systems

and Operations [6, 4] (ViProMa) project. Our in-house co-
simulation software Coral was introduced, and original re-
search towards establishing efficient, accurate, and stable co-
simulation methods was discussed.

At the heart of the VPF lies a set of guidelines for model
coupling, describing best practices for full-system model
construction and simulation. In brief, these are:

Guideline 1. Couple models and tools using co-simulation.

Guideline 2. Use power bonds to model relevant energy
transactions between subsimulators whenever possible.

Guideline 3. Implement a co-simulation error estimation
method.

Guideline 4. Use the Functional Mock-up Interface (FMI)
to ensure interoperability and re-usability of subsimulators.

Guideline 5. Take great care when choosing a system reticu-
lation, and try to balance modularity against complexity and
numerical stability.

Guideline 6. Try to avoid tight couplings on the system level
whenever possible.

Guideline 7. Consistently carry out generic signal opera-
tions between subsimulators using dedicated time indepen-
dent modules.

Guideline 8. If the computational causality for a given sub-
simulator can not be determined a priori, implementation as
a hybrid causality model is advised.

These guidelines are by no means meant to be complete
or even final. But their introduction into, and adaption by, the
maritime industry would be a major step ahead, towards find-
ing tomorrow’s design and technology solutions. Note, how-
ever, that these guidelines are not specific to the maritime
domain and should apply to a wide range of engineering and
scientific applications.

The definition of guidelines was motivated by a set of
core requirements, which were derived from the most im-
portant use cases—vessel design, crew training, and deci-
sion support—and the desired work flow for the prototyping



Fig. 10. A diagram that shows the various components in a Coral simulation. Everything inside the dashed rectangle is formally part of Coral.
By API/EXE we mean that the functionality is offered both in the form of a C++ programming interface and as a ready-made executable
application.

framework. As mentioned in Sec. 2, some of these had to
be left to future research due to insufficient funding and time.
Most notably, we fell short of implementing the following
three aspects:

1. A basic open library layer of generic and, to a certain
extent, parameterized domain models and components
should be available for the VPF to configure ships and
operations for simulation and optimization studies. This
is also important for demonstration purposes, and to aid
in the wide-spread acceptance and adaption of the frame-
work. Creating such a database is an extensive undertak-
ing, however.

2. Only some testing and research [30] was done with re-
spect to real-time capabilities. While, in principle, there
is nothing preventing the use of real-time simulations
with the VPF as introduced in the present work, more
research and verification is surely needed. At any rate,
there are a few challenges that need to be considered:
For example, computational efficiency can easily be-
come an issue, because real-time subsimulators (such as
hardware interfaces) will usually dictate a lower limit for
the co-simulation step size. Moreover, network latency
effects and noise in measurement signals have to be dealt
with. These points can, naturally, also further exacerbate
the co-simulation-inherent accuracy and stability issues
discussed in Sec. 3.1. A promising project is the Ad-
vanced Co-Simulation Open System Architecture [38]
(ACOSAR), which aims to supplement the FMI stan-
dard with a global industry standard for real-time system
integration and co-simulation.

3. One important aspect of specifying high-level simu-

lator interfaces is the definition of standardized cate-
gories which represent various component and subsys-
tem groups—such as engines or cranes—along with
standardized model properties. This would facilitate
rapid prototyping in a convenient ‘plug-and-play’ fash-
ion, as mentioned in Sec. 4.

Hopefully, the present work can contribute to the advance-
ment of virtual prototyping and flexible full-system simula-
tion, provide a basis for further research, and have its afore-
mentioned shortcomings amended through future work.
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