
This is the Accepted version of the article

Citation:
Hui Song, Franck Chauvel, Arnor Solberg. (2018) Deep customization of multi-tenant SaaS
using intrusive microservices. In: ICSE-NIER '18 Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results. Proceedings /
International Conference of Software Engineering, 2018, 97-100.
DOI: 10.1145/3183399.3183407

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Deep customization of multi-tenant SaaS using intrusive microservices

This is the Accepted version.
It may contain differences form the journal's pdf version

 Hui Song, Franck Chauvel, Arnor Solberg

Deep Customization of Multi-Tenant SaaS Using Intrusive
Microservices

Hui Song
SINTEF Digital

Oslo, Norway
hui.song@sintef.no

Franck Chauvel
SINTEF Digital

Oslo, Norway
franck.chauvel@sintef.no

Arnor Solberg
SINTEF Digital

Oslo, Norway
arnor.solberg@sintef.no

ABSTRACT
Enterprise software needs to be customizable, and the cus-
tomization needs from a customer are often beyond what the
software vendor can predict in advance. In the on-premises
era, customers do deep customizations beyond vendor’s pre-
diction by directly modifying the vendor’s source code and
then build and operate it on their own premises. When en-
terprise software is moving to cloud-based multi-tenant SaaS
(Software as a Service), it is no longer possible for customers
to directly modify the vendor’s source code, because the same
instance of code is shared by multiple customers at runtime.
Therefore, the question is whether it is still possible to do
deep customization on multi-tenant SaaS. In this paper, we
give an answer to this question with a novel architecture
style to realize deep customization of SaaS using intrusive
microservices. We evaluate the approach on an open source
online commercial system, and discuss the further research
questions to make deep customization applicable in practice.

KEYWORDS
Customization, SaaS, Multi-tenancy, Architecture style

ACM Reference Format:
Hui Song, Franck Chauvel, and Arnor Solberg. 2019. Deep Cus-
tomization of Multi-Tenant SaaS Using Intrusive Microservices. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Independent software vendors (ISVs) develop enterprise soft-
ware products that support daily business activities such as
sales, accounting, human resources, project management, etc.
Since ISVs’ customers are companies that must differentiate
themselves from competitors to secure their market share,
the customizability of ISVs’ products is essential.

The software engineering research community has con-
tributed several advanced techniques for customization, but

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit o r c ommercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific p ermission a nd/or a f ee. R equest permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

they all somehow rely on ISVs to predict all the possible cus-
tomization needs. For example, both software product-line
(SPL) and customer-defined business process force customers
to use only the features or functionalities implemented by the
vendor. Dependency injection (DI), plug-ins and scripting lan-
guages support customers in developing new functionalities,
but within the ISV’s predefined APIs. In practice, however,
ISVs cannot always predict all possible customization needs,
and customers often need a deep customization that goes
beyond provided functionalities or APIs.

Before SaaS, customers, or the consultants hired by them,
implement such deep customization by directly modifying
the source code of the ISV’s product. In this way, they are
able to customize anything in the product, and often with a
low cost, especially when their customization needs are small
but scattered in the product. An empirical study on 8 big
companies shows that in most of the cases customization on
Enterprise Resource Planning (ERP) systems end up with
code modifications [3]. Our study on the two companies that
commissioned this research also reveals that many of their on-
premises customers have more or less deep customizations [4].
In the on-premises era, such deep customization is possible
because each customer deploys and maintains their own copy
of the product.

Unfortunately, as ISVs move their product to multi-tenant
SaaS, deep customization by directly modifying code is no
longer possible, because all the customers share a single in-
stance of code and physical resources. Allowing one customer
to bring their own code directly endangers the quality of
service (QoS) delivered to other tenants. Existing research
and practice mainly focus on the application of non-intrusive
mechanisms on SaaS customization, and thus it is still an
open question whether it is possible or not to realize deep
customization on multi-tenant SaaS, so that customers can
still do any customization beyond the vendor’s prediction.

In this paper, we explore a new architecture style to enable
deep customization on multi-tenant SaaS, using intrusive mi-
croservices. The main body of custom code runs in a separate
microservice, isolated from the main service, whilst specific
parts of the custom code are sent back to the main product
and dynamically compiled and executed within the execution
context of the main service. We illustrate the approach using
an open source shopping application.

This approach answers the question that deep customiza-
tion is indeed possible on multi-tenant SaaS, but it raises
the issue of tight coupling. The issue is inherent to deep cus-
tomization from the on-premises era, but have not attracted

Song et al.

enough attention to researchers from the software engineering
community, because on-premises customers tend to tolerant
and ignore the problems caused by deep customization. How-
ever, the consequence of tight coupling are magnified by SaaS,
and thus we will discuss the potential research to mitigate
the consequences in the SaaS context.

We organized the remainder as follows. Section 2 introduces
an example where customization conflicts with multi-tenancy.
Section 3 defines the architecture style and Section 4 evaluates
it on a prototype customizable SaaS. Section 5 discusses
future research directions. Section 6 discusses related work
before Section 7 concludes the paper.

2 MOTIVATING EXAMPLE
Let us consider MuTeShop.com (Multi-Tenant Shops) as a
made-up example that captures the situation of our industrial
partners. MuTeShop.com now offers online shopping SaaS:
Customers can quickly set up their e-commerce website, in-
cluding catalog, shopping cart, etc. From the MuTeShop.com
standpoint, each customer is a tenant with a separate website
for their end-users to browse and buy goods.

MuTeShop.com has to be customizable. For example, one
of their key customer/tenant—say Music.MuTeShop.com—
requires that their shopping cart includes a charity dona-
tion option. Whenever an end-user adds an album into
her shopping cart, she can donate money to a designated
charity, which eventually adds-up on the total checkout
price. This customization need is beyond the prediction of
MuTeShop.com: As a vendor, they would not predict the
requirement for the end-users determine the price.

If Music.MuTeShop.com were using the “on-premise” ver-
sion of a shopping product, they would have a customiza-
tion consultant to directly modify their own copy of the
main source code to implement the donation process. Then
they only need to change the database schema to record the
amount of donation for each item in each shopping cart, the
business logic to account for these donations and finally the
user interface for their end-users to choose/see how much
they donate, within a few lines of new code.

However, as a multi-tenant SaaS, MuTeShop.com cannot al-
low such direct code modification, because the same database
schema and the price accounting source code are shared by
multiple tenants. Modifying the code for one tenant would in-
terfere the service to other tenants. MuTeShop.com also could
not provision a dedicated resource for Music.MuTeShop.com
to host their modified code, because this would drive down
the economies of scale they aim at their SaaS product.

The example illustrates the problem that many SaaS ven-
dors face: Their services are successful for some customers
only if they can do deep customization. But the vendor cannot
allow the same way of deep customization as for on-premises
products, because they have to keep the service multi-tenant.
In summary, they need a customization solution that achieves
both isolation and assimilation. Isolation shields each tenant
from possible misbehaviors of other customizations, including

Microservice

Principle architecture

User Interface

Business Logic

DB

Callback
code

Extended
methods

DB

Tenant
manager

Register: (tenant, method) ->
endpoint

Vendor cloud

Extended view

Replace

Figure 1: Custom code as intrusive microservices

performance, resource consumptions, but also privacy. As-
similation ensures that customers can customize every aspect
of the main service, as if they were vendor developers with
full control to the entire source code.

3 CUSTOM CODE AS INTRUSIVE
MICROSERVICES

We propose a new architecture style to enable deep customiza-
tion on multi-tenant SaaS, using intrusive microservices.

The customization by each tenant is running as one or more
self-contained microservices, hosted in the same vendor cloud
as the main service, as is shown in Figure 1. Each custom
microservice re-implements a small number of fine-grained
structures in the main service source code, such as Java
methods or HTML templates, and manages its own data using
a light-weight database. A tenant manager registers which
microservice supersedes which part of the main product and
for which tenant, so that when a tenant request reaches this
part, the service will redirect it to the registered microservice,
instead of executing the original code.

The custom microservices are intrusive to the main service
through callback code snippets, which are exposed to the
same execution context as the to-be-replaced standard code.
Take a Java method as an example, its context includes the
method arguments, the host object, and any accessible static
values. When required, the microservice sends callback code
to the main service to query data from these contexts or to
manipulate the context in order to alter the behavior of the
main service. In this way, the customization power of the
microservice is not limited by any pre-defined API, but is as
expressive as directly modifying the code.

Figure 2 illustrates the interaction between the main ser-
vice and a custom microservice, using an example described
in Section 2. When an end-user of Music.MuTeShop.com
checks out, the main service processes the request and finally
invokes the GetTotal method to calculate the total price.
The method invocation is intercepted, and redirected to the
tenant manager to check if there is any custom microservice
registered on the method for this tenant, and in this case
it receives the endpoint to the Donation ShoppingCart mi-
croservice. The service invokes the obtained endpoint instead

SHOPPING CART
TENANT

MANAGER
CUSTOM

SHOPPINGCART

check custom code

BASIC SEQUENCE DIAGRAM Hui Song | October 18, 2017

getTotal()

check custom code

invoke custom microservice

endpoint for custom microservice

callback code snippet

execute callback code

invoke custom microservice, step 2

preemptive return value
return

call interceptor

main service
custom
microservice

Figure 2: Interactions at runtime

of executing the standard method body and transfers the
execution to the microservice.

The microservice has two steps. In the first step, it sends
back a callback code snippet to query the current items in the
shopping cart, together with a new endpoint for the second
step. The main service executes the callback code with the
context and invokes the second step with the parameter as all
the shopping cart items and their original prices. In the second
step, the microservice queries its own database for the amount
of donations, and sum a new total amount aggregating the
input prices and the donations. It sends back this new total
amount as a preemptive return value for the original method,
and then the main service returns this customized value to
the previous caller. All the communications between the main
service and the microservice are through REST.

4 IMPLEMENTATION
We evaluate our approach by building a prototype deep-
customizable multi-tenant shopping service, based on an
open-source software, the Microsoft MusicStore.

MusicStore is the official test application for ASP.Net Core,
which is Microsoft’s next generation web framework for cross-
platform and cloud computing. MusicStore has the essential
features for online shopping, but, as is, does not support
multi-tenancy nor customization.

To apply our architecture style, we adapted the MusicStore
in the following three steps, and released it as an open-
source project. We first equipped it with a tenant manager.
It identifies the tenant based on the logged-in end-user, and
provides a REST API to register custom code microservices.
After that, we inject the source code level pointcuts before
and after every method in MusicStore, using automatic code
rewriting. Each pointcut invokes a library implementing the
behavior in Figure 2. Finally, we implement the compiling
and execution of callback code using an enhanced version of
DyanmicLinq, a dialect of C#. Note that during the process,
we did not predict and design where and how MusicStore can
be customized, but only equip it with generic mechanisms.

We deployed the adapted application into a local machine
which has a Docker daemon to host all the custom code mi-
croservices, each of which runs as a separate Docker container.
A customer deploys a microservice by providing an archive
of the custom source code, the new HTML templates, and
the docker configuration files. Theoretically, a tenant can use
any languages and techniques to write the custom code, as
long as they can publish it as a REST service. Along with
the prototype, we provide a simple supporting library for
customers to use MongoDB as customer database, NodeJS
as HTTP server, and TypeScript as a programming language.
We also provide an IDE based on Visual Studio Code, with
code generation and deployment support.

Acting as a tenant to the MusicStore service, we implement
a complete customization example following the donation
scenario described in Section 2. The custom code replaces
three methods in the business logic that adds items in the
shopping cart, lists items and calculate the total price, respec-
tively. They represent 114 lines of TypeScript, with 4 lines
of callback code embedded in it as text values. In addition,
the custom code contains two views as HTML templates
(*.cshtml files): a new one for selecting donations (14 lines)
and a modified one for shopping cart overview (18 lines of
new code within 129 lines of the full file). The effect of the
customization is shown by a screen shot video 1.

As we can see from the demo video, the customization is
assimilated to the main service from an end-user’s perspective.
The custom code is integrated seamlessly: the new views are
through the main service URL and have the consistent style
as the existing ones. From the tenant’s point of view, the
customization does not rely on any APIs specific for this do-
nation functionality, and they can replace arbitrary methods
in the source code. As for isolation, the custom code can be
deployed on the fly, without requiring the main service to be
rebooted. At runtime, the custom microservices are running
within their own containers, with managed and limited re-
sources. In this way, problematic custom code cannot take
too much resource to affect the operation of the main service
and any other tenants.

5 FURTHER RESEARCH QUESTIONS
Deep customization has its inherent drawbacks, and an im-
portant one is tight coupling, because it prevents the ISV and
its customers from developing their solutions independently.
In practice, such an inter-dependence yields a “clear” service
interface upon which both agree and that should stabilize
over time. Deep customization, by achieving ultimate flex-
ibility for customers to modify the service, sacrifices with
such a clear interface, because any predefined interface would
mean a predefined boundary about what customers can do
for customization. Such tight coupling courses problem on
the security of the main service, as well as the stability of
custom code during the update of the main service.

We will explore means to mitigate the consequences of
tight coupling in order to enable a practical co-evolution of
1https://streamable.com/oxx65

the main product and its customizations. We identified the
following research questions:

De-coupling by generation. How to abstract all adjust-
ments that characterize a customization, including new or
alternative UI elements, business logic and data schema in
a high-level domain-specific language, and get the actually
custom code, as well as where the code should be injected to
the main service, automatically generated?

Static coupling detection How to compute, by static anal-
ysis on both the service source code and the custom code,
the actual scope in the main product that are impacted by a
given customization? On top of this, we can further analyze if
there is any security sensitive code falls into this scope (which
means that the custom code is risky to the main service),
and if an update of the main service has overlap with this
scope (which indicates that the custom code is not stable
with the updated main service).

Dynamic coupling testing. How to generate the security
test cases to check whether the custom code breaks the main
service, as well as the stability test cases to check if an old cus-
tom code no longer works with the main service update. The
security test cases are executed every time a new customiza-
tion is on board, while the stability test cases are executed
on all the existing customization every time a new update
to the main service is in staging. Such testing approach does
not solve the coupling problem, but alarms the vendor and
the customers before the coupling causes actual damage.

6 RELATED WORK
As for customization of multi-tenant SaaS, the closest work
we have found comes from Walraven et al. [7], a middleware
for multi-tenant systems that uses dependency injection (DI)
to achieve the dynamic switch between customized logics for
different tenants. Such customization is rather assimilated but
still did not reach the level of deep customization: Customers
develop the to-be-injected logic (in terms of Java classes)
using the same language as the main product, with the same
execution context. However, what can be customized in the
main service is still limited by predefined injection points,
which has to be predicted by the vendors. Another work
from the same team [5], tackles customization using context-
oriented programming(CoP), but there the custom code is
developed and maintained by the ISV’s team, not the third-
party customizations as we are aiming.

Tsai et al. address customization of SaaS but using or-
thogonal variability models (OVM) [6]. They focused on the
business logic and propose workflow models with explicit
variation points that new tenants may replace with preex-
isting variants. They assumed that customizations result
from the combination of existing pieces and do not entail
the development of new and assimilated code, as we aim at.
García-Galán et al. [1] supports user-centric adaptation of
multi-tenant services by dynamically identifying the service
configuration based on the user preferences. This work is
also based on a defined configuration space comprise existing

features, but deep customization targets the development of
new features by customers.

Recently, Makki et al. [2] intercepted calls to subprocesses
and dynamically branch to tenant-specific variations. An
SPL defines the valid variations using a feature model that
the underlying middleware queries at runtime to invoke the
proper subprocesses. The SPL defines one single standard
interface, beyond which customization is not possible.

7 CONCLUSION
This paper highlights the need and the challenge to real-
ize deep customization in multi-tenant SaaS, which hinders
many ISVs of enterprise software from transferring to SaaS,
as some of their important customers may already have in-
compatible deep customizations. We have shown how the
intrusive microservice architecture style helps enabling deep
customization in multi-tenant SaaS, reconciling assimilation
and isolation. Customers may develop separate microser-
vices and register them as alternative end-points that then
replace parts of the main product. This architecture style
however tighten the coupling between the main product and
its customizations, and therefore further research in differ-
ent directions is required to mitigate the consequence of
such tight coupling, in order to make deep customization
applicable in practice.

ACKNOWLEDGMENTS
This research was funded by the Research Council of Norway
under agreement No. 256594 (Cirrus), and the EU H2020
Programme under agreement No. 731529 (STAMP).

REFERENCES
[1] Jesús García-Galán, Liliana Pasquale, Pablo Trinidad, and Antonio

Ruiz-Cortés. 2014. User-centric adaptation of multi-tenant services:
Preference-based analysis for service reconfiguration. In Proceed-
ings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. ACM, 65–74.

[2] Majid Makki, Dimitri Van Landuyt, Stefan Walraven, and Wouter
Joosen. 2016. Scalable and Manageable Customization of Workflows
in Multi-tenant SaaS Offerings. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC ’16). ACM, New
York, NY, USA, 432–439.

[3] Marcus A Rothenberger and Mark Srite. 2009. An investigation of
customization in ERP system implementations. IEEE Transactions
on Engineering Management 56, 4 (2009), 663–676.

[4] Hui Song, Franck Chauvel, Arnor Solberg, Bent Foyn, and Tony
Yates. 2017. How to support customisation on SaaS: a grounded
theory from customisation consultants. In Proceedings of the 39th
International Conference on Software Engineering Companion.
IEEE Press, 247–249.

[5] Eddy Truyen, Nicolás Cardozo, Stefan Walraven, Jorge Vallejos,
Engineer Bainomugisha, Sebastian Günther, Theo D’Hondt, and
Wouter Joosen. 2012. Context-oriented Programming for Customiz-
able SaaS Applications. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC ’12). 418–425.

[6] W. T. Tsai and X. Sun. 2013. SaaS Multi-tenant Application
Customization. In Proceedings of the 7th IEEE International
Symposium on Service-Oriented System Engineering (SOSE).
1–12.

[7] Stefan Walraven, Eddy Truyen, and Wouter Joosen. 2011. A
Middleware Layer for Flexible and Cost-efficient Multi-tenant Ap-
plications. In Proceedings of the 12th International Middleware
Conference (Middleware ’11). 360–379.

