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Abstract—In this paper, statistical models are proposed to
estimate trip level origin-destination (OD) matrices for public
transport based on Wi-Fi data traffic. Wi-Fi monitoring equip-
ment installed in 32 buses in Stavanger, Norway, collected Wi-Fi
data during several months. The median received signal level of
frames transmitted by a device and the time interval between
the first and last frame are modelled as statistical distributions,
conditional on whether the Wi-Fi device is on the bus or not.
Based on these models and using passenger load data from
Automatic Passenger Counting (APC) systems installed in the
buses, the probability for each detected device being on or off
the bus is estimated. When tested on large data sets, the proposed
statistical method is more accurate than when hard thresholds
for median received signal level and time interval of observation
are applied.

I. INTRODUCTION

Information about where passengers board and alight public
transportation vehicles is useful for planning and operation
of public transport networks. This information is typically
represented in origin-destination (OD) matrices, which must
be estimated based on data from different sources. What kind
of data that is available varies between types of transportation
and between companies [1]. For some networks, boarding
information is obtained by the Automatic Fare Collection
(AFC) system or SmartCard transactions [2], while alight-
ing information is lacking. Other networks have Automatic
Passenger Counting (APC) systems that provide boarding and
alighting counts [3]. For some networks, passengers board and
alight the vehicles without being registered at all [4]. How well
the OD matrix can be estimated depends on the available input
data.

Estimation of the OD matrix using different sources of
information has been the topic for research during several
decades [1], [2], [3]. The topic of this paper is how data from
Wi-Fi devices carried by passengers can be used to obtain
an estimate of the OD matrix when passenger load data are
available from an APC system installed in the bus.

Most smartphones today have an integrated Wi-Fi radio.
Recently, the possibility to track mobile devices by sniffing
Wi-Fi traffic has attracted significant interest. This is partly
because it provides a source of valuable information to obtain
statistical data as the percentage of people carrying a Wi-
Fi enabled devices is so high [5], [6], and partly because it
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represents a privacy threat as it has been made public that
private sector companies as well as state sponsored intelligence
agencies in several countries are actively attempting to track
smartphone users [7], [8]. A priority in this activity has been
to assure that all data that are processed and stored are
anonymized, making it impossible for anyone with access to
the data to link them to any device or to any user.

The contribution of this paper is to apply the method
proposed by the authors in [9] to estimate the OD matrix based
on monitoring data of Wi-Fi data traffic and APC passenger
load data. Wi-Fi monitoring equipment is installed in 32 buses
in Stavanger, Norway, and continuously collects Wi-Fi data
traffic. The data are then anonymized and transferred to a
central server for further processing. The median received
signal level of frames associated with a Wi-Fi device and the
time interval between the first and the last frame are modelled
using statistical distributions, conditional on whether the de-
vice is on the bus or not. By optimising the parameters of the
statistical distributions, and minimising the difference between
the resulting estimated passenger load and the passenger load
obtained from the APC system, the probability for each of the
detected devices being on the bus is estimated.

The remaining part of the paper is organised as follows.
In the next section, relevant parts of the Wi-Fi standard are
reviewed. In Sec. III, the data collection and pre-processing
procedures are described, before results are reported in Sec.
IV. In Sec V, lines of further work are proposed, before the
conclusions are drawn in Sec. VL.

II. BACKGROUND IEEE802.11

The lower layers of the Wi-Fi communication protocol
are standardized by IEEE802.11. It can be useful to briefly
review the parts of the standard that are of importance for the
collection and processing of Wi-Fi data.

A. Frame types and sub-types

When mobile devices with the Wi-Fi radio activated are not
connected to a Wi-Fi access point, they transmit probe request
frames as part of the active scan procedure. Access points
receiving probe requests answer with a probe response frame,
providing the mobile device with information about networks
within hearing distance. Probe requests are of interest, as



they represent the only frame sub-type transmitted by mobile
devices not connected to any network. Hence, to be able to
detect devices not connected to an access point, probe request
frames must be collected for further processing.

Access points on their side transmit beacon frames at regular
time intervals (typical approximately 100 ms). Beacons are
of particular interest, as generally only fixed access points
transmit beacons. An exception is mobile devices with the
Wi-Fi radio in tethering mode, i.e. taking the role of an
access point. These are however assumed to represent only a
small part of the mobile devices. Devices transmitting beacons
are therefore discarded, as we are only interested in mobile
devices.

Most of the other frame sub-types may be transmitted by
both mobile devices and access points, and the best choice
will be to include them in the processing.

B. Frame format

The frames contain a header and a payload.

1) Frame headers: The header contains several fields, and
some of these are of importance for the algorithm. Most im-
portant is the source MAC address, as it allows the algorithm
to link frames transmitted by the same device.

Another field that is of importance for the algorithm is the
sequence number, which is incremented for each transmitted
frame. The sequence number range is from O to 4095 for most
devices. For some devices however, it is between O and 15.
This is probably done as a measure to make tracking of devices
not connected to an access point more difficult.

2) Frame payload: The payload contains several Informa-
tion Elements (IEs). Which IEs that are permitted in a frame
depend on the frame type and sub-type. Some IEs contain
information about the capabilities of the Wi-Fi radio, and are
assumed to be similar for the same vendor, type of device
and perhaps the version of operative system. In [7], the IEs of
probe requests are analysed, and the entropy of the elements
assessed based on data sets.

C. Local and global MAC addresses

The MAC address is a 48-bit number. The seventh bit is
called the local bit. If it is 0, the MAC address is global,
which means that it is fixed and unique for the Wi-Fi radio of
the device. When a mobile device is connected to a network,
it always includes its global MAC address in the header of the
frames it transmits. If the local bit is 1, the device generates
another MAC address that is included in the frame headers.
This MAC address is not unique. With a few exceptions, only
probe requests are transmitted using local MAC addresses.

1) Randomization of local MAC addresses: Devices trans-
mitting probe requests with the local bit set do in addition
randomize the MAC address. This means that the MAC
address changes about every 5-15 seconds. The reason for this
feature is privacy concerns, and the goal is to make tracking of
the device more difficult. It is currently mainly Apple products
that randomize the MAC address. This may however change
in the future, as also recent Android and Windows versions
allow MAC randomization.

2) Hashing of global MAC addresses: For frames trans-
mitted with global MAC addresses in the header, privacy
regulations will be violated if the data are stored without
any further processing to assure anonymity. Therefore, global
MAC addresses are hashed by the monitoring device before
being transmitted to the central server for processing and
storage. How this is done as described in Sec. III-B2.

III. SIGNAL PROCESSING
A. Data sources

Data from five different sources are required to estimate the
OD matrix, each with its own format.

The format of the monitor data is compressed csv files,
where information from each sensed Wi-Fi frame representing
an event forms one line. The monitoring devices use the
radiotap standard for reception of frames. It provides infor-
mation about radio parameters such as received signal level
and frequency channel, in addition to a timestamp. Position
data are obtained by an external GNSS receiver.

Real-time data are provided by a Service Interface for Real-
time Information Vehicle Monitoring (SIRI VM) web service.
The SIRI data contain among others timestamps, locations,
bus line and trip ID.

Information about the trips is collected from a NeTEx web
service. The NeTEx data contain information about the bus
stops, including name, location, and scheduled arrival and
departure times.

Finally, APC data are received from the bus operator. The
data contain information about scheduled and real arrival times
at each stop, the boarding and alighting counts for each stop,
the passenger load between each of the stops, and finally the
distance between stops in meters. It must be noted that APC
data alone do not give the OD matrix, as there is no link
between where each passenger boards and alights the bus.

B. Pre-processing of data

The parameters that are used by the algorithm are extracted
from the monitoring data, and all events with the same source
MAC address are then associated with the same device. Frames
with a local source MAC address in the header are processed
in one way, while frames with a global source MAC address
in the header are process in another way.

1) Pre-processing of probe request frames with local MAC:
Probe requests transmitted by a device that randomizes the
local MAC address will be associated with different devices
as the MAC address changes. This will introduce errors in the
OD matrix estimation algorithm. One option is to disregard
all probe requests with randomized MAC. If the percentage of
devices that do not randomize the MAC address is sufficiently
large, a good estimate of the probabilistic OD matrix may still
be obtained. Combined with APC data, the probabilistic OD
matrix may provide a good estimate of the actual OD matrix.

An alternative approach is to try to counteract the ran-
domization applied by the manufacturer. Such algorithms are
proposed in the literature [10]. In [7], a two-step approach
is proposed. First, IE fingerprinting is used to divide the



devices into groups. Hence, devices with the same IEs in
the payload of the probe requests are associated with the
same group. Then, the sequence numbers are used to connect
devices belonging to the same group. Profiting from the fact
that sequence numbers are not reset when the MAC address
changes, and defining thresholds for time separation 7}, and
sequence number distance Sy, devices that have implemented
randomized MAC addresses can be tracked. Both thresholds
were set relatively high, to 1000 seconds and 450, respectively.

2) Pre-processing of frames with global MAC: Frames
with a source MAC address that is not anonymized by the
transmitting device, i.e. frames having a global source MAC
address, need to be anonymized due to privacy regulations.
Simple hashing of the MAC address is however not sufficient
according to legal advisers, since known MAC addresses
then can be checked towards the hash value at a later stage.
This problem is solved by attaching randomly generated and
distributed salt values to all Wi-Fi monitors. These salts are
used together with the source MAC address to create one-way
hash values. The computations are performed in RAM and
in real time. The salts are automatically discarded from all
systems when their valid time intervals expires. This implies
that the same MAC address, if seen during a later journey, will
not generate the same hashes. Due to this, it is also impossible
to check if a known MAC address is present in the data set.
This also implies that the travel pattern for a single device over
longer time than a typical journey is not possible to generate.

C. Estimation of OD matrix using Wi-Fi and APC data

The algorithm estimating the OD matrix must basically
contain two steps. First, the most likely boarding and alighting
stops for each detected device (if it is on the bus or not) must
be estimated. Then, a subset of the detected devices must be
selected as being on the bus.

The most straightforward way to estimate the boarding and
alighting stops of a device is to set the boarding stop to the
stop closest in time or distance to the first event associated
with the device, and the alighting stop to the stop closest in
time or distance to the last event associated with the device.
An alternative approach is proposed by [11], which is based
on the assumption that the time interval between consecutive
events follows an exponential distribution. It calculates the
probability for each boarding-alighting pair for a device using
the timestamps of the events, the number of events, and the
bus stop arrival times. This approach proves however to be
significantly less accurate than the straightforward approach
selecting the closest stops to the first and last event.

Selection of the subset of devices being on the bus can
be done using hard thresholds or by taking a probabilistic
approach.

1) Using hard thresholds: The most straightforward ap-
proach to determine which Wi-Fi devices that are on the bus
is to use hard thresholds. The parameters used in this work
are the time interval between the first and last event associated
with a device and the median received signal level of all events
associated with the device. We define the indicator I, to be 1

if device k is on the bus and 0 when device k is not on the

bus: )
I = { ;

where At is the time interval between the first and last event
associated with device k, Aty is the threshold value for this
time interval, my is the median received signal level for all
events associated with device k, and myy, is the corresponding
threshold value.

When the subset of devices being on the bus are selected,
and as the boarding and alighting stops for each device are
estimated, the passenger load between each of the stops can
be estimated as:

() =1(i — 1) 4+ b(i) — &(i), i=1,..

where B(z) is the estimated number of passengers boarding at
stop ¢, ¢(¢) is the estimated number of passengers alighting
at stop 1, ] (1) is the estimated number of passengers between
stop ¢ and stop ¢ + 1, and N, is the number of stops. In most
cases, [(0) will be zero. In some cases with circle lines, there
will however be passengers on the bus when it arrives at the
first stop so that [(0) > 0. Similarly, the bus is not necessarily
empty after the last stop, so that [(Ny) > 0. The system must
therefore have a memory that extend one trip for each bus.

There is no ground truth OD data available. It is therefore
not possible to quantify the accuracy of the OD matrix
estimation using metrics like the Hellinger Distance (HD)
or relative performance (RP) as proposed in e.g. reference
[3]. Instead, a metric measuring the difference between the
resulting estimated passenger load and the passenger load
obtained from the APC data is applied:

Sl i) — 1)
S )
where L and L are the vectors of estimated and APC passenger
loads along the route, respectively. The vector L depends on
the devices selected to be on the bus, which in its turn is a
function of the thresholds. The thresholds are then selected to
minimize the distance between the estimated passenger loads

and the passenger loads from the APC system:
(Atyp, myp,) = arg  min {EAtm,mm (L, L)} 4

Atip,min

2) Using probability density functions: In [9], a statistical
approach is proposed as alternative to hard thresholds. Rather
than using hard thresholds, m and At are assumed to follow
statistical distributions, conditional on whether the device is on
the bus or not. The median received signal level is assumed
to be normally distributed with parameters (1, c3) when the
device is off the bus, and with parameters (u1,07) when
the device is on the bus. Two different distributions have
been implemented for the time interval between first and last
event associated with a device, the exponential distribution
and the log-normal distribution. The exponential distributions

are characterised by the means Ao and A\; for devices off
and on the bus, respectively. The log-normal distributions

Atk > Atth and my > Mih
otherwise

)

-Ns, 2)

EAtLn, M (IAH L) =

; 3)
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Fig. 1. Median received signal level-time interval diagram using hard

thresholds (HT) and probabilistic approach (EM-Exp and EM-Ln)

are similarly characterised by the parameters (fin 0, anyo)
and (pin,1,0%, 1). The X value of the exponential distribution
corresponds to the inverse of the mean time interval between
the first and last event.

The statistical parameters are determined by minimising
the difference between the resulting estimated passenger load
and the passenger load data obtained from the APC system.
The joint optimisation is done using the EM algorithm, as
explained in detail in [9]. The algorithm provides a probability
value for each device being on the bus. This value can be used
as soft information in the OD matrix, or a threshold value can
be set to obtain a hard decision for each device.

IV. RESULTS

Monitoring devices are installed in 32 buses in Stavanger,
Norway. They have continuously collected data for several
months. The results included in this publication are however
based on processing of data from three bus lines during three
days in August 2017. In order to first illustrate how the
algorithms work, results from one typical trip is selected. Then
the accuracy of the different approaches are compared for a
larger number of trips.

A. Results from one example trip

The trip is selected because it contains a relatively small
number of detected devices. The total number of detected
devices was 1198. After removing devices assumed to be
access points because they transmit beacons, probe responses
or data frames with the fromDS bit set, 461 devices are left.
Requiring in addition that the device must be on the bus at
least over one stop, only 55 devices remain as candidates to
being on the bus.

In Fig. 1, the median signal level and time interval for the
candidate devices are plotted. The 55 devices are illustrated
by a black dot.
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Fig. 2. Histogram and pdf for the median received signal level for devices
off the bus (upper plot) and devices on the bus (lower plot)

The hard threshold (HT) algorithm calculated the optimal
thresholds to be 75 seconds and -90 dBm using eq. (4). The
optimal thresholds are illustrated by the blue lines in the figure.
All devices observed during a longer time interval than 75
seconds and with median signal level above -90 dBm are
assumed to be on the bus, and these are marked by a red
dot.

The EM algorithm selects mostly the same devices as the
HT algorithm, but there are some differences. When the time
interval is modelled as exponential distributions (EM-Exp), 19
devices are selected. 16 of these are also selected by the HT
algorithm. When the time interval is modelled as log-normal
distributions (EM-Ln), 17 devices are selected. Two of these
were not selected when the time interval was modelled as
exponential distributions. The figure illustrates well that the
algorithms select more or less the same subset of the devices
as being on the bus, but that there are a few differences.

Fig. 2 illustrates the resulting pdfs of the median received
signal level, and compare them with histograms of the data.
The upper plot corresponds to devices that are located outside
the bus, and the lower plot to devices that are located on the
bus. The difference in mean value for devices off and on the
bus is about 10 dB (-88.4 dBm versus -77.7 dBm).

The standard deviation of the pdf of devices on the bus is
more than twice as large as for devices off the bus (10.8 dBm
versus 4.8 dBm). This illustrates the fact that the received
signal levels may vary greatly for frames transmitted by
devices on the bus, depending on whether the device is located
close to the monitor or not, whether it is in a bag on the floor
or in use with line-of-sight to the monitor etc.

Fig. 3 illustrates the resulting pdfs of the time intervals
between first and last detection when it is modelled as an
exponential distribution. For frames transmitted by devices off
the bus, the mean time interval of observation is 88.3 seconds,
while it is 608 seconds for devices on the bus.
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The algorithm selects devices not only based on time
interval and on median received signal level. A third condition
is that the estimated passenger load should be as close to
the APC passenger load as possible. A potential source of
error is that the APC passenger loads do not correspond to
the number of devices on to bus. For one, any APC system
is affected by some error. Moreover, there is not a one-to-
one relation between passengers and detectable devices. If
for instance 90% of the passengers carry a detectable Wi-Fi
device, the algorithm may add several detected devices that are
not actually on the bus in order to reduce the error between
the estimated passenger load and the passenger load from the
APC data.

When the statistical parameters are set, the algorithm cal-
culates the probability for each device being on the bus. Fig.
4 shows a histogram over the probabilities for each of the
devices being on the bus. The probabilities are in most cases
very close to 0 or to 1.

Fig. 5 shows the passenger load estimates resulting from
the HT, EM-EXP and EM-LN algorithms together with the
numbers from the APC system. The figure also contains the
cumulative number of boardings and alightings. According
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to the APC system, the total number of passengers boarding
during the trip was 17. For this trip, the EM-LN algorithm
provides boarding and alighting numbers closest to the APC
data, while the HT algorithm significantly over-estimates the
number of passengers.

B. Passenger load accuracy

In order to assess that accuracy of the algorithms with more
confidence, the OD matrix is estimated for a large number
of trips, and the corresponding passenger load estimates are
calculated and compared to numbers from the APC system.

Fig. 6 shows the cumulative density functions (CDFs) of the
error for the three algorithms based on 278 trips. The figure
indicates that the EM algorithm outperforms the HT algorithm,



and that it is better to model the time interval between the first
and the last frame as an exponential distribution than as a log-
normal distribution. For instance, for about 78% of the trips,
the EM-EXP algorithm leads to an error lower than 0.2. For
the EM-LN algorithm, the error is lower than 0.2 for 55% of
the trips, while the error is lower than 0.2 for only about 20%
of the trips using the HT algorithm.

V. FURTHER WORK

The work presented in this paper will be continued along
several lines. The large amount of data available opens for
a more thorough investigation of the statistical characteristics
of the key parameters. Analysis of the received signal levels,
temporal and spatial characteristics of the events etc. may lead
to more accurate statistical distributions for the modelling.

As mentioned earlier, there is in general not an one-to-one
relationship between number of detectable Wi-Fi devices on
board the bus and the number of passengers. This should be
included in the model, for instance by reducing the importance
of the error in passenger load in the EM algorithm, or by
introducing a constant factor in the HT algorithm accounting
for the assumption that only a certain percentage of the
passengers can be detected.

In the current implementation of the algorithms, randomized
MAC addresses are connected using fixed thresholds for time
intervals, sequence number distance, and median signal level.
Methods to optimize the thresholds and statistical methods as
alternative to hard thresholds should be investigated.

The results presented in this paper rely on the availability
of APC data. If APC equipment is installed in only a part of
the buses, it could be of interest to train the statistical models
on trips with APC data, and then use the trained models on
trips without APC data. More work should be done to assess
how the statistical parameters of the models vary from day to
day, as function of time of day, and between bus lines.

The resulting OD matrix can be as used as a priori in-
formation or seed matrix in the Iterative Proportional Fitting
(IPF) method [6], [12]. With no a priori information, the IPF
procedure starts with a matrix where all downstream stops are
equally probable. With a priori information, the base matrix
may be closer to reality and the IPF matrix becomes more
accurate.

Detection of transfers and estimation of end-to-end OD ma-
trices would provide additional information to public transport
companies. If boarding data from AFC systems or SmartCard
transactions can be used to connect multi-hop travels [2], these
can be used together with the Wi-Fi data to provide end-to-
end OD matrices. Without such data, Wi-Fi data must be used
to detect transfers. This is currently challenging due to the
anonymization of the MAC addresses. Still, this is a research
direction for further research.

The amount of data to transfer to and store at the central
server quickly becomes considerable. Work is required to
make the complete process more efficient, and to present the
result for the bus operator or others in a straightforward way.

VI. CONCLUSIONS

The results presented in this paper illustrate how Wi-Fi data
and statistical models can be used to estimate the OD matrix.
Passenger load data available from an additional APC system
provide information that enables the algorithm to select the
detected devices in such a way that the estimated passenger
load is close to the APC data. Although ground truth OD
data are not available to precisely quantify the accuracy, it
seems very likely that a small error in estimated passenger
load means small errors in the OD matrix. This method
may therefore provide public transportation companies with
valuable information not available directly from the APC
system when it comes to passenger flows.
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