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Abstract. This work involves the use of combined forces of data-driven
machine learning models and high fidelity density functional theory for
the identification of new potential thermoelectric materials. The tradi-
tional method of thermoelectric material discovery from an almost lim-
itless search space of chemical compounds involves expensive and time
consuming experiments. In the current work, the density functional the-
ory (DFT) simulations are used to compute the descriptors (features) and
thermoelectric characteristics (labels) of a set of compounds. The DFT
simulations are computationally very expensive and hence the database
is not very exhaustive. With an anticipation that the important features
can be learned by machine learning (ML) from the limited database and
the knowledge could be used to predict the behavior of any new com-
pound, the current work adds knowledge related to (a) understanding
the impact of selection of influence of training/test data, (b) influence of
complexity of ML algorithms, and (c) computational efficiency of com-
bined DFT-ML methodology.
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1 Introduction

Thermoelectric (TE) materials are receiving wide attention due to their poten-
tial role in mitigating global greenhouse effects as they enable conversion of
waste heat energy directly to electrical energy. Currently, the three approaches
to find better thermoelectric material involve: (a) traditional experimental app-
roach, (b) physics based computational approach like Density Functional The-
ory (DFT), and (c) recent machine learning (ML) based data-driven approach.
Amongst these, the machine learning approach has shown some success in find-
ing new chemistries (that are capable of being thermoelectric) but it is a nascent
application area with limited published work. There are certain limitations with
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all the approaches, like: (a) The traditional experimental approaches are not
efficient way of exploring new unknown chemistries and they focus mostly on
modifying known material compounds by doping and nano-structuring to make
these known thermoelectric materials better, while, (b) high fidelity physics
based models like DFT are computationally prohibitive to use, and (c) for ML,
obtaining bountiful data is an expensive process. ML models need to be able to
generalize well, and learn patterns well enough from a small pool of available
training data to be able to search for new potential materials in the vast expense
of search-space of unknown materials. The current work aims to contribute to
the field of machine learning and material screening by understanding influence
of limited dataset, and whether it can be mitigated by studying: (a) influence of
training-test split in model development, (b) influence of model selection and (c)
by applying a framework combining data-driven machine learning models with
physics-based density functional theory (DFT) to identify potential thermoelec-
tric materials using a metric called ‘figure of merit’. DFT enables generation
of training data for ML, and a trained ML is expected to save time in finding
potential material in the vast material search-space. The main objectives of this
work can be enumerated as:

1. In the limited dataset scenario: understand the influence of training/test com-
pound selection on ML predictions.

2. Combine data-driven models with physics-driven models to mitigate limited
dataset scenarios, and understanding efficiency of this approach in identifying
potential thermoelectric materials.

3. Compare the performance of the two ML algorithms: Random Forest (RF)
and Deep Neural Network (DNN) for the limited dataset scenario.

2 Methodology and Data

This is treated as a regression problem, where the ML model learns to predict the
figure of merit (ZT ) values of a given compound at a given temperature and at
a given chemical potential state. The performance of a material as a thermoelec-
tric material is evaluated using this ZT . A material with a high ZT is supposed
to be a good thermoelectric material. The ZT is a function of Seebeck coeffi-
cient, temperature, electrical conductivity, the electronic thermal conductivity,
and lattice thermal conductivity. Previous research on thermoelectric materials
involving machine learning did not use ZT as a characteristics, instead, it used
the key properties in a stand-alone way (i.e. band gap, Seebeck coefficient, etc.).
The three key components needed for developing the methodology are described
next: (a) Data: data for model development (cross-validation/training data), for
model testing (hidden test data) and for model application (search-space data
to look for potential materials), (b) Descriptors (features), and (c) Choice of ML
algorithms. These three components are discussed next:



2.1 Descriptors

Descriptors (known as features in ML community) are the characteristics of
materials (e.g., crystal structure, chemical formula, etc.) that might correlate
with material’s properties of interest (ZT ). Here, we use 50 features (descrip-
tors or independent variables) for a given data-point. The features involve both
numerical variables and categorical variables (crystal shape). The list of 50 fea-
tures used are: temperature, chemical potential - eV, elements in cell, mean and
variance of atomic mass, atomic radius, electronegativity, valence electrons, a
set of features related to periodic table (group numbers, row numbers,electronic
configurations), 6 one-hot encoded features for crystal shape (‘tetragonal’, ‘trig-
onal’, ‘orthorhombic’, ‘cubic’, ‘monoclinic’, ‘triclinic’, ‘hexagonal’).

2.2 Data

Limited Data Scenario: The dataset is deemed limited in this work because
based on the available training dataset of just 115 compounds (having about
87,975 instances/data points with known ZT values), the trained ML model
has to learn to predict potential compounds (i.e. ZT values) in a vast chemical
search-space of 4800 compound (having 2,40,312 data-points). The compounds
in training dataset will be different than the compounds in the chemical search-
space.

Data Generation and DFT: It is time-consuming to generate dataset using
experiments. Here, the database is generated using high-fidelity physics-driven
DFT followed by semi-classical Boltzmann theory. The DFT is a computational
quantum mechanical modeling method used to investigate the electronic struc-
ture (principally the ground state) of many-body systems, in particular atoms,
molecules, and the condensed phases. Using this theory, the properties of a sys-
tem can be determined by using functionals, i.e. functions of the spatially depen-
dent electron density. Boltzmann theory helps to estimate the Boltzmann trans-
port properties of candidate materials (like, Seebeck Coefficient, thermal con-
ductivity, electrical conductivity) based on DFT-predicted band structures. The
ZT for each compound is then computed using these transport properties. The
ZT values of about 115 materials (compounds) have been generated. A database
of about 87,975 instances (datapoints) comprising of 115 compounds materials
has been created, as each compound material is studied over 15 temperature
levels and over 51 chemical potential states. Thus, the number of datapoints are
115×51×15 = 87, 975. Each instance (or data-point) has 50 features associated
with it. Thus, the input data matrix for building ML model is 87, 975 × 50 -
which is to be divided into training data (training and validation sets) and test
data set.

Uniqueness in Splitting the Training and Test Dataset: We do not ran-
domly split the 87,975 datapoints into training and test dataset. The dataset is



split so that ML model is trained on certain compounds and the model is tested
on unseen compounds. About 85% of data-set (about 98 compounds - a dataset
of 74, 970× 50) is used for model building through both training and validation
sets, and 15% of dataset (about 17 compounds - a dataset of 13, 005 × 50) is to
test the model. Since, the purpose is to test the generalization ability of the ML
model to discover new chemical species - so, we looked at whether the ML model
trained on 98 compounds can help to predict the ZT values of the unseen 17
compounds. Hence, sensitivity of selection of compounds into training and test
data needs to be checked. This is checked by creating 3 cases of train/test split
data:

1. Case 1. Test/train split. Randomly selecting 17 compounds in test (corre-
sponding to 13,005 datapoints) and 98 compounds in train (corresponding to
74,970 datapoints) (with random seed 0.2).

2. Case 2. Test/train split. Randomly selecting 17 compounds in test and 98
compounds in train (with random seed 0.4). A different random selection
gives different sets of compounds in train/test than case 1.

3. Case 3. Deterministically selecting Test and train compound. Out of the 115
compound database, a chunk of 17 compounds lying in the middle have been
selected as test data. These 17 compounds in the middle do not possess
extreme characteristics (like either being too simple compound or too com-
plex compound, which are represented in the values of features associated
with the compound), while the training data encompasses all types of com-
pound. Here, by complex compounds, we refer to compounds with more than
3 elements.

Search-Space Data: For screening and discovering potential thermoelectric
materials, the trained machine learning model has been applied on database of
silicides (silica based compounds). This database is extracted from the material
science project, and is called chemical search-space data set in this work. The
search-space data-matrix size is: 2,40,312 data instance × 50 features.

2.3 Choice of Algorithms

Here, two different algorithms have been tested: Random Forest [1] and a more
complex Deep Neural Network [2]. This work is intended to understand whether
with the limited dataset, a complex model can perform well or not.

2.4 Model Selection - Cross Validation and Learning Curve

The two machine learning models have been compared using the cross-validation
(CV) method. CV is a model validation technique for assessing the generalization
ability of a machine learning algorithm to an independent data set. In our work,
we split the original dataset into the ‘training’ and the ‘test’ dataset. Here, we
have selected a 3-fold CV procedure, where the ‘training set’ is split further into



3 different smaller sets. The model prediction is learned using 2 of these 3 folds
at a time, and the 3rd fold that is left out is used for validation (called validation
set). The average R2 (coefficient of determination) score from 3-fold CV is used as
performance measure accuracy. Best possible R2 score is 1.0 suggesting a model
with high accuracy and the score can be negative if the model performs badly.
The learning curve helps to obtain the best parameter sets for the two models
using the above CV process. In Fig. 1, we use CV procedure to obtain a learning
curve. The curve shows the variation of average R2 score with training data
and validation data (for RF) and variation of average R2 score with increasing
epochs (iteration) for DNN. These curves help in understanding the bias-variance
tradeoff. The learning curve (in Fig. 1) is shown for only case (case 3), and for
only the best parameter sets of case 3 (for brevity). For case 3, the best parameter
sets are: RF: Maximum number of trees - 30. The maximum depth of the tree
is 20. DNN : The network used in this work comprises of an input layer (with 50
neurons representing the 50 input feature), an output layer and six hidden layers
(comprising of following number of units in each successive layer: 43; 20; 20; 15;
10; 5 respectively). A combination of ReLU and Tanh activation functions are
used in this work.

The learning curve (in Fig. 1) suggests some over-fitting for both the models;
which is more dominant in the case of DNN compared to the RF model. This
could be attributed to the need for larger data needed by DNN models. The R2
score on training data for both RF and DNN are in the range of 0.95–1, while, for
the validation data (called test in DNN figure here), the R2 scores fall drastically
in case of DNN to R2 = 0.45, while, the R2 scores falls slightly to 0.985 for RF.
The overfitting (variance errors) is seen in other cases too (case 1 and case 2, but
these learning curves are not shown here for brevity). The influence of 3 different
train-test split on the performance of two ML models is considered next. It needs
to be seen whether proper selection of training compound-test compound split
can mitigate the overfitting and improve generalization ability of ML models.

(a) CASE 3 . DNN . (b) CASE 3 . RF .

Fig. 1. Judging bias (underfitting) vs variance (overfitting) errors for RF and complex
DNN models for the two cases



3 Results and Discussion

Material screening is challenging in the sense that using the available limited
database of known chemistry, the trained ML model should have learned the
ability to find new potential material characteristics in new unseen chemistry
in the vast material search-space. It is important to understand whether the
way to split the limited material database into training dataset (training and
validation dataset) and testing dataset (of unseen compounds) will influence the
performance of the two machine learning models (simple RF or complex DNN).

3.1 Sensitivity Study: Influence of Training and Testing Dataset
Selection

Figure 2 shows the influence of splitting the training/test data on the perfor-
mance of models for the three cases. For each case, the Fig. 2 shows the predicted
ZT values vis-a-vis the actual ZT values for the compounds in training and test
data by the two models (RF and DNN). Results for the 3 cases show:

Case 1 and Case 2 (Comparing R2 Scores on Train and Test Data by the Two
Models): Both cases have randomly generated but different sets of 98 compounds
for training and 18 compounds in test.

DNN Performance: R2 score for case 1 drops to 0.2; while, the corresponding
case 1 train R2 score is 0.97. Similarly, case 2 test R2 score drops to −0.14; while,
the corresponding case 2 train R2 score is 0.97. The large drop in R2 scores for
test indicates poorer generalization ability for DNN.

RF Performance: In case of RF too, R2 scores drop for the two test dataset, but
its performance is much better than the DNN. For RF, the Case 1 test R2 score is
0.82; while the corresponding case 1 train R2 score is 0.99. Similarly, Case 2 test
R2 score drops to 0.23; while the corresponding case 2 train R2 score of 0.99.

Thus, for both RF and DNN, as the split of train/test varies, the gener-
alization ability is influenced (despite selecting the best parameter set of the
respective model for that database during CV). The reason for lower R2 scores
in case 2 test dataset (for both the models) as compared to their case 1 test scores
is that the 98 randomly selected compounds in case 2 training dataset with their
features (a dataset of 74,970× 50) do not provide similar pattern characteristics
(i.e. variation of ZT with features) as in the 17 compound case2-test dataset (a
dataset of 13,004× 50).

Case 3 (Comparing R2 Scores on Train and Test Data): Case 3 involves 98
training compounds that encompasses both simple and extreme compounds, and
hence the models trained on it are able to capture the pattern to enable determi-
nation of ZT values of data-points pertaining to the 17 unseen test compounds.
That is why we see improved predictions by the DNN and RF model on the case
3-test dataset: DNN shows a case 3-test R2 score of 0.45; while corresponding
case 3 train R2 score is 0.96.

RF shows a case 3 test R2 score of 0.76; while corresponding case 3 train R2
score of 0.99.



(a) CASE 1. DNN. (b) CASE 1. RF.

(c) CASE 2. DNN. (d) CASE 2. RF.

(e) CASE 3. DNN. (f) CASE 3. RF.

Fig. 2. Predicted vs actual ZT (with R2-score) for DNN and RF on training and
unseen test data for the three cases.



Next, we check whether the improvements in generalization ability (better
test R2 scores) brought about by balanced training-test split leads to better
predictions of material in both models?.

3.2 Comparison of RF vs. DNN Models: Material Screening and
Efficiency

Searching for Potential Thermoelectric in New Search-Space: Figure 3
shows the best two thermoelectric materials identified in a new chemical search-
space of silicide materials of 4800 compounds for the 3 cases. For brevity, only
top two are shown in Fig. 3 but the results explained are beyond the best two
predicted. This chemical search-space has not been exposed to the ML models
during their training/validation/testing phase. In all the figures, the predicted
figure of merit (ZT ) is plotted against one of the most influential features (chem-
ical potential - eV). These six compounds below have the highest predicted ZT
values as obtained by DNN and RF.

The RF is mostly predicting comparatively simpler compounds than the
DNN with maximum value of ZT in the range of 3–3.6. RF has predicted only
simple compounds (such as Li2MgSi, SrMgSi, BeSilr2, SiP2O7, VSiPt) as poten-
tial thermoelectric silicides in its top two predictions. While, DNN is predicting
complex compounds (with more than 3 elements) in about 66% of the top two
predictions (with compounds such as Sr2AI3Si3HO13 in case 1, LiCoSiO4 in
case 2, and Na3CaAI3Si3SO16 and Na3VSiBO7 in case 3) with higher maximum
value of ZT in range 4–5. Both DNN and RF have identified a common thermo-
electric silicide (BeSilr2) as potential candidate but predict a different maximum
ZT value (RF predicts ZT of 3.5, while DNN predicts around ZT = 4.5).

DNN is learning complex patterns than RF and predicting higher ZT values
due to overfitting (higher variance error) as observed in previous fits in Fig. 2.
Further, DNN is predicting erroneous profile of Zt as a function of chemical
potential (Fig. 3(c) left, and (e) both) as they are not physically realistic. Thus,
the split in training data is not benefitting DNN. The solution for overfitting
in DNN is to either build artificial neural network (ANN) models with simpler
architecture or to generate a larger training dataset.

Since the intention of this paper was to gain knowledge about possible behav-
ior of DNN in current material screening applications (where most have limited
dataset), so simpler ANN models were not shown in this work. DNN despite
being the most popular model today does not work when dataset is limited.

Validation of Selecting Training/Test Dataset and Model Selection:
In the literature, currently the materials of the form Mg2LiSi are under inves-
tigation [3]. Li2MgSi is the closest form that has been predicted by RF in the
balanced Case 3 training/test dataset. This work shows the importance of bal-
ancing training/test dataset when the dataset is limited and when, the trained
model has to have good generalization ability so as to find materials in new
chemical space. Most of the complex compounds predicted by DNN are not pos-
sible to test experimentally in lab, but the overfitting seen in DNN performance



(a) CASE 1. DNN.

(b) CASE 1. RF.

(c) CASE 2. DNN.

(d) CASE 2. RF.

(e) CASE 3. DNN.

(f) CASE 3. RF.

Fig. 3. DNN vs RF (shaded) predicted best two thermoelectric materials for the three
cases. eV refers to chemical potential on the horizontal axis. DNN suggests more com-
plex compounds as compared to the Random Forest.



suggests that it is better not to pursue those complex models (as the results may
not be reliable).

Computational Efficiency: For DFT alone, the CPU consumption is between
25 and 1500 h to evaluate ZT value of a composition (compound), and the average
CPU time per compound is 85 h for finding Zt of material. It would take around
4,08,000 CPU hrs for discovering the material with best ZT amongst the 4800
compound chemical search-space. For ML step alone, the computation cost for
obtaining Zt values of about 4800 compounds, after getting trained on dataset of
115 compounds is: 132 s for DNN and 80 s for RF. The cost of preparing training
base for these 115 compounds from DFT could be around = 85 h per compound
× 115 compounds =9775 h. Thus, we can neglect the 132 s from DNN and 80
s of RF with respect to the 9775 h required to generate the training database.
Thus, the total cost for evaluating Zt using ML approach for 4800 compounds
is just 2% of time needed by the DFT-alone method.

4 Conclusions

1. In limited dataset scenario: RF has lesser variance error than DNN and is
seen to predict potentially simpler compounds from the search-space data
than the DNN model. DNN predicts complex compounds from search-space
data (that are difficult to make in lab and verify). Further, DNN sometimes
shows physically unrealistic Zt profile prediction due to overfitting and the
solution to this is that only more data can make the DNN better.

2. Significant influence of training-test split on the model is seen despite using
CV procedure to select the best model parameters for generalization. Hence,
when dataset is limited - this aspect should be checked. Amongst the three
cases (two random and one deterministic train-test split), the variances error
lowered for the case where training data could encompass compounds with
extreme features. The RF model also provided the ‘verifiable’ predicted poten-
tial thermochemical in search-space (Li2MgSi) from this balanced determin-
istic train-test dataset, but this strategy did not benefit DNN.

3. Combined DFT and machine learning approach with RF is computationally
efficient than an approach involving DFT alone.
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