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Abstract

For computationally hard discrete optimization problems, we rely on in-
creasing computing power to reduce the solution time. In recent years the
computational capacity of the Graphics Processing Unit (GPU) in ordinary
desktop computers has increased significantly compared to the Central Pro-
cessing Unit (CPU). It is interesting to explore how this alternative source of
computing power can be utilized. Most investigations of GPU-based methods
in discrete optimization use swarm intelligence or evolutionary methods. One
of the best single-solution metaheuristics for discrete optimization is Adap-
tive Large Neighborhood Search (ALNS). GPU parallelization of ALNS has
not been reported in the literature. We gain knowledge on the difficulties
of developing a data parallel version of the ALNS, and investigate the ef-
ficiency of ALNS on the GPU. To this end, we develop an ALNS for the
much studied Distance Constrained Capacitated Vehicle Routing Problem
(DCVRP). We compare the performance of our GPU-based ALNS with a
state-of-the-art CPU implementation using standard DCVRP benchmarks.
While it proved hard to implement certain commonly used mechanisms effi-
ciently on the GPU, experimental results show that our GPU-based ALNS
yields highly competitive performance.
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1. Introduction and Literature Review

Many important tasks in society can be formulated as discrete optimiza-
tion problems. The computational complexity of these problems is normally
high, and real-life instances are often of a size that challenges state-of-the-art
solution methods.

The power of an optimization algorithm is influenced by both its algo-
rithmic capabilities as well as by the computer hardware it runs on. As an
illustration, Bixby (2002) points to the fact that the average time for solving
a Linear Program has been reduced by a factor of one million over a period of
ten years, of which he contributes three orders of magnitude to the improve-
ment in algorithms and methods, and the same factor he associates with the
improvements in computer hardware during this time. In order to develop
the needed new powerful methods, we thus need a thorough understanding
of the methods used, in our case a metaheuristic, and the computer hardware
at hand.

Modern commodity computers have come a long way from the first micro-
processors that emerged in the 1970s. Up to the year 2004, both the number
of transistors per chip, as well as its frequency doubled roughly every two
years. This led automatically to a free speedup for all sequential programs.
However, in 2004 the frequency hit the physical limit of what a chip can
withstand. In the following years the continuing increase in the number of
transistors per chip thus led away from single core CPUs and towards proces-
sors with multiple cores, which, however, are running on a lower frequency
than the processors in 2004. This means that modern optimization algo-
rithms need to be able to take advantage of this parallelism, if they want to
further benefit from recent and future hardware development.

In addition, there is alternative hardware readily available in modern
commodity computers. The task of displaying the pixels of a screen on a dis-
play has been moved to dedicated hardware, the Graphics Processing Unit,
as early as in the 1980s. By the parallel nature of displaying many pixels,
GPUs offer a high level of parallelism, but in a different way than multi-core
CPUs. From the year 2000 on, researchers started to explore whether this
massive parallelism can be used for non-graphical computations. Since then
GPUs have evolved from specialized graphics hardware towards general pur-
pose, relatively easily programmable, massively parallel accelerators. This
facilitated the use of GPUs for general purpose computation, for instance in
optimization. See Brodtkorb et al. (2013) for an introduction to the GPU
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and how to use it in optimization, and Schulz et al. (2013) for a survey of
routing related GPU literature.

Several vital mechanisms in metaheuristics are not difficult to parallelize.
In particular, it is straightforward to exploit opportunities for task paral-
lelism that multi-core processors offer. There is a sizable literature on par-
allel metaheuristics, see for instance Alba et al. (2013). However, less work
has been reported on utilization of the data parallelism offered by GPUs. In
particular, little work has been reported on GPU parallelization of methods
for the VRP. Schulz et al. (2013) only found three papers. Until recently, we
have seen no paper that presents competitive experimental results regard-
ing solution quality. However, Boschetti et al. (2017) present data parallel
versions of important route relaxations used in solving the pricing problem
in state-of-the-art column generation methods for the CVRP that solve in-
stances up to 200 customer to optimality. In more detail, the authors design
GPU versions of the well-known q-route (Christofides et al. (1981)) and ng-
route (Baldacci et al. (2017)) relaxations. They compare the performance
of their data parallel GPU versions to a serial version of these algorithms
on a set of standard CVRP instances as well as two new instances of large
size. The authors report speedup factors varying from 0.3 for a 34 customer
instance to 34.1 for an 859 customer instance.

Against this background, we investigate how to implement Adaptive
Large Neighborhood Search (ALNS), one of the most competitive and generic
metaheuristics for discrete optimization problems, such that the GPU is
utilized efficiently. As our target problem, we have chosen the Distance-
constrained Capacitated VRP (DCVRP) (see Toth and Vigo (2014)), for
which both sequential and task parallel ALNS implementations have been
investigated extensively and shown competitive performance (Pisinger and
Ropke (2007); Ropke (2009)). In addition to investigations on solution qual-
ity vs. time performance, and GPU utilization, our goal is to gain knowl-
edge on the difficulties of adapting the various mechanisms of ALNS to data
parallelism. To the best of our knowledge, our paper presents the first in-
vestigation of data parallelism for the ALNS metaheuristic. Our research
bears quite some resemblance to the one of Boschetti et al. (2017) referred to
above. We design GPU versions of a set of well-known and effective destroy
and repair operators in ALNS, and compare the performance of the resulting
GPU version of ALNS both to serial and task parallel ALNS versions on a
set of DCVRP instances ranging from 50 to 4500 customers.

Several authors in academia claim that the DCVRP has been solved for
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all practical purposes, as the most competitive approximation methods show
a negligible error relative to the best known solution value on standard bench-
marks up to 1200 customers. Hence, it is uninteresting to study larger in-
stances. We disagree. In our practical experience, we observe that our indus-
trial VRP solver Spider generates, on a daily basis, approximate solutions to
real-life instances of last mile delivery that may contain up to 10.000 deliv-
ery points. Users are concerned with response time and solution quality. In
our opinion it is both important and relevant to conduct scientific studies of
VRP instances with more than 1200 customers, a view that we share with
Kytöjoki et al. (2007) (page 2744):

In practice there are, however, vehicle routing problems of a much
larger size. For example, in the context of waste collection and
mail and newspaper delivery, some problems can involve thou-
sands of customer points, and sometimes even several tens of
thousands customers.

The DCVRP is informally defined as follows. There is a homogeneous fleet
(either limited or unlimited in size) of capacitated vehicles for serving a set
of request orders, each with a given demand. The travel cost matrix (e.g.
distance or time) between the points representing either request locations or
the depot is given. The goal is to find a cost minimizing set of tours that visits
all requests once. Each tour is performed by one vehicle, starts and finishes at
the depot, adheres to a given route length (duration) constraint, and the total
demand for the visited requests obeys the vehicle capacity constraint. For
a more precise definition and mathematical formulations, we refer to Irnich
et al. (2014). Many exact methods for the DCVRP have been proposed,
including Branch & Cut and Branch & Cut & Price methods. Currently,
state-of-the-art exact methods are able to solve any DCVRP instance to
proven optimality with less than some 200 requests, in a few minutes. We
refer to Part I of Toth and Vigo (2014) for a survey of exact methods for the
DCVRP. For larger DCVRP instances, several metaheuristics have shown
good performance. The best competitors find most of the known optimal
solutions in a short time. Particularly interesting are metaheuristics that
are also competitive across many VRP variants, for instance UHGS by Vidal
et al. (2014), and the selected metaheuristic of our study: ALNS by Pisinger
and Ropke (2007).

The remainder of this paper is organized as follows. In Section 2 we
present the ALNS and its implementation on the CPU. Section 3 presents
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GPU-ALNS, our implementation of ALNS on the GPU. For the interested
reader we refer to Appendix A where we give insights into how well our
algorithm utilizes the GPU. Results from computational experiments are
presented in Section 4, and finally, in Section 5, we present our conclusions.
Detailed results are given in Appendix B. In addition, we provide a general
introduction to GPU programming with CUDA in the on-line appendices.
There we also provide detailed information on how we tuned the algorithm
on the GPU to achieve better performance.

2. Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) was introduced by Ropke
and Pisinger (2006); Pisinger and Ropke (2007) as a further development
of Large Neighborhood Search (LNS) proposed by Shaw (1998). In ALNS
we have a set of neighborhoods, each with an assigned score. The score
specifies the likelihood of selecting the neighborhood, e.g. by using roulette
wheel selection. The scores are adjusted during the search process based
on neighborhood performance. Whether to accept a new solution generated
by the neighborhood is controlled by a metaheuristic, typically Simulated
Annealing, see Pisinger and Ropke (2010).

Neighborhoods are defined by destroy and repair operators. Destroy op-
erators remove a number of requests from the current solution, whereas repair
operators reinsert the removed requests to form a new solution. A diverse
set of destroy and repair operators is important for ALNS performance.

For more information about ALNS we refer the interested reader to
Pisinger and Ropke (2010). For easy reference, we present in Algorithm 1 a
pseudo-code for ALNS that is similar to the pseudo-code given in Pisinger
and Ropke (2010).

After a destroy/repair iteration, the new solution is accepted according
to a Simulated Annealing (SA) (Nikolaev and Jacobson, 2010) criterion. An
improving solution is always accepted, whereas the probability of selecting
a non-improving solution is determined by the size of the deterioration and
a temperature parameter that is reduced during the destroy/repair itera-
tions according to a cooling schedule. When finished, the cooling schedule is
restarted.

For GPU-ALNS, we select a subset of the destroy and repair operators
proposed in Pisinger and Ropke (2007). Below, we give a overall presenta-
tion of the workings of these operators for the DCVRP. All operators are
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Algorithm 1 ALNS

1: Input: feasible solution x;
set of destroy operators Ω−;
set of repair operators Ω+;

2: Initialize: best solution xb = x;
operator scores ρ− = (1, ..., 1), ρ+ = (1, ..., 1)

3: repeat
4: k = random(kmin,kmax)
5: Select d ∈ Ω− and r ∈ Ω+ using ρ− and ρ+

6: x′ = r(d(x, k), k) ] apply operators

7: if accept(x′, x) then
8: x = x′

9: end if
10: if (cost(x′) < cost(xb)) then
11: xb = x′

12: end if
13: Update ρ− and ρ+

14: until stop()

parameterized with k, the selected number of requests to remove and insert
on a given iteration. Details on the implementation of these operators on the
GPU are provided in Section 3.4.

Random Removal chooses k requests in the current solution randomly
and removes them.

Worst Removal iteratively removes the request that provides the high-
est reduction of the objective, until k requests have been removed.

Related Removal first chooses a seed at random. Successively, the
closest request to the one most recently removed according to a relatedness
metric defined for the problem at hand, until k requests have been removed.
For the DCVRP, the relatedness between two requests is simply the distance
between them. Randomization can be added to the relatedness measure in
order to select less related requests at a chosen probability.

Historical Node-Pair Removal. For each edge in the graph of the
problem, the objective of the best known solution an edge has been a part of
is recorded. We remove the k requests that have the largest sum of incident
edges.

In the Cluster Removal operator, a single route is selected and split into
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two components by solving a minimum spanning tree problem with Kruskal’s
algorithm. Stopping just before the last iteration results in two components.
One of those is chosen at random and removed.

In k iterations, Greedy Insertion picks the unserviced request that can
be inserted into the solution in the cheapest way, and inserts it in its best
position.

Regret-2 Insertion The Regret-2 value is a measure of criticality. It is
defined as the cost difference of inserting a given request in its second best
and best positions. In k iterations, regret values are calculated for unserviced
requests, and the request with the highest regret value is inserted in its best
position.

3. ALNS on the GPU

In this section we describe our design for GPU-ALNS and discuss imple-
mentation challenges. We select CUDA as programming language as it is
mature and comes with a set of useful tools like the NVIDIA NSight Devel-
opment Platform with debugging, profiling, and tracing functionality. For
the reader new to CUDA and GPU programming, there is an introduction
in the on-line appendices.

A major challenge when designing a new GPU based algorithm, is to
choose a design that not only ensures enough parallelism in all major steps
such that the GPU is fully utilized, but also leads to all these computations
actually being useful, i.e. they lead to better solutions and/or shorter com-
putation times. Especially in optimization using neighborhood exploration,
it is easy to resort to searching through larger parts of the neighborhood,
or even bigger neighborhoods, as means of providing enough work to fill the
GPU. However, evaluating larger parts or neighborhoods does not necessarily
lead to better solutions or faster algorithms (see for example Pisinger and
Ropke (2007); Basseur and Goëffon (2015)). We describe our general design
of the GPU based ALNS in Section 3.1, including reasoning for the choices
taken. The reasoning may prove helpful to other researchers interested in
developing GPU based optimization algorithms. The details of our design
are explained in the remaining subsections. Our solution representation is
presented in Section 3.2. Section 3.3 explains how we compute the initial
solution(s), whereas in Section 3.4 we go into more detail about which op-
erators were implemented on the GPU and how. The stopping criterion for
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GPU-ALNS is explained in Section 3.5. Post processing of the final solution
is explained in Section 3.6.

3.1. General Design

The first, and maybe most important, design decision for a GPU version of
ALNS is the decision on how to distribute the work on kernels, blocks, warps,
and threads. Two main points are of importance. The kernel(s) need(s) to
be computationally intensive enough to avoid the problem of kernel launches
and other setup work dominating the time. This would lead to the GPU
being idle major parts of the time. Regarding kernel execution, our design
needs to support enough parallel work to fill the whole capacity of the GPU.
In general, we have two main alternatives: A single solution design, in which
all kernels and elements of each kernel work together, or a multiple solutions
design. For the latter alternative, we need to decide which elements in the
compute grid work together on one solution.

To fill the GPU sufficiently, we need to provide a large number of par-
allel threads with ample work. The Titan GPU, for example, supports up
to 28,672 active threads. A destroy/repair neighborhood requires sequential
execution of the destroy and repair operators. In combination with the in-
ability to synchronize between blocks in CUDA, this sequentiality leads to
the need of a separate kernel for each operator for the single solution design.
Although, at least for large problem instances, the destroy/repair operator
computations might support a large enough number of threads, this design
will lead to few operations per thread. The result would be many small
kernels, each with a short runtime, leading to the setup problem mentioned
above.

A potential remedy, at least for large size instances, would be to increase
the amount of work performed by an operator by using higher values for
k, the number of requests to remove and reinsert in an ALNS iteration.
However, the literature tells us that k values higher than a certain constant
do not yield improved solution quality, see Pisinger and Ropke (2007). Hence,
even with the assumption of perfect parallelism in the operators, the single
solution design will lead to inefficient usage of the GPU as computational
resource. In addition, not all steps in the ALNS algorithm, nor all operators,
will provide perfect parallelism. For example, with the right data structures,
updating the solution will require very little work. We conclude that single
solution is not a promising design for a GPU based ALNS.
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Figure 1: General design of GPU-ALNS. Incumbent stands for the best solution found so
far.
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We therefore choose the multiple solution design for GPU-ALNS by run-
ning multiple independent ALNS search processes, each starting with its own
initial solution. With ALNS process we here refer to the ALNS as defined
in Section 2. This design leads to a 2-level hierarchy of parallelism - at the
higher level we have the parallel running processes, and at the lower level
we have the parallelism provided within the steps of a single ALNS process.
The advantage of this design is that the parts of ALNS that do not lend
themselves easily to parallelism will not stall the whole algorithm, but only
delay a single process. The different ALNS processes work independently;
hence, also the choice of operator pair in each iteration is independent be-
tween the processes. Another advantage of our multiple solution design is
that the different ALNS processes can exchange information. How we utilize
this opportunity for cooperative search in GPU-ALNS is described in detail
below. A potential disadvantage of the multiple solution design is that it may
take long for each individual search process to converge to a final solution.
However, the typical sequential ALNS algorithm as described in Algorithm 1
will not only be executed once, but instead with multiple restarts based on
different initial solutions. In GPU-ALNS we keep the multiple restart ap-
proach; hence it does not matter that it will take some time to find the first
solution.

The multiple processes design suggests having one block running one
ALNS process. Since all the threads within a block can be synchronized eas-
ily, the need for separate kernels for the separate aspects of the ALNS process
disappears. This reduces the amount of overhead time spent on launching
and synchronizing the different kernels. However, independent ALNS search
processes based on different initial solutions may take widely different times
to converge. If a block would run the whole ALNS process, this will lead
to the problem of having many ALNS processes, i.e. blocks, waiting for the
last one to finish. We still choose to let the ALNS kernel have one block per
process. However, the kernel performs a fixed number of ALNS-iterations.
The stopping criterion is checked afterwards on the CPU. In this way, we
still have all the advantages of the one-block-one-ALNS approach, but avoid
stalling the GPU while waiting for the last block to finish. The stopping
criterion is extended to include a test of whether to restart with a new initial
solution because of convergence or lack of solution quality progress.

This setup yields the general design illustrated in Figure 1. We have a
synchronized CPU-GPU behavior; the CPU is idle while the GPU is working,
and vice versa. However, the design is such that the GPU will be busy almost
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all the time since the CPU operations between kernel calls are negligible
compared to the time spent on kernel execution. Of course this implies that
the CPU is basically idle, leaving it free to do other work.

The overall process illustrated in Figure 1 is as follows. First, the problem
instance is loaded and data structures are initialized on the CPU. Then the
Initial solution kernel is launched, whereby the GPU data structures are
initialized, and a set of initial solutions is calculated on the GPU, to be used
also for later restarts. Details on the construction of initial solutions are
found in Section 3.3. After initialization of the global incumbent (i.e., the
best solution found so far among all ALNS searches) on the CPU, the next
step is to start a number of independent ALNS processes by launching the
ALNS kernel that performs a fixed number of iterations of the ALNS loop
(we use 100). In GPU-ALNS, each destroy/repair pair of operators has its
own score. The score is not updated on every ALNS iteration, but after
the batch of iterations has finished. After the scores are updated the ALNS
kernel finishes, and the CPU continues by accessing data on the GPU to
decide whether GPU-ALNS has converged, or whether it should continue.
The stopping criterion is explained in more detail in Section 3.5. If the
decision is to continue, another instance of the ALNS kernel is launched. If
not, the GPU-ALNS stops after post-processing of the global incumbent (see
Section 3.6).

For the execution configuration of the ALNS kernel, our goal is to provide
just enough blocks to fully saturate each Streaming Multiprocessor. In ex-
periments, we found that using a combination of 512 threads per block and
2 blocks per Streaming Multiprocessor yields the best overall performance.
This setting ensures a good balance between the number of independent
ALNS search processes, i.e., the number of solutions being worked on simul-
taneously, and the number of threads available for parallel work for each
process.

We previously mentioned that running multiple independent search pro-
cesses in parallel yields information that can be exploited. We use it in
GPU-ALNS in the following ways. First, some operators utilize historical
search information that ideally should be based on all solutions considered
so far, and hence should be shared among all search processes. Moreover,
the stopping criterion for GPU-ALNS is based on the local incumbents of
all search processes. Finally, the criterion for deciding whether a given pro-
cess should restart from a new initial solution uses information from all local
incumbents. Restart takes place when the process is considered to have
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Figure 2: Doubly linked list representation of a solution with three tours (one is empty)
and one not served request. x stands for undefined value.

converged, meaning that the local incumbent has not changed for a certain
number of iterations. A second criterion for restart is that the solution pro-
cess is not promising. If the local incumbent is substantially worse than the
global incumbent and it has not improved for some time, we consider it futile
to continue and restart with another initial solution.

The multiple solutions design of GPU-ALNS could also be exploited by
adaptive memory procedures or Evolutionary Algorithms, in order to gener-
ate new solutions from local incumbents. We experimented with this idea,
using a simple Genetic Algorithm, but it neither improved the quality of
solutions, nor did it speed up the algorithm. We therefore decided not to
include the Genetic Algorithm in our final version. We intend to investigate
such ideas in our future work.

3.2. Solution Representation

We use a giant tour representation for our solutions. As data structure
we basically have two options: an array, or a linked list. The array approach
is more traditional and quite popular especially on the GPU. This is due to
the intuitive representation and the fact that the i-th thread can work on the
i-th node in the solution. However, it has several disadvantages. It involves a
lot of copying when inserting and removing a request from the solution. Also,
when calculating the cost of inserting a request between nodes at position i
and i+ 1, we first need to read which nodes are at those positions, and then
find the distance costs. A linked list in comparison has the advantage that
inserting and removing a request is trivial and takes constant time. Moreover,
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we do not need to read which node is at which position, since we work directly
on the nodes. However, this is also the biggest weakness of the linked list,
as we cannot deduce the position of a node without iterating through the
list. The latter is probably the reason why linked list representations have
not been popular on the GPU.

We decide to use a doubly linked list representation for our solution, as
illustrated in Figure 2. The main idea here is that the i-th thread will not
work on the node in i-th position, but on the f(i)-th node. Of course, this
node might not be part of the solution at this moment, then the correspond-
ing thread simply jumps to the next node it shall consider. This might lead
to some warp divergence, but with the right design of the mapping f , this can
be minimized. For example, when considering the cost of inserting requests
into the solution, threads i and i + 1 can consider inserting requests ri and
ri+ 1 after node f(i). In this way, if a node is not part of the solution, whole
warps might be able to jump at the same time. Our experiments have shown
that the linked list representation outperforms the array representation in
our code, for further details we refer to on-line appendices.

To make the linked list representation more effective, we use the following
rules. The linked list is actually represented as a 2-dimensional array with
n+m+ 1 columns and 3 rows, with n being the number of requests and m
being the maximal number of tours possible in the solution. We introduce
m artificial depot nodes, which have the indices m+ 1,. . ., n+m+ 1 and the
same location as the depot. They represent the start depots of each tour,
and each tour ends a the start depot of another tour, except the last one
which ends at the original depot at index zero. The columns 1,. . .,n are the
request nodes. The three rows in principle contain the index of the next
node, the previous node, and the tour id. The tour id is simply an integer
identifying which tour a node belongs to, the tour ids do not need to be in a
specific order with respect to the order of tours. Each artificial node has its
own fixed tour id that never changes. The next entry is positive if the node
is in the solution and negative if not, except for the depot at column zero,
which always has a negative next entry as it is the last node in the solution.
If a node is not in the solution, the entry for the previous node is undefined,
as is the tour id for a request that is not in the solution. The next entries
for the artificial depots not in the solution are creating a simple linked list
of unused artificial depots, just with negative index. The next entry of the
depot node (column zero) is the negative index of the first unused artificial
depot in that list, or minus infinity if no unused artificial depot node exists.
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Figure 3: A SIMD reduction algorithm - Find minimum example.

The advantage of this approach is that first of all we do not need to consider
all artificial depot nodes when checking for inserting a request, as long as we
have some bound telling us that all artificial depot nodes above that bound
are unused. This bound can be computed by simple bookkeeping.

3.3. Initial Solutions

The initial solutions are generated directly on the GPU by the Initial
solution kernel. As for the ALNS kernel, each block in the Initial solution
kernel computes initial solutions independently of the other blocks, but with
different parameters to minimize the chance of generating the same initial
solution multiple times. There are three construction methods. The first
uses the Greedy Insertion operator to insert all requests into the solution.
For the second, a random number of requests are placed randomly into the
solution. The remaining requests are inserted using Greedy Insertion. The
third method is maximum dispersion.

3.4. GPU Operators

The operators are at the heart of the ALNS algorithm and therefore need
to support enough parallelism in order to utilize the GPU to a high degree. Of
course, the operators also need to perform tasks that improve solution quality.
The operators selected for GPU-ALNS have been briefly described in Section
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2. We do not try to replicate those CPU operators exactly. Instead, our aim
is to create operators that utilize the GPU efficiently, and whose effects mimic
those of the CPU versions. For some operators it is simple to perform the
conversion to a data parallel device, whereas for others a straightforward
conversion would be too inefficient. In the following we describe the GPU
implementation of the selected operators. Since we have a design where each
block works on its own solution, all the operators work in a single block.

Most operators involve finding the minimum or maximum across a set
of possible changes. Using a sequential algorithm, this is straightforward as
each of the changes is evaluated one at a time while keeping track of the best
move. In a parallel context these moves are evaluated in parallel, thus we
need a mechanism to compare the best move of each thread with the best
moves of the other threads. This can be performed by a SIMD reduction
algorithm, which in our setup will work on a single block. Assume we have
N = 2i for some integer i threads in the block, and m > N variables to find
the minimum of. We first split the m variables into N subsets of nearly equal
size, and each of the N threads finds the minimum in one of those subsets by
the simple sequential algorithm, leading to exactly N variables. The SIMD
reduction algorithm now finds the minimum among those N variables with
a complexity of O(log(N)). In Figure 3 we show an example of a reduction
algorithm for finding the minimum value across a warp (32 threads). This
algorithm can be scaled up to N threads. In our figure each thread initially
has a value between 1 and 9 in the top row. Then for each row each active
thread finds the minimum among its own and another value as shown in the
pattern. This is repeated log(32) = 5 times, until the first thread ends up
with the minimum value.

In the following, we describe the GPU implementation of the selected
operators. Greedy Insertion will be described in full detail as it is rather
simple and serves as a good example for the method used in all operators.

Greedy Insertion is simple to implement on the GPU as each thread
can evaluate the insertion of a specific request into a position in the current
solution. This can be done in parallel, and thus we can fully exploit the
GPU.

We have given a set of requests R to be inserted into the solution, with
|R| = k. The solution provides a set of positions where each request can be
inserted. However, we have a linked list solution representation, where we
do not have easy access to the positions. Instead, we have n requests and a
set of artificial depot nodes D that might be in the solution as well. Observe
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that |D| ≤ n as we might have a limit on the amount of tours and we also
might have an upper bound on the number of artificial depot nodes used at
the moment. Let n+ |D| = s.

We define a potential insertion position identified by i as inserting a
request after node i if the node is in the solution. If the corresponding
node i is not in the solution, the potential insertion position is invalid. The
node here might be either a request or an artificial depot node. A potential
insertion is a combination of a request to insert and a potential insertion
position. In total this gives k · s potential insertions to evaluate, where some
may be invalid and others infeasible.

Algorithm 2 GreedyInsertion(k, s)

1: while 0 ≤ k do
] Initialize best insertion variables:

2: bestIndex = −1
3: minCost =∞

] Index iterating thread’s subset of pot. insertions:

4: x = threadId
] Iterate thread’s subset of potential insertions:

5: while x < (k · s) do
6: c = CostFunction(x, k, s) ] See Alg. 3

7: if c < minCost then
8: minCost = c
9: bestIndex = x

10: end if
11: x = x+N
12: end while

] Find global best potential insertion:

13: minReduction(minCost, bestIndex)
] Insert the best potential insertion:

14: if threadId == 0 then
15: insertIntoSolution(bestIndex, k, s)
16: end if
17: k = k − 1
18: end while

The Greedy Insertion operator works on this set of potential insertions
just as a reduction would. We split the set of potential insertions into N
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subsets, where N is the number of threads in a block. Then each thread
evaluates one of those subsets sequentially and in this way finds the best of
those insertions. Afterwards we apply the reduction algorithm to find the
best potential insertion. To illustrate this process, we provide the algorithm
in pseudo-code in Algorithm 2. The maybe most interesting point here is
to see exactly how the set of potential insertions is split into subsets. This
split is actually partially hidden in the cost function, whose pseudo code is
presented in Algorithm 3. Observe that the potential insertions are organized
such that if k is big enough, then whole warps will jump on invalid insertion
positions.

Algorithm 3 CostFunction(x, k, s)
] Find potential insertion position node:

1: i = bx/kc
] Find request for potential insertion:

2: j = x− (i · k)
] Initialize cost:

3: c =∞
4: if InSolution(i) && Feasible(i, j) then

] Calculate cost of insertion:

] next(i) returns the node after i in solution

5: c = dist(i, j) + dist(j, next(i))− dist(i, next(i))
6: end if
7: return c

For simplicity, only thread 0 performs insertion of the request into the
solution in Algorithm 2. Of course, this does not need to be the case. Updat-
ing the linked list structure is easy, so using only one thread is acceptable.
However, it is possible to use several threads in the block to update the solu-
tion, and all other data that needs to be modified, in parallel. This requires
that all threads know the best potential insertion index, e.g. by copying it
to shared memory.

The GPU version of the Regret-2 operator performs exactly the same
task as the CPU version, see Section 2. It is implemented using reduction,
but with a twist. To compute the regret value of a request to be inserted,
we need to find its best position. Let t be the tour where this position is.
In addition we need the best insertion position for all tours except t. The
set of potential insertion positions for the request are split into M ≤ N
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subsets, which are processed by M threads. Each thread keeps track of the
best position and the best in a different tour. Subsequently, reduction is
applied to the M pairs to find the best and second best position. This yields
the Regret-2 value for this request. Once all Regret-2 values for all requests
that shall be inserted have been computed in this way, a simple reduction
on the regret values determines which request and where to insert it. Note
that due to M ≤ N , several or even all Regret-2 values can be calculated
simultaneously. In this way we are able to perform Regret-2 in a highly
parallel way with the same result as on the CPU.

Worst Removal can be implemented in a highly parallel way. It is
essentially the opposite of Greedy Insertion, as all positions are considered
for removal and we find the request with the highest saving and remove it.

In the Random Removal operator we remove a number of requests at
random from the current solution. Due to our linked list solution representa-
tion, it is complicated to remove several random requests in parallel, although
it is possible. However, due to the simplicity of drawing a random number
and removing a request in the linked list solution representation, we remove
the requests purely sequentially, basically yielding a non-parallel operator.

Related Removal is basically a version of Worst Removal with the
distance to the seed request node as cost function. Hence this operator is
implemented just as Worst Removal, it is using repeated reduction to find
the requests to remove. We also experimented with another version that
only removes requests from the same tour as the seed, but this idea did not
perform equally well and was thus discarded.

As on the CPU, our GPU version of Historical Node-Pair Removal
maintains a record of the value of the best solution an edge has been a
part of. We then are able to find the request with the worst combined edge
values using reduction, just as for the Worst Removal operator. To store
the historical information, we use a common memory for the multiple ALNS
processes running in parallel. In this way the processes exchange information
in a collaborative way.

As mentioned in Section 2, Cluster Removal in Pisinger and Ropke
(2007) splits a route in two components by solving a minimum spanning
tree problem with Kruskal’s algorithm. Although there exist GPU versions
of minimum spanning tree algorithms, Kruskal’s sequential algorithm does
not lend itself easily to efficient GPU implementation. We developed a new
cluster identification algorithm that exploits the GPU better. For each route
we first find the average edge length, ignoring the edges from and to the

18



depot. Then we search for cluster defining edges, i.e., edges with a length
greater than the average multiplied by a given factor. Hence there can be
more than two clusters in a tour. This detection can be performed in a highly
parallel manner. We remove a number of clusters, making sure not to delete
entire tours on the way.

3.5. Stopping Criterion

The stopping criterion is based on multiple sub-criteria. First, we measure
how many times the ALNS kernel has been called without any improvement
to the global incumbent. If this is greater than some threshold, GPU-ALNS
terminates. The threshold is a piecewise constant function depending on the
number of iterations performed so far, with the following values: (0−125,∞),
(126− 250, 30), (> 250, 10).

Second, we calculate a convergence factor. We start by computing the
“standard deviation” of the costs of local incumbents, but use the global
incumbent as “mean” during these calculations. The convergence factor is
the “standard deviation” divided by the cost of the global incumbent. If
the convergence factor is below a threshold T , and there has been a certain
number K of ALNS kernel calls without improvement, the algorithm will
terminate. Two combinations of T and K are monitored: (T = 0.005, K =
20) and (T = 0.00125, K = 5).

Finally, we count the percentage of how many of the local incumbents
are equal to the global incumbent. If this is larger than 15 %, we add a third
combination of T and K to be monitored: (T = 0.002, K = 10).

3.6. Post Processing

When the stop criterion is satisfied, the algorithm performs local search
on the global incumbent as a post processing step on the GPU, for final
intensification. Two-opt is run to a local optimum.

Alternatively, local search could also be applied inside the ALNS kernel,
either for each kernel call, or less frequently. Our experiments show that this
does not provide a significant improvement.

4. Experiments & Results

The main goal of this paper is to study how well the ALNS algorithm
can be parallelized on a stream processing device such as the GPU. We
compare the performance of our GPU-ALNS with a state-of-the-art ALNS for
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Figure 4: Runtimes for the Christofides et al. instances.

multi-core CPUs, namely the actual implementation by Pisinger and Røpke
compiled on the 11th of December 2014. Below we use PRA when referring
to this implementation executed on a single thread, and PRA-8 when it is
running on 8 threads. The platform for our computational experiments is
an Intel Core i7-4820K 3.7 GHz with 4 cores, hyperthreading, and 32 GB
memory, with a GeForce TITAN GPU with 6 GB global memory. We used
two heavily used sets of DCVRP instances: the Christofides, Mingozzi, and
Toth benchmark that has 14 instances with 50-199 requests (Christofides
et al. (1979)), and the 12 Li, Golden, and Wasil instances with 560-1200
requests (Li et al. (2005)). For both algorithms, we performed 100 repetitions
on these instances. Furthermore, we have created 16 new larger instances
that we refer to as BHS. On these instances we have exclusively compared
the GPU-ALNS to the PRA version using 8 threads (PRA-8), performing
50 repetitions. For detailed results on all instances presented we refer to
Appendix B.

In Tables 1 and 2 for each instance we report the number of requests,
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GPU-ALNS PRA Comparison

Instance Req. BKS Error Time Error Time Error τ

1 50 524.6 0.00% 0.50 0.00% 2.58 0.00% 5.12
2 75 835.3 0.29% 4.58 0.08% 4.43 0.21% 0.97
3 100 826.1 0.00% 3.97 0.01% 6.81 -0.02% 1.72
4 150 1,028.4 0.32% 8.26 0.16% 11.71 0.16% 1.42
5 199 1,291.3 0.88% 10.62 0.32% 14.94 0.56% 1.41
6 50 555.4 0.00% 0.74 0.00% 2.72 0.00% 3.66
7 75 909.7 0.38% 4.66 0.00% 4.94 0.37% 1.06
8 100 866.0 0.00% 3.42 0.00% 7.16 0.00% 2.09
9 150 1,162.6 0.39% 7.72 0.10% 13.08 0.29% 1.69
10 199 1,395.9 0.65% 10.00 0.60% 16.40 0.05% 1.64
11 120 1,042.1 0.02% 4.13 0.00% 8.61 0.02% 2.09
12 100 819.6 0.00% 1.18 0.00% 6.45 0.00% 5.48
13 120 1,541.1 0.15% 6.86 0.13% 10.27 0.02% 1.50
14 100 866.4 0.00% 1.64 0.00% 6.62 0.00% 4.05

Total/Average 13,664.4 0.27% 0.13% 0.14% 1.71

Table 1: Comparison of GPU-ALNS and PRA for the Christofides et al. instances.

the best known upper bound (BKS), and the error percentage relative to
BKS and runtime in seconds for GPU-ALNS and PRA, respectively. The
final two columns show the difference in error percentage (negative number
means lower cost for GPU-ALNS), and the time ratio τ , with

τ = (Time PRA[-8])
/

(Time GPU-ALNS).

We use the term time ratio and not speedup, to emphasize that there are
differences in the implementations of ALNS that we compare.

The results when comparing GPU-ALNS to PRA for the smaller Christofides
et al. instances in Table 1 show that the difference in solution quality is very
small or zero for eight of the instances. For the remaining six instances,
differences are small, with GPU-ALNS being 0.56% worse in the most ex-
treme case. The average results for both algorithms are close to the best
known solutions, with average errors of 0.27% and 0.13% for GPU-ALNS
and PRA, respectively. In Figure 4, the minimum, average, and maximum
runtime for each instance are depicted for both algorithms. It can be seen
that GPU-ALNS is faster than PRA on most instances, but the runtime
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GPU-ALNS PRA PRA-8 ∆PRA ∆PRA-8

Instance Req. BKS Error Time Error Time Error Time Error τ Error τ

1 560 16,213 0.49% 37.10 1.18% 72.34 1.25% 16.05 -0.68% 1.95 -0.74% 0.43
2 600 14,499 1.15% 35.60 0.92% 82.21 0.91% 17.56 0.22% 2.31 0.23% 0.49
3 640 18,801 0.68% 41.34 0.98% 108.36 0.88% 23.40 -0.29% 2.62 -0.19% 0.57
4 720 21,389 0.96% 47.83 1.93% 148.71 1.69% 31.93 -0.95% 3.11 -0.71% 0.67
5 760 16,669 3.40% 46.23 1.67% 146.46 1.83% 30.45 1.70% 3.17 1.54% 0.66
6 800 23,978 1.20% 55.92 2.72% 197.82 2.64% 43.64 -1.48% 3.54 -1.40% 0.78
7 840 17,373 3.44% 56.99 1.63% 184.03 1.70% 38.20 1.78% 3.23 1.71% 0.67
8 880 26,566 1.17% 65.57 2.71% 256.78 2.45% 56.53 -1.50% 3.92 -1.25% 0.86
9 960 29,154 1.13% 79.32 2.90% 328.22 2.76% 73.05 -1.72% 4.14 -1.59% 0.92
10 1040 31,743 1.23% 94.22 2.96% 411.70 2.69% 96.84 -1.68% 4.37 -1.42% 1.03
11 1120 34,331 1.11% 112.52 2.98% 526.92 2.48% 129.73 -1.81% 4.68 -1.34% 1.15
12 1200 37,159 1.12% 133.66 2.32% 650.92 2.06% 170.91 -1.18% 4.87 -0.92% 1.28

Total/Average: 287,875 1.34% 2.27% 2.09% -0.90% 3.86 -0.73% 0.90

Table 2: Comparison of GPU-ALNS, PRA and PRA-8 for the Li et al. instances.
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fluctuates more. Except for a few of the instances that seem particularly
easy, the GPU-ALNS is only moderately faster than the PRA. We conclude
that on the Christofides et al. instances, there is no clear winner. This is not
unexpected, as GPU-ALNS is designed for massive parallelism that will only
be effective if the computational demand is large.

In Table 2, results comparing GPU-ALNS to both version PRA and PRA-
8 for the larger Li et al. instances are reported. First we consider the com-
parison with PRA. On solution quality, GPU-ALNS outperforms PRA on 8
instances, is worse on 2 instances, and performs equally well on 2 instances.
On average, the objective value is 0.91% better for GPU-ALNS. The run-
times are also improved, with a time ratio of 3.86 on average. Figure 5 clearly
indicates that time ratio increases with instance size. Although GPU-ALNS
has a higher variance in runtime, its worst case runtime is still less than the
best case of PRA for all instances. Regarding solution quality we can draw
the same solution for the comparison to PRA-8. In general the two version
of the Pisinger and Røpke algorithm (PRA and PRA-8) have a very similar
performance w.r.t. solution quality. PRA-8 is faster than GPU-ALNS for all
instances with less than 1000 requests, and slower for the instances with more
than 1000 requests. Figure 6 shows the time ratio for GPU-ALNS relative
to PRA and PRA-8. The y-axis to the left gives the time ratio relative to
PRA, whereas the y-axis to the right gives the time ratio relative to PRA-8.
The curves show a similar pattern – a clear trend of increasing time ratios
for larger instances.

To investigate whether the trend shown in Figure 6 continues for larger
instances, we have created new instances with sizes from 1400 to 4500 re-
quests. There are two classes of new instances: a set based on the exist-
ing Li et al. instances (BHS1-BHS4), and a set of new generated instances
(BHS5-BHS10). To create the first set we start by merging the existing Li et
al. instances and removing overlapping nodes, yielding a base instance with
2000 requests. We create instances with fewer requests by randomly remov-
ing requests. The second set is generated using the method for generating
new instances described by Li et al..

As it has already been shown that the PRA and PRA-8 algorithms have
very similar solution quality and that PRA-8 is always faster, experiments
for the new instances have only been performed using the PRA-8 algorithm.
The detailed results can be found in Tables B.9 and B.10. The results
show that the solution quality is very similar with a slightly higher variation
between the two algorithms with the GPU-ALNS outperforming on 5 of 10
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Figure 6: Time ratio for GPU-ALNS relative to PRA and PRA-8 respectively.

of the new BHS instances, PRA-8 on 4 of 10 and 1 of 10 that is too close to
call. With the goal of this paper being to compare the time ratio between
the algorithms, we believe it is fair to conclude that the two algorithms show
approximately equal performance on the new instances. It is therefore fair
to compare the runtime between the two.

Figure 7 shows the runtimes for the new instances. The runtime fluctuates
more on the GPU-ALNS, which is due to the stopping criterion being more
adaptive, hence it sometimes needs extra time to finish, whereas the PRA-8
is based on a fixed number of iterations and therefore is rather stable with
respect to runtime. In Figure 8 the time ratio of GPU-ALNS to PRA
and PRA-8 respectively is shown for both the Li et al. instances and their
extensions BHS1 to BHS10. It illustrates that the clear trend of increasing
time ratios for larger instances continues.

5. Conclusions & Future Research

In this paper we show, as far as we know for the first time, that it
is possible to develop an efficient GPU implementation of one of the best
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metaheuristics for vehicle routing problems: Adaptive Large Neighborhood
Search. Experiments show that our data parallel ALNS implementation is
competitive regarding solution quality, and outperforms a state-of-the-art
CPU-based algorithm on runtime.

We provide experimental results for the well-known Christofides et al. and
Li et al. DCVRP benchmarks and new larger instances (BHS). We compare
our GPU-ALNS implementation to an optimized CPU-ALNS implementa-
tion by Pisinger and Røpke, in two versions: a single threaded (PRA) and a
task parallel version running on 8 threads (PRA-8).

For the smaller Christofides et al. instances, we get a modestly shorter
runtime relative to the PRA. For the medium sized Li et al. instances we are
faster than PRA on all instances. Compared to the PRA-8, GPU-ALNS is
slower for instances with less than 1000 requests and slightly faster on the
larger instances. We observe that the time ratio increases with the number
of requests. On the new BHS instances with up to 4500 requests, the GPU-
ALNS shows a further improved time ratio of up to 6.9 when comparing to
PRA-8 (eight parallel threads). Again, time ratios generally increase with
instance size. The vital part of ALNS is the large neighborhood search,
where destroy operators remove parts of an existing solution and repair op-
erators reinsert them. The literature shows that good performance requires a
diverse repertoire of operators. For GPU-ALNS, we selected a subset of the
operators proposed in the literature for vehicle routing problems. Compared
to the CPU based implementation, it is necessary to adapt some of the op-
erators to achieve a good utilization on the GPU. For further improvement,
research on operators that are specifically designed to utilize the advantages
of the GPU is necessary. Our investigations indicate that adding operators
does not necessarily have detrimental effects on runtime.
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Appendix A. GPU Efficiency

On the GPU, just as on the CPU, the speed of a specific algorithm de-
pends on how well it uses the resources at hand. In this section we shortly
discuss on how well GPU-ALNS uses the GPU resources. This section may
safely be skipped by readers not interested in the more technical ascpects of
GPU programming. The implementation is performed in C++ using CUDA
7.5 on a GeForce TITAN with 14 Streaming Multiprocessors and 6 GB global
memory for all experiments. All profiling is performed using NVIDIA NSight
in Visual Studio. The figures shown in this section are screenshots from the
analysis generated by NSight.

We profiled our code in order to tune it towards efficient usage of the
GPU, but did not perform exhaustive profiling and tuning. Instead we chose
to profile at a strategic point in the development process, to maximize the ef-
fect while keeping the time spent at a low level. Our profiling was performed
when the Simulated Annealing framework, the Worst Removal, Random Re-
moval, Cluster Removal, Greedy Insertion, and Regret-2 Insertion operators
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were implemented. At that point, changes would not introduce too much
rewriting, but at the same time the central parts of the code could be pro-
filed. We only profiled the Worst Removal / Greedy Insertion operator pair,
and focused on tuning the corresponding code, and code common with, or
similar to, code for other operators. With this approach we managed to de-
crease the runtime of the code by a factor five. For the interested reader, we
present the details of the tuning process in on-line appendices.

Once the tuning process was finished, we continued to develop GPU-
ALNS . We added the remaining operators, the stopping criterion, and the
restart mechanism. During that we of course took the lessons learned dur-
ing the profiling into account. When timing the final implementation with
only using the Worst Removal / Greedy Insertion pair, the functionality
added after the tuning increased the runtime of the kernel by 21% only. The
additions, however, improve the performance regarding solution quality vs.
number of iterations needed, and thus reduce the time until the stop crite-
rion is satisfied. The additional functionality comes at a low price and does
not destroy our improved GPU usage achieved through the profiling process.
This is also an indication that adding operators to improve solution quality
performance would not necessarily be computationally expensive.

The general design of GPU-ALNS ensures that most of the time is spent
on the ALNS kernel. NSight tracing tells us that the GPU is busy 97.9%
of the time, confirming our claim that the synchronous CPU-GPU approach
does not hinder high GPU utilization. It also means that the efficiency of
GPU-ALNS is directly related to the efficiency of the ALNS kernel.

Figure A.10: Average pipe utilization percentage across the duration of one ALNS kernel
call for the four major logical pipelines of the SMs.
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Figure A.11: Memory statistics for one ALNS kernel call. The connections from the kernel
area report the total amount of memory requests, whereas the other links display the total
amount of transferred memory in bytes. In addition, the cache hit rate percentage is shown
for the caches.

As mentioned before we use a grid size which yields 2 blocks per Stream-
ing Multiprocessor with 512 threads per block. The GeForce Titan has 14
Streaming Multiprocessors, yielding a grid size of 28 blocks.

Each Streaming Multiprocessor can run up to 2048 threads in parallel,
leading to a theoretical occupancy of 50%. NSight reports that the achieved
occupancy is 46.3%, very close to the theoretical maximum. Using only 1024
threads per Streaming Multiprocessor gives each thread 64 registers to use.

More profiling of the final version of our ALNS kernel is presented in
Figures A.9, A.10, and A.11. It shows that we have on average 3.34 eligible
warps per Streaming Multiprocessor in combination with having an eligible
warp 32.6% of the time. We see that we have four major reasons which
together stand for more than 81% of the warp stalls. These are, in decreas-
ing order: execution dependency, synchronization, memory dependency, and
pipe busy. The pipe utilization analysis shows that the arithmetic pipe is
the one most busy, suggesting that the pipe busy reason for stalling warps is
due too many arithmetic operations at one time.

Both execution dependency and pipe busy are caused by the order of
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instructions executed. There are too many arithmetic instructions issued
at the same time to fit into the pipeline. The results of previous instruc-
tions are needed but not yet available. Hence, the next operation can not
be started yet. Both these issues could in theory be resolved if one could
modify the order of operations, i.e., reformulate the code. Also memory de-
pendency could be reduced if the operation needing memory access could be
executed later. However, reformulating the code to achieve less dependencies
and pipe pressure is a labor intensive task, with an uncertain guarantee of
success. We therefore decided to focus on higher level optimization algorithm
improvements instead of reformulating our code.

Memory dependency is also related to the way the memory is used, i.e.,
memory latency. Tuning led to the memory access pattern illustrated in
Figure A.11. In the final configuration, we load the distance matrix through
the read-only-data cache and read selected global memory loads through the
L1 Cache, and local memory usage is minimized. The L1 Cache and the
shared memory are configured to have the same size. In shared memory we
keep the necessary data for the reduction operations used in the operators.
If the problem instance size allows, we also keep data related to the solution
in shared memory, otherwise these data reside in global memory. For all
instances used in our experiments (up to 1200 requests), the solution related
data always fitted in shared memory.

Appendix B. Detailed Experimental Results

On the following pages, the detailed results for all experiments are re-
ported in Tables B.3 - B.8. Runtime and objective values for GPU-ALNS
and PRA are reported for the Cristofides et al. and Li et al. instances. PRA-8
results are only reported for the Li et al. instances. Explanations for the col-
umn heading abbreviations in the Tables B.3 - B.8 are as follows: The “Diff”
columns show the difference between the values for the two algorithms. The
number of requests in an instance is given by “Req.”. The best known upper
bound is reported in the “BKS” columns. For each algorithm, 100 repeti-
tions have been performed. The average, minimum, maximum and standard
deviation values are given in the column “Avg.”, “Min.”, “Max” and “Std.”,
respectively.
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Instance GPU-ALNS PRA Diff

Number Req. BKS Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 50 524.61 524.61 524.61 524.61 0.00 524.61 524.61 524.61 0.00 0.00% 0.00% 0.00% 0.00
2 75 835.26 837.68 835.26 842.87 1.83 835.89 835.26 839.77 1.10 0.21% 0.00% 0.37% 0.72
3 100 826.14 826.14 826.14 826.14 0.00 826.26 826.14 827.39 0.37 -0.02% 0.00% -0.15% -0.37
4 150 1,028.42 1,031.74 1,028.42 1,035.34 1.33 1,030.05 1,028.42 1,033.73 1.52 0.16% 0.00% 0.16% -0.19
5 199 1,291.29 1,302.62 1,293.12 1,312.35 4.10 1,295.37 1,291.45 1,308.56 3.44 0.56% 0.13% 0.29% 0.66
6 50 555.43 555.44 555.43 556.68 0.12 555.43 555.43 555.43 0.00 0.00% 0.00% 0.22% 0.12
7 75 909.68 913.10 909.68 925.32 2.53 909.70 909.68 911.76 0.21 0.37% 0.00% 1.49% 2.33
8 100 865.95 865.95 865.95 865.95 0.00 865.94 865.94 865.94 0.00 0.00% 0.00% 0.00% 0.00
9 150 1,162.55 1,167.05 1,163.31 1,171.16 1.58 1,163.67 1,162.55 1,164.24 0.51 0.29% 0.07% 0.59% 1.07
10 199 1,395.85 1,404.88 1,401.27 1,409.87 1.51 1,404.20 1,399.65 1,408.64 1.60 0.05% 0.12% 0.09% -0.09
11 120 1,042.12 1,042.36 1,042.12 1,043.89 0.50 1,042.12 1,042.12 1,042.12 0.00 0.02% 0.00% 0.17% 0.50
12 100 819.56 819.56 819.56 819.56 0.00 819.56 819.56 819.56 0.00 0.00% 0.00% 0.00% 0.00
13 120 1,541.14 1,543.49 1,541.14 1,546.92 1.50 1,543.16 1,542.86 1,543.93 0.28 0.02% -0.11% 0.19% 1.22
14 100 866.37 866.37 866.37 866.53 0.02 866.37 866.37 866.37 0.00 0.00% 0.00% 0.02% 0.02

Total/Average 13,664.37 13,700.98 13,672.36 13,747.18 13,682.32 13,670.02 13,712.05 0.14% 0.02% 0.26%

Table B.3: Objective values for GPU-ALNS and PRA on the Christofides et al. instances.
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Instance GPU-ALNS PRA τ

Number Req. Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 50 0.50 0.43 0.57 0.02 2.58 2.49 3.29 0.10 5.12 5.74 5.78 -0.08
2 75 4.58 3.07 6.83 0.83 4.43 4.28 5.19 0.11 0.97 1.39 0.76 0.72
3 100 3.97 2.84 5.59 0.46 6.81 6.58 7.52 0.18 1.72 2.32 1.35 0.28
4 150 8.26 5.01 13.27 1.45 11.71 11.39 12.51 0.20 1.42 2.27 0.94 1.25
5 199 10.62 6.04 18.32 2.40 14.94 14.44 16.54 0.34 1.41 2.39 0.90 2.07
6 50 0.74 0.51 0.88 0.09 2.72 2.65 3.13 0.06 3.66 5.19 3.55 0.02
7 75 4.66 2.90 6.43 0.73 4.94 4.78 5.28 0.10 1.06 1.65 0.82 0.63
8 100 3.42 2.50 4.48 0.35 7.16 6.89 7.80 0.18 2.09 2.76 1.74 0.18
9 150 7.72 4.32 12.06 1.75 13.08 12.58 14.33 0.30 1.69 2.91 1.19 1.45
10 199 10.00 6.88 13.75 1.56 16.40 15.72 18.17 0.38 1.64 2.28 1.32 1.18
11 120 4.13 1.33 5.05 1.07 8.61 8.34 9.66 0.21 2.09 6.26 1.91 0.86
12 100 1.18 0.88 1.54 0.20 6.45 6.21 7.05 0.15 5.48 7.10 4.59 0.06
13 120 6.86 4.03 11.10 2.05 10.27 9.98 11.13 0.20 1.50 2.48 1.00 1.85
14 100 1.64 1.15 2.37 0.27 6.62 6.40 7.13 0.13 4.05 5.56 3.01 0.14

Total/Average 68.27 41.91 102.23 116.72 112.73 128.75 1.71 2.69 1.26

Table B.4: Runtimes for GPU-ALNS and PRA on the Christofides et al. instances.
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Instance GPU-ALNS PRA Diff

Number Req. BKS Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 560 16,212.83 16,293.05 16,224.30 16,424.70 67.78 16,404.78 16,222.41 16,587.79 148.96 -0.68% 0.01% -0.98% -81.18
2 600 14,499.04 14,665.31 14,637.70 14,719.90 17.09 14,632.94 14,616.50 14,649.92 7.90 0.22% 0.15% 0.48% 9.19
3 640 18,801.13 18,929.65 18,812.60 19,094.80 78.25 18,984.84 18,810.71 19,255.76 172.08 -0.29% 0.01% -0.84% -93.83
4 720 21,389.43 21,595.54 21,402.90 21,822.50 94.42 21,802.24 21,400.21 22,259.01 217.61 -0.95% 0.01% -1.96% -123.20
5 760 16,668.51 17,235.46 17,119.40 17,324.50 38.49 16,947.26 16,810.76 17,131.98 86.29 1.70% 1.84% 1.12% -47.80
6 800 23,977.73 24,265.91 23,992.60 24,559.20 112.93 24,630.02 23,989.25 25,401.09 272.41 -1.48% 0.01% -3.31% -159.48
7 840 17,372.64 17,969.94 17,757.50 18,095.10 60.73 17,654.99 17,529.55 17,866.78 78.12 1.78% 1.30% 1.28% -17.40
8 880 26,566.03 26,876.12 26,578.70 27,277.90 121.40 27,284.83 26,576.82 27,987.24 330.41 -1.50% 0.01% -2.53% -209.01
9 960 29,154.34 29,482.96 29,355.20 30,140.80 92.56 29,999.53 29,166.32 30,766.66 346.01 -1.72% 0.65% -2.03% -253.45
10 1040 31,742.64 32,133.99 31,944.00 32,430.30 123.85 32,681.52 31,752.23 33,730.35 377.86 -1.68% 0.60% -3.85% -254.01
11 1120 34,330.94 34,712.23 34,355.00 34,962.60 118.92 35,353.73 34,531.05 36,520.76 462.14 -1.81% -0.51% -4.27% -343.22
12 1200 37,159.41 37,575.98 37,341.90 38,301.00 148.14 38,022.78 37,309.88 39,331.30 505.75 -1.18% 0.09% -2.62% -357.61

Total/Average 291,736.13 289,521.80 295,153.30 294,399.48 288,715.69 301,488.64 -0.90% 0.28% -2.10%

Table B.5: Objective values for GPU-ALNS and PRA on the Li et al. instances.
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Instance GPU-ALNS PRA τ

Number Req. Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 560 37.10 28.68 53.06 6.03 72.34 71.25 73.30 0.52 1.95 2.48 1.38 5.51
2 600 35.60 27.52 54.92 6.25 82.21 80.61 84.66 0.72 2.31 2.93 1.54 5.54
3 640 41.34 33.95 57.44 6.16 108.36 107.23 109.70 0.53 2.62 3.16 1.91 5.63
4 720 47.83 40.84 77.85 6.71 148.71 146.60 149.95 0.59 3.11 3.59 1.93 6.12
5 760 46.23 34.31 71.47 9.51 146.46 144.58 150.30 1.04 3.17 4.21 2.10 8.46
6 800 55.92 46.61 86.28 9.58 197.82 193.12 201.16 1.22 3.54 4.14 2.33 8.36
7 840 56.99 39.95 80.34 11.20 184.03 180.01 188.12 1.41 3.23 4.51 2.34 9.79
8 880 65.57 54.49 101.50 10.81 256.78 253.14 259.54 1.27 3.92 4.65 2.56 9.53
9 960 79.32 62.01 122.00 15.18 328.22 322.23 336.71 2.31 4.14 5.20 2.76 12.87
10 1040 94.22 75.18 149.93 17.60 411.70 403.17 419.88 3.30 4.37 5.36 2.80 14.30
11 1120 112.52 88.72 173.03 20.01 526.92 516.07 534.44 3.62 4.68 5.82 3.09 16.39
12 1200 133.66 100.93 211.09 30.54 650.92 639.38 664.08 5.74 4.87 6.33 3.15 24.80

Total/Average 806.31 633.19 1,238.92 3,114.47 3,057.39 3,171.84 3.86 4.83 2.56

Table B.6: Runtimes for GPU-ALNS and PRA on Li et al. instances.
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Instance GPU-ALNS PRA Diff

Number Req. BKS Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 560 16,212.83 16,293.05 16,224.30 16,424.70 67.78 16,415.20 16,223.14 16,587.79 125.97 -0.74% 0.01% -0.98% -58.19
2 600 14,499.04 14,665.31 14,637.70 14,719.90 17.09 14,631.47 14,612.85 14,649.92 7.85 0.23% 0.17% 0.48% 9.24
3 640 18,801.13 18,929.65 18,812.60 19,094.80 78.25 18,965.88 18,810.71 19,253.62 142.19 -0.19% 0.01% -0.82% -63.95
4 720 21,389.43 21,595.54 21,402.90 21,822.50 94.42 21,750.49 21,400.21 22,256.79 207.18 -0.71% 0.01% -1.95% -112.77
5 760 16,668.51 17,235.46 17,119.40 17,324.50 38.49 16,974.00 16,822.17 17,157.87 100.32 1.54% 1.77% 0.97% -61.83
6 800 23,977.73 24,265.91 23,992.60 24,559.20 112.93 24,610.39 24,177.38 25,390.95 241.82 -1.40% -0.76% -3.28% -128.89
7 840 17,372.64 17,969.94 17,757.50 18,095.10 60.73 17,667.50 17,511.16 17,870.76 96.54 1.71% 1.41% 1.26% -35.82
8 880 26,566.03 26,876.12 26,578.70 27,277.90 121.40 27,216.47 26,765.68 27,519.52 267.30 -1.25% -0.70% -0.88% -145.91
9 960 29,154.34 29,482.96 29,355.20 30,140.80 92.56 29,960.28 29,165.12 30,765.05 374.35 -1.59% 0.65% -2.03% -281.79
10 1040 31,742.64 32,133.99 31,944.00 32,430.30 123.85 32,595.26 31,753.42 33,542.47 377.82 -1.42% 0.60% -3.32% -253.97
11 1120 34,330.94 34,712.23 34,355.00 34,962.60 118.92 35,182.33 34,341.72 36,334.28 432.97 -1.34% 0.04% -3.78% -314.05
12 1200 37,159.41 37,575.98 37,341.90 38,301.00 148.14 37,923.49 37,191.80 39,318.05 495.61 -0.92% 0.40% -2.59% -347.46

Total/Average 291,736.13 289,521.80 295,153.30 293,892.75 288,775.38 300,647.08 -0.73% 0.26% -1.83%

Table B.7: Objective values for GPU-ALNS and PRA-8 on Li et al. instances.
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Instance GPU-ALNS PRA τ

Number Req. Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 560 37.10 28.68 53.06 6.03 16.05 15.76 16.56 0.15 0.43 0.55 0.31 5.88
2 600 35.60 27.52 54.92 6.25 17.56 17.22 18.53 0.17 0.49 0.63 0.34 6.08
3 640 41.34 33.95 57.44 6.16 23.40 22.99 24.26 0.19 0.57 0.68 0.42 5.97
4 720 47.83 40.84 77.85 6.71 31.93 31.35 33.17 0.27 0.67 0.77 0.43 6.44
5 760 46.23 34.31 71.47 9.51 30.45 29.70 31.32 0.26 0.66 0.87 0.44 9.24
6 800 55.92 46.61 86.28 9.58 43.64 42.82 44.57 0.40 0.78 0.92 0.52 9.18
7 840 56.99 39.95 80.34 11.20 38.20 37.57 41.20 0.41 0.67 0.94 0.51 10.79
8 880 65.57 54.49 101.50 10.81 56.53 55.63 58.00 0.44 0.86 1.02 0.57 10.36
9 960 79.32 62.01 122.00 15.18 73.05 71.57 76.14 0.86 0.92 1.15 0.62 14.32
10 1040 94.22 75.18 149.93 17.60 96.84 94.14 101.52 1.34 1.03 1.25 0.68 16.26
11 1120 112.52 88.72 173.03 20.01 129.73 125.59 137.83 2.13 1.15 1.42 0.80 17.89
12 1200 133.66 100.93 211.09 30.54 170.91 162.15 177.08 2.80 1.28 1.61 0.84 27.74

Total/Average 806.31 633.19 1,238.92 728.28 706.48 760.18 0.90 1.12 0.61

Table B.8: Runtimes for GPU-ALNS and PRA-8 on Li et al. instances.
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Instance GPU-ALNS PRA-8 Diff

Number Req. Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 1400 43,005.69 42,823.00 43,477.80 132.43 43,398.06 42,757.56 44,199.65 536.83 -0.91% 0.15% -1.65% -404.40
2 1600 40,936.85 40,272.60 41,350.30 229.44 40,613.76 40,050.44 41,301.49 249.17 0.79% 0.55% 0.12% -19.73
3 1800 45,965.07 45,431.80 47,104.60 314.65 46,040.78 45,069.34 47,351.50 578.58 -0.16% 0.80% -0.52% -263.93
4 2000 46,469.19 45,657.50 47,924.30 415.36 46,375.01 45,271.70 47,782.87 639.21 0.20% 0.85% 0.30% -223.85
5 2400 77,649.10 77,649.10 77,649.10 0.00 77,919.45 77,649.05 81,465.30 922.75 -0.35% 0.00% -4.80% -922.75
6 2800 42,373.94 41,803.30 42,988.50 191.19 41,494.72 40,845.03 41,893.93 177.84 2.10% 2.32% 2.58% 13.35
7 3200 114,962.31 112,637.00 118,037.00 1,422.50 116,051.34 112,111.22 119,098.04 1,430.76 -0.94% 0.47% -0.89% -8.26
8 3600 113,652.07 113,652.00 113,656.00 0.43 113,686.40 113,652.28 117,063.87 341.16 -0.03% 0.00% -2.95% -340.73
9 4000 122,317.82 121,047.00 123,802.00 648.67 120,745.84 119,236.06 122,153.61 588.30 1.29% 1.51% 1.34% 60.37
10 4500 53,099.79 52,633.70 53,618.50 221.01 54,294.41 53,701.46 54,955.25 299.59 -2.22% -2.01% -2.46% -78.57

Total 700,431.84 693,607.00 709,608.10 700,619.76 690,344.15 717,265.51 -0.03% 0.47% -1.07%

Table B.9: Objective values for GPU-ALNS and PRA-8 on the BHS instances.
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Instance GPU-ALNS PRA-8 τ

Number Req. Avg. Min. Max. Std. Avg. Min. Max Std. Avg. Min. Max Std.

1 1400 148.45 72.54 295.82 69.64 264.03 256.26 274.29 4.62 1.78 3.53 0.93 65.02
2 1600 279.62 122.04 385.15 80.72 523.86 510.81 545.02 7.49 1.87 4.19 1.42 73.23
3 1800 215.03 100.45 403.30 98.03 533.63 522.36 556.25 8.00 2.48 5.20 1.38 90.03
4 2000 260.51 110.20 497.76 118.12 791.29 769.56 829.53 11.13 3.04 6.98 1.67 106.98
5 2400 594.25 501.93 705.17 35.60 1,779.47 1,729.62 1,880.86 26.52 2.99 3.45 2.67 9.07
6 2800 390.47 169.30 490.52 69.73 1,222.46 1,195.54 1,307.51 19.80 3.13 7.06 2.67 49.93
7 3200 584.80 170.98 937.59 208.34 2,426.10 2,291.30 2,615.43 61.97 4.15 13.40 2.79 146.37
8 3600 1,156.73 872.49 1,772.71 293.77 5,083.92 4,990.02 5,232.80 54.50 4.40 5.72 2.95 239.27
9 4000 1,269.74 638.58 1,416.37 146.17 5,391.59 5,281.02 5,656.98 73.53 4.25 8.27 3.99 72.64
10 4500 580.30 295.64 868.11 110.50 4,012.31 3,902.98 4,176.14 65.35 6.91 13.20 4.81 45.15

Total 5,479.91 3,054.14 7,772.50 22,028.66 21,449.46 23,074.82 4.02 7.02 2.97

Table B.10: Runtimes for GPU-ALNS and PRA-8 on the BHS instances.
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