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Abstract

Typical offshore structures are designed as tension-leg platforms or gravity based structures
with cylindrical substructures. The interaction of waves with the vertical cylinders in high sea
states can result in a resonant response called ringing. Here, the frequency of the structural
response is close to the natural frequency of the structure itself and leads to large amplitude
motions. This is a case of extreme wave loading in high sea states. This understanding of
higher-order wave forces in extreme sea states is an essential parameter for obtaining a safe,
reliable and economical design of an offshore structure. The study of such higher-order effects
needs detailed near-field modelling of the wave-structure interaction and the associated flow
phenomena. In such cases, a Computational Fluid Dynamics (CFD) model that can accurately
represent the free surface and further the wave-structure interaction problem can provide
important insights into the wave hydrodynamics and the structural response. In this paper,
the open source CFD model REEF3D is used to simulate wave interaction with a vertical
cylinder and the wave forces on the cylinder are calculated. The harmonic components of
the wave force are analysed. The model employs higher-order discretisation schemes such
as a fifth-order WENO scheme for convection discretisation and a third-order Runge-Kutta
scheme for time advancement on a staggered Cartesian grid. The level set method is used
to obtain the free surface, providing a sharp interface between air and water. The relaxation
method is used to generate and absorb the waves at the two ends of the numerical wave
tank. This method provides good quality wave generation and also the wave reflected from
the cylinder are absorbed at the wave generation zone. In this way, the generated waves
are not affected by the wave interaction process in the numerical wave tank. This is very
essential in the studies of higher-order wave interaction problems which are very sensitive to
the incident wave characteristics. The numerical results are compared to experimental results
for higher-order forces on a vertical cylinder to validate the numerical model.
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1 Introduction

Offshore structures such as tension-leg platforms, gravity based structures with cylindrical
substructures and offshore wind turbine substructures are exposed to harsh wave climates.
One of the important phenomena that the offshore structures can be susceptible to is the
phenomenon of ringing. Here, in severe sea states, the structure responds at frequencies that
are higher than the incident wave frequency. This higher-order response phenomenon can be
identified through investigation of the wave force regime on a cylinder under different wave
conditions and from the presence of the higher-order components in the force regime. The
presence of higher-order components in the wave forces can lead to resonance with the natural
frequency of the structure, leading to ringing of the structure.

Several authors have studied the phenomenon of ringing through mathematical Faltinsen
et al. (1995) Malenica and Molin (1995) and experimental investigations Chaplin et al. (1997)
Grue and Huseby (2002). Current literature reports that while the higher-order resonance
phenomenon of ringing is readily observed in the cases involving wave impact such as wave
breaking on a structure Welch et al. (1999) and in the case of focussed wave interaction with
structures, it is also seen in the case of non-breaking waves of moderate steepness. Thus, this
phenomenon os of great interest for a safe and economical design of an offshore structure.
With current advances in computing power, several complex free surface problems can be in-
vestigated using computational fluid dynamics (CFD) modeling. Three-dimensional numerical
modeling can provide new insights into the wave hydrodynamics and provide more knowledge
regarding the flow phenomenon. The study of higher-order effects can be carried out through
a range of simulations for different wave types, wave conditions and configurations of the
structure to determine the wave force regime on the structure and assess its susceptibility to
higher-order resonant effects such as ringing. The authors are not aware of such numerical
analysis using results from a 3D CFD-based numerical model for plunging breaking waves on
a cylinder.

In this paper, the interaction of focussed waves, non-breaking regular waves in deep water
and regular waves undergoing depth induced breaking on a vertical cylinder is investigated
using the open-source CFD model REEF3D Bihs et al. (20165) which has been apllied to sev-
eral coastal and marine engineering problems such as wave near-trapping in cylinder groups
Kamath et al. (2016b), kinematics of breaking waves Alagan Chella et al. (2016), breaking
wave forces Kamath et al. (2016a) Alagan Chella et al. (2017) and floating bodies in waves
Bihs and Kamath (2017). The calculated wave forces are compared to experimental data
to validate the model. The simulations using focussed waves are compared to experimental
data presented by Chen et al. Chen et al. (2014). The simulation with regular non-breaking
waves in deep water is compared to data from the model test carried out at MARINTEK,
Trondheim, Norway Stansberg (1997). Finally, the breaking wave forces on a vertical cylinder
due to regular waves undergoing depth induced breaking after propagating over a 1 : 10 slope
are evaluated. The wave forces in all the cases are also analyzed to identify the higher-order
contributions in the total wave force.
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2 Numerical Model

The incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are used to solve the
fluid flow problem:
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where u is the time averaged velocity, p is the density of water, p is the pressure, v is the
kinematic viscosity, 14 is the eddy viscosity, ¢ is time and ¢ is the acceleration due to gravity.
Chorin’s projection method Chorin (1968) is used for the pressure treatment. The high per-
formance solver library HYPRE Center for Applied Scientific Computing (2006) is employed
to solve the Poisson pressure equation using the PFMG-preconditioned BiCGStab algorithm
Ashby and Flagout (1996).

Turbulence modelling is carried out based on Durbin’s modification Durbin (2004) of the two
equation k-w model proposed by Wilcox Wilcox (1994). Eddy viscosity, v, is bounded to
avoid unphysical overproduction of turbulence in strained flow as shown by DurbinDurbin
(2009). The large difference in density of air and water in a two-phase model leads to an
overproduction of turbulence at the interface due to large strain. For this reason, free surface
turbulence damping is introduced around the interface based on the studies by Naot and Rodi
(1982).

The fifth-order conservative finite difference Weighted Essentially Non-Oscillatory (WENO)
scheme proposed by Jiang et al. Jiang and Shu (1996) is used for the discretization of con-
vective terms for the velocity u;, the level set function ¢, turbulent kinetic energy k and the
specific turbulent dissipation rate w. A TVD third-order Runge-Kutta explicit time scheme
developed by Harten Harten (1983) is employed for time discretization in the model. It is
a three-step scheme and involves the calculation of the spatial derivatives three times per
time step. This scheme is used for the time advancement of the level set function and the
reinitialisation equation.

A Cartesian grid is used in the numerical model for spatial discretization. The Immersed
Boundary Method (IBM) Peskin (1972) is used to incorporate the boundary conditions for
complex geometries. The free surface is obtained using the level set method where the zero
level set of a signed distance function, ¢(Z,t) is used to represent the interface between air
and water. Moving away from the interface, the level set function gives the closest distance
of the point from the interface. The sign of the function represents the two fluids across the
interface. The level set function is reinitialised after every iteration using a partial differential
equation (PDE) based reinitialisation procedure presented by Sussman et al.Sussman et al.
(1994) to retain its signed distance property after convection.

Further details regarding the model can be found in Bihs et al. Bihs et al. (2016b) and details
regarding focussed wave generation in REEF3D can be found in Bihs et al. (2016a).
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3 Results

3.1 Comparison with wave forces due to focused waves

In this section, the interaction of focussed waves with a vertical cylinder is investigated using
REEF3D and the numerical results are compared to experimental results to validate the
model. The wave forces are analysed to obtain the higher-order components. The numerical
wave tank is 10 m long, 2 m wide and 1 m high with a water depth of d = 0.505 m. Three
cases are simulated following the results presented by Chen et al. (2014). Focussed waves
of peak period T, = 1.22 s and focus height H = 0.14 m, peak period 7, = 1.63 s and
focus heights 0.12 m, 0.24 m are simulated. The results for the wave forces are presented in
Figs.(1), (2) and (3). The numerical results and the experimental data for the wave forces
due to the focussed wave with peak period 7}, = 1.22 s and focus height 0.14 m agree very
well in Fig.(1a). The amplitude spectrum of the wave forces does not show any significant
peaks away from the incident frequency of 0.82 Hz, just like in the experimental data. In this
case, the wave forces do not have higher-order components and thus ringing due to the wave
loading is not expected.

In the next case, with T, = 1.63 s and H = 0.12 m the numerical results are compared
with the experimental data in Fig.(2a) and a good agreement is found between the results.
The amplitude spectrum of the wave forces shows a small peak close to the second harmonic
f2 = 1.20 Hz of the incident peak wave frequency f, = 0.6 Hz. The amplitude of the peak at
fo is about 15% of the peak at the incident frequency. Similarly, a simulation is carried out
with a steeper wave with 7), = 1.63 s and H = 0.24 m and the results for the wave forces are
presented in Fig.(3a). The plot of wave force over time shows some asymmetry due to the
steepness of the incident wave. The amplitude spectrum of the wave force shows a peak at
the second harmonic fo = 1.20 Hz and the magnitude of the peak in this case is about 21%
of the peak at the incident frequency.

It is seen from the cases presented above that higher-order components in the wave force exist
for incident waves with certain conditions of steepness and peak period and that the numerical
model is able to calculate the higher-order forces due to focussed waves satisfactorily.
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Figure 1: Wave forces on a cylinder due to focussed wave of height H = 0.14 m and peak
period T}, = 1.22 s



Kamath, A. et al., OMAE2018

— numerical 20

--- Chen et al. (2014) - gl:\f:jf;ﬂl 014

2 3 4
t[s] f[Hz]
(a) wave force on the cylinder (b) amplitude spectrum of the wave force

Figure 2: Wave forces on a cylinder due to focussed wave of height H = 0.12 m and peak
period T}, = 1.63 s

200 — numerical — numerical
--- Chen et al. (2014) _ --- Chen et al. (2014)
\ &
E
»
R — T 1
2 3 4
t[s] f[Hz]
(a) wave force on the cylinder (b) amplitude spectrum of the wave force

Figure 3: Wave forces on a cylinder due to focussed wave of height H = 0.24 m and peak
period T}, = 1.63 s

Comparison with model test of a truncated cylinder

The phenomenon of ringing is then analysed for deep water conditions with a truncated
cylinder. The data from the experiments carried out at MARINTEK, Trondheim, Norway
Stansberg (1997) are used for the comparison of the numerical results. In this case, a numerical
wave tank 15 m long, 3 m wide and 7 m high with a water depth of d = 5.0 m is used. The
cylinder has a diameter D = 0.625 m and regular waves of height H = 0.440 m and period
T = 1.73 s are generated. The cylinder is truncated 1.50 m above the bottom of the tank.
The numerically calculated wave forces on the cylinder are compared to the experimental
measurements in Fig.(4a). The amplitude spectrum of the wave forces are compared in
Fig.(4b). The numerical results match the results from the model test well. The highest peak
is seen close to the incident wave frequency of f = 0.58 Hz. higher-order components are
identified from the smaller peaks seen in the amplitude spectrum close to the third harmonic
f3 = 1.73 Hz. Thus, the numerical model is able to calculate the higher-order components
involved in the wave interaction of regular waves with a vertical cylinder satisfactorily.

The interaction of the regular wave train with the truncated vertical cylinder is presented in
Fig.(4). The circular waves due to the diffraction from the preceding wave trough is seen in
Fig.(5a), while the next wave crest approaches the cylinder in Fig.(5b). Figure (5¢) shows
the wave crest interacting with the diffracted wave while being incident on the cylinder. The
separation of the wavefront around the cylinder and runup on the front surface of the cylinder
is seen in Fig.(5d). The separated wavefront meets behind the cylinder and the formation
of semi-circular waves is seen as the wave crest propagates downstream of the cylinder in
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Figs.(5e) and (5f).
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Figure 4: Comparison of numerical results with experimental data for wave forces and the
amplitude spectrum of the wave forces on a truncated cylinder of D = 0.625 m in a water
depth of d = 5.0 m due to incident waves of height H = 0.440 m and period T'= 1.73 s

Ringing due to breaking wave impact

The impact of breaking waves on a cylinder leads to additional large response from the cylin-
der due to the impulsive nature of the breaking wave forces. The evaluation of the breaking
wave forces and identification of the higher-order forces can provide important information
regarding the response of the structure. In this section, breaking wave forces on a vertical
cylinder is evaluated and the higher-order components in the calculated wave force are identi-
fied. A numerical wave tank 54 m long, 5 m wide and 7 m high with a water depth of d = 3.80
m is used. A 23 m long 1 : 10 slope is placed in the tank to obtain depth-induced breaking of
the incident regular waves. At the crest of the slope, a flat bed is placed with a height of 2.30
m from the bottom of the tank. The water depth over the flat bed is 1.50 m. A cylinder of
diameter 0.7 m is placed at the crest of the slope with its axis at 44.0 m. Further details about
the numerical setup and validation of the numerical model can be obtained from Kamath et
al. Kamath et al. (2016a). Regular waves of period T' = 4.0 s and height H = 1.30 m are
generated in the wave tank. The breaking point of the wave is identified to be 43.65 m. The
cylinder is placed with its axis at 46.35 m. In this configuration, the overturning wave crest
impacts the cylinder just below the wave crest level. According to previous works Irschik
et al. (2004) Kamath et al. (2016a), the cylinder experiences the maximum wave forces in
this configuration for a given wave height and wave breaking point.

The calculated breaking wave forces on the cylinder are presented in Fig.(6a). The impulsive
nature of the breaking wave impact is seen in the figure with sharp peaks in the force vs.
time plot in the figure. The amplitude spectrum of the calculated wave forces are presented
in Fig.(6b). Two peaks with similar amplitudes are seen in the frequency spectrum at the
incident wave frequency f = 0.25 Hz and the second harmonic fo = 0.5 Hz. In addition,
significant peaks are seen at the third, fourth, fifth and sixth harmonics at 1.0, 1.25, 1.50 and
1.75 Hz respectively. This shows that the wave forces on a cylinder due to breaking wave im-
pact consists of several higher-order components. The numerical model is able to account for
the total wave force on the cylinder considering the higher-order components and the results
can be used to determine the response of the cylinder.

The interaction of the breaking wave with the cylinder is presented in Fig.(6).
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Figure 5: Wave interaction with a truncated cylinder with D = 0.625 m in a numerical wave
tank with water depth d = 5.0 m exposed to regular waves of height H = 0.440 m and period
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Figure 6: Breaking wave forces and the amplitude spectrum of the wave forces on a vertcal
cylinder due to breaking waves with an incident wave height of H = 1.60 m
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Figure 7: Breaking wave interaction with a vertical cylinder with D = 0.70 m in a numerical
wave tank exposed to regular waves of height H = 1.60 m and period T' = 4.0 s, placed on a
flat bed at the crest of a 23 m long 1 : 10 slope with a water depth of 1.50 m on the flat bed
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4 Conclusions

The open-source CFD model REEF3D is used in this study to evaluate the wave forces on
a vertical cylinder due to focussed waves, regular non-breaking waves and regular breaking
waves. The numerical results are compared to experimental measurements in the case of
focussed waves and non-breaking regular waves. A good agreement is seen between the nu-
merical and experimental data for both the wave forces and the amplitude spectra to obtain
the higher-order components.

In the case of the focussed waves, the higher-order components are seen for waves with fo-
cussed height of 0.12 m and 0.24 m produced using a spectrum with peak period of T), = 1.63
s whereas they are not seen for focussed waves of height H = 0.14 m produced using a spec-
trum with peak period 7}, = 1.22 m. The contribution of the higher-order forces is also higher
for larger wave heights. The amplitude spectrum shows peaks at the second harmonic that
are 15% and 21% of the peak obtained at the fundamental frequency for H = 0.12 m and
H = 0.24 m respectively.

The breaking wave impact on a vertical cylinder is presented with the cylinder configured in
a manner that the wave forces are maximum for the given wave period and water depth. The
amplitude spectrum of the wave forces shows two similar peaks at the incident frequency and
at the second harmonic. Further, significant peaks are seen up to the sixth harmonic of the
incident wave frequency.

The forces evaluated by REEF3D for different wave conditions such as focussed waves, regular
non-breaking waves and regular breaking waves is presented. The calculated wave forces and
the amplitude spectrum of the wave forces are compared with experimental data for focussed
waves and regular non-breaking waves in deep water. The model is seen to perform well with
good agreement to experimental data. Further studies can be carried out by analysing the
wave forces in different segments along the water depth and calculate the different hydrody-
namic coeflicients.
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