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ABSTRACT: This paper describes and proposes some indicators for continuous monitoring of anoma-
lous conditions in the hydraulic system of a Kaplan turbine using SCADA data. The indicators are based 
on significant deviations between the estimated values for key variables describing the current working 
conditions of the components at the plant, and those actually observed. This monitoring strategy requires 
models describing the expected values for variables through the whole range of possible working condi-
tions of the monitored components. These models are normal behavior models able to characterize the 
typical relationships between a set of variables used as inputs to the models and the corresponding output 
of a target variable whose expected value has to be predicted. The criteria to select the variables to use 
in the models are based on the physical working principles of the component. The paper is focused on 
models of normal behavior applied to a real case of condition monitoring of a Kaplan turbine regulating 
mechanism.

The identification of possible failure modes in a 
hydropower plant (Topliceanu, 2016) is one of the 
key points in order to identify how failures could 
be detected in an early state. The analysis of the 
causes and effects of these failure modes can sug-
gest the variables that can be useful for the detection 
of abnormal behaviors or anomalies (Chandola, 
2009). Several references can be found in scientific 
literature proposing different methods for anom-
aly detection, and, in general, fault detection in 
industrial processes (Garcia Matyos, 2013) based 
on values of some variables measured in real time. 
One area in hydropower plants with an important 
research activity is related with the vibrational anal-
ysis focused on some key components (Mohanta, 
2017), also the health condition of the components 
observed through several types of measurements is 
the goal of other studies such as those referred to in 
(Jamil, 2013) and (Selak, 2014).

In this paper, the hydraulic system of a Kap-
lan turbine was identified as a target of analy-
sis and in particular the detection of a possible 
oil leakage in the system. This analysis is part 
of the results obtained in the research project  
MonitorX – “Optimal utilization of hydropower 
asset lifetime by monitoring of technical condition 

1 INTRODUCTION

Hydropower is the leading renewable global source 
for electricity generation supplying 71% of all 
renewable electricity and reaching 1,064 GW of 
installed capacity in 2016 (WEC, 2017). It gen-
erated 16.4% of the electricity produced in the 
world from all sources. Hydropower is the most 
flexible and consistent of all the renewable energy 
resources, capable of meeting base load electric-
ity requirements, as well as with pumped storage 
technology, meeting peak and unexpected demand 
due to shortages or the use of intermittent power 
sources. Also, hydroelectricity is a source of electri-
cal energy coming from water that is clean and safe.

A large number of data is logged in the SCADA 
system (Supervisory Control And Data Acquisi-
tion) in hydropower plants, but the current status in 
Norway and Sweden is that SCADA data—apart 
for their use to control the plant—is not much used 
for other purposes, such as condition monitoring 
and maintenance planning. Thus, there is a large 
potential for using SCADA data for these new pur-
poses. This may contribute to increased availability 
and energy production due to prevention of fail-
ures and shut downs.
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and risk”. MonitorX is a joint industry project ini-
tiated and led by Energi Norge (Energy Norway—
the Norwegian electricity industry association) in 
cooperation with Energiforsk (the Swedish Energy 
Research Centre), more than 20  Norwegian and 
Swedish power companies, a number of equip-
ment manufacturers and service providers, and the 
research institutions Comillas Pontifical Univer-
sity, SINTEF Energy Research and the Norwegian 
University of Science and Technology as R&D 
partners. The project is financially supported by 
the Research Council of Norway.

The aim of the MonitorX project is to develop 
models and algorithms for condition monitoring 
and the detection of faults in hydropower equip-
ment. The main focus in the project is on models 
based on machine learning and artificial intelli-
gence. The project is case-driven, and several rel-
evant cases have been identified in the beginning 
of the project, whereof the case related to monitor-
ing of the Kaplan turbine regulating mechanism 
and corresponding hydraulic system was consid-
ered as relevant for further work. Since several 
components and parts of the system are difficult 
to inspect, models that can be used to monitor the 
system condition and detect failures are valuable. 
Furthermore, oil leakage from the hydraulic sys-
tem may cause environmental damage, especially 
when oil leaks into the river.

Usually, no separate condition monitoring sys-
tems are installed in power stations to surveil the 
condition of the regulating mechanism. The data 
that normally is available is from the SCADA sys-
tem of the plant that usually presents one hour 
average values. Thus, one of the aims of the pre-
sented case is to study if  such type of data is useful 
for modelling the normal behavior of hydropower 
components and detecting with these models 
anomalies that are related to faults.

The paper is organized in the following sections. 
Section  2 describes the method and objectives 
used for the creation of normal behavior models 
and detection of anomalies. Section  3 presents a 
description of the hydraulic system of the hydrau-
lic power plant analyzed. Section  4  includes the 
description and development of normal behavior 
models used as references for detection of anoma-
lies. Section 5 presents several cases about how the 
normal behavior models can be used as reference 
patterns for the detection of anomalies. Finally, 
section  6  summarizes some conclusions of the 
analysis developed throughout the paper.

2 METHOD AND OBJECTIVES

This section describes the main steps of the process to 
build anomaly indicators for detection of abnormal  

behavior in some functional characteristics of 
components in a hydropower plant. These indi-
cators are based on patterns previously obtained 
from observing the typical normal behavior of the 
monitored components. The following sequential 
steps are required in order to detect anomalies 
based on an estimation for these indicators:

a. Selection of a data training set for learning 
the typical normal behavior of the compo-
nent. This includes data selection and filtering, 
removing of outliers and treatment of missing 
measurements.

b. Identification of failure modes that could be 
detected with the variables available in the 
SCADA system, and selection of variables. 
Information available in a Failure Modes and 
Effects Analysis (FMEA) may help to select rel-
evant failure modes and variables. The variables 
will be used for the characterization of normal 
behavior patterns developed in the next step.

c. Building of normal behavior patterns of a com-
ponent described through variables collected in 
real-time from the hydropower plant. The cases 
studied in this paper are based on data samples 
collected every hour. The patterns were built 
using multi-layer perceptrons (Bishop, 1995), 
(Bishop, 2006). This technique is supervised 
requiring previous knowledge of behavior con-
sidered as normal and covering all the typical 
working conditions of the plant. A good selec-
tion of this behavior, considered as normal, 
is crucial in this method because the normal 
behavior will be learnt by the models as a refer-
ence to watch when new information is coming 
from the power plant.

d. Estimation of anomaly indicators. Once the 
previous steps are completed, the indicators of 
anomalies can be estimated. Its objective is to 
warn about data collected from the hydropower 
plant that do not correspond to the expected 
behavior by the reference patterns. The evo-
lution of the values of the anomaly indica-
tors over time will suggest whether or not it is 
necessary to pay attention to the components 
monitored from the point of view of scheduled 
maintenance and operation.

Sections 4 and 5 will describe details about each 
of the previous steps with examples demonstrating 
their use.

3 SYSTEM ANALYSED

The cases analyzed in the paper are from Embret-
sfoss 4, which is a hydropower plant using a Kap-
lan turbine for the production of electric energy.  
The Kaplan turbine is a propeller type turbine 
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controlled by the operation of the turbine runner 
blades (turbine blades) and the wicket gates (guide 
vanes). See illustration in Figure 1. A Kaplan tur-
bine is a typical run-of-river turbine, which can be 
operated at different flows and at varying head. 
For each head and flow, there is a given ideal com-
bination of the wicket gate and runner blade posi-
tion to ensure the best efficiency of the turbine.

A turbine regulator controls and operates the 
turbine. Based on information about head and 
flow it uses predefined combination curves for the 
runner and wicket gate. The regulator controls 
the turbine by adjusting the blade and wicket gate 
positions with a correlated movement between the 
two. The acting mechanism for the wicket gates 
and runner blades are based on high-pressure 
hydraulics where an HPU (high-pressure unit) and 
an accumulator bank provide high-pressure oil for 
actuation of hydraulics servomotors.

3.1 The high-pressure hydraulic system

The turbine regulator controls the wicket gates and 
the runner blades by the use of a high-pressure 
hydraulic system which consist of the following 
main components:

- Turbine governor oil sump tank with oil pumps 
(HPU – High Pressure Unit)

- Pressure accumulator banks. One bank for run-
ner blades and one bank for the wicket gates

- Hydraulic oil cooling/heating system
- Wicket gate control system
- Runner blade control system

- Quick stop/Emergency stop system
- Oil system for runner hub. The runner hub is the 

lowermost part of the runner. The cone part just 
below the runner blades. See Figure 1.

For a simplified view of the high-pressure 
hydraulics system, see Figure  2. The HPU is 
located at the turbine floor and it supplies the 
wicket gate and runner blade control system with 
high-pressure oil. The main components of the 
HPU are the oil reservoir, the oil pumps, valves, 
filters and coolers. In addition to supply oil to the 
control system, the HPU is “charging” in total 
five accumulator banks. The accumulator system 
is a safety system designed to handle a predefined 
number of safe shutdown cycles, in case of mal-
function of the HPU system or a blackout of the 
station. The HPU have systems for monitoring the 
oil level, temperature and water-in-oil content. To 
prevent the pollution of the oil, each of the HPU 
pumps are equipped with a filter system.

For maintenance reasons, the oil reservoir is 
designed to be big enough for storage of all the 
oil in the system. However, during operation, the 
oil is in the different components of the hydraulic 
system hence only a limited amount of oil is con-
tained in the reservoir. A minimum level is however 
required in the reservoir for avoiding dry running 
of the HPU pumps.

The hydraulics system has an oil cooling (and 
heating) system. The cooling system cools the oil 
during operation and the heating system heats the 
oil during standstill.

The wicket control system controls the wicket 
gates by the use of two hydraulic servos (cylin-
ders). The servos actuate the control ring, which 
again provides the open/close movement on the 
wicket gates. When the control ring, seen from the 
top, turns clockwise, the wicket gates close.

The runner blade control system controls the 
position of the runner blades by the use of a servo 
actuator located in the runner hub. The actuator 
high-pressure oil supply/return is routed through 
the center of the turbine shaft via the oil supply 
head located at the top of the shaft.

The system is equipped with a system for safe 
emergency stopping of the turbine. This can be 
activated by a manual activation of the emergency 
stop or if  the turbine is speeding and the overspeed 
trip valve is activated.

The turbine hub is filled with oil and has an oil 
pressure that is slightly higher than the surrounding 
water pressure. In the case of runner blade sealing 
degradation, this pressure prevents water from enter-
ing the hub. The oil pressure in the hub is a static 
pressure created by the elevated location of the hub 
oil tank (see Figure 2). The oil in the hub oil tank is 
pumped up from the HPU oil reservoir. The hub oil 

Figure 1. Illustration of the Kaplan turbine (Courtesy 
of Wikipedia).
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tank and the hub oil are not a part of the high-pres-
sure circuit, but a leakage in the runner blade servo 
will influence the oil level in the hub oil tank and will 
eventually sound an alarm or stop signal.

4 MODELS OF NORMAL BEHAVIOUR

An industrial component or system can be stressed 
due to normal operation, extraordinary opera-
tion and extreme environmental conditions or to 
a combination of all. Over time, these facts along 
with ageing factors can produce different ranges of 
typical values observed in measured variables even 
when the functional objectives of the component 
or system as expected have been reached (Sanz-
Bobi, 2011). However, when a component has 
been stressed or overloaded over time, an increas-
ing risk of occurrence of a failure is probable. For 
this reason, it is important to characterize the 
normal behavior expected for an industrial compo-
nent or system when it is performing its function 
under several typical working conditions, because 
any deviation with respect to this behavior could 
alert about the presence of an incipient failure. The 
sooner this is detected, the sooner it is possible to 
mitigate the effect of a failure.

This section describes real examples of normal 
behavior models. These models are able to charac-
terize the typical dynamical evolution of variables 
when the component is working under different 
operating conditions without symptoms of failure 
or stress.

In particular, the models developed and pre-
sented as an example in this paper, are based on 
information collected in real-time from a hydraulic 
power plant located in Norway. The models devel-
oped use neural networks based on multi-layer per-
ceptrons (Bishop, 1995; Kruse, 2013) because this 
is a method able to approximate non-linear rela-
tionships among variables.

An basic model to characterize the normal 
behavior of the hydraulic power plant can be 
expressed by function f in Equation 1

P f GVP WF HW TW= −( , , )  (1)

where:
P: Power generated by the power plant in MW
GVP: Guide Vane Position in percentage
WF: Water flow through the turbine in m3/s
HW-TW: Difference between headwater and 

tailwater levels in m.

Figure 2. Simplified view of the hydraulic system.
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Equation 1 tries to predict the power generated 
as function of the values of the main variables con-
tributing to the power generation.

In order to build a normal behavior model char-
acterizing the function f in Equation 1, a training set 
was selected covering different seasonal conditions 
from January 1 to August 20, 2015. The data set 
is based on hourly values for the variables consid-
ered. The model was developed with a multi-layer 
perceptron based on one hidden layer containing 
20 neurons and using the Levenberg–Marquardt 
algorithm for learning. The model obtained is 
very good, as it can be observed in Figure 3, where 
the estimated values for the power generated and 
the real values observed are almost identical. The 
mean value of their difference (error of the trained 
model) is 0.0012 MW and the standard deviation 
is 0.067 MW. This error is distributed according to 
a normal distribution with narrow shape.

An interesting family of models will be pre-
sented in the following for the characterization 
of the normal relationships that exist between the 
tank oil level of the turbine regulator and variables 
observed in different components of the turbine 
regulator that uses this oil. It is important to moni-
tor that the oil in the tank is at the expected level, 
because if  this is not the case, a possible leakage 
could be present.

The first normal behavior model of the family 
that was tested is described in Equation 2 using the 
function f1.

OTL f P OTT A TR= 1 1( , , )  (2)

where:
OTL: Oil tank level in the HPU in percentage
P: Power generated by the power plant in MW
OTT: Oil tank temperature in ºC
A1TR: Oil level in accumulator 1 of the turbine 

runner.
Equation 2 tries to predict the oil tank level in 

the HPU of the turbine regulator knowing the 
working conditions of the plant, the level of one 
oil accumulator of the turbine runner and the tem-
perature of the tank oil.

The model for f1 was obtained with a similar 
architecture as for f in Equation 1. Also, the same 
dates as in the previous case were used to obtain the 
samples of the training set. The model obtained is 
good, which can be observed in Figure 4 where the 
estimated values for the oil tank level and the real 
observed are very close. The oil tank level is meas-
ured in percentage (%). The mean value of their dif-
ference (error of the trained model) is 0.0007% and 
the standard deviation 0.0644%. This error is dis-
tributed according to a normal distribution shape.

The hydraulic power plant studied has another 
similar accumulator given the number 2 in the tur-
bine runner. A normal behavior model was fitted 
and the results obtained were very similar to those 
obtained for accumulator 1 of the turbine runner.

Other important components in the turbine reg-
ulator of the hydraulic power are three oil accumu-
lators for the guide vanes. These are very important 
for the correct regulation of the hydraulic turbine. 
Three models, one considering each of the oil accu-
mulators, were developed such as in Equation  2. 
For simplicity, only one of them will be presented. 
Equation 3 describes it using function f2.

Figure  3. Estimated value for power generated pre-
dicted by the normal behavior model and the real value 
observed for the training set using the guide vane posi-
tion, the flow through the turbine and the difference 
between headwater and tailwater level.

Figure 4. Estimated value for oil tank level in percent-
age predicted by the normal behavior model and the real 
value observed for the training set using as inputs the 
power generated, the oil tank temperature and the oil 
level in accumulator 1 of the turbine runner.
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OTL f P OTT A GV= 2 3( , , )  (3)

where:
OTL: Oil tank level in percentage
P: Power generated by the power plant in MW
OTT: Oil tank temperature in ºC
A3GV: Oil level in the accumulator 3 for the 

guide vanes.
Equation 3 tries to predict the oil tank level in the 

turbine regulator knowing the working conditions 
of the plant, the level of the oil accumulator 3 for 
the guide vanes and the temperature of the tank oil.

The model for f2 was obtained following the 
same method as in the previous cases described. 
However, the main difference was that the data 
used in the training set covered the period from 
April 9, 2016 to October 13, 2016, because before 
that period some measurements of the oil accumu-
lators of the guide vanes were not collected cor-
rectly. In any case, more than half  of this period 
overlaps with the one used for obtaining f and 
f 1. The model resulting for f 3 obtained is good, 
as it can be observed in Figure  5 where the esti-
mated values for the oil tank level (in percentage 
%) and the real observed values (in percentage too) 
are very close. The mean value of their difference 
(error of the trained model) is 0.0022% and the 
standard deviation 0.09%. This error is distributed 
according to a normal distribution shape.

Good results were also obtained for the two 
models that are similar to the one in Equation 3, 
where the variable oil level in accumulator 3 
has been changed to the oil levels in the corre-
sponding accumulators with numbers 1 and 2, 
respectively.

5 ANOMALY DETECTION BASED ON 
PATTERNS OF NORMAL BEHAVIOUR

Once a normal behavior model has been elaborated, 
it can be used in real time with real-time values from 
the required inputs. The output from the model can 
then be compared with the corresponding real meas-
ured output variable. The prediction will correspond 
to the expected value for normal behavior under the 
current working condition. Any incipient failure will 
produce a deviation between the expected value and 
the real value measured of the monitored variable. 
This section presents how the normal behavior mod-
els obtained in the previous section respond to new 
inputs of data collected after the training set dates. 
This will allow for the discovery of abnormal behav-
ior different to the one expected.

Model f was used with data not contained in the 
training set, covering the period from November 25, 
2015 to May 31, 2017. Figure  6  shows the results 
obtained by the model. The real behavior observed 
is very near to the predicted one and this confirms 
that the behavior observed in this new period of 
time is similar to the previous one in the training set. 
No abnormal behavior was detected in the power 
generation according to model f. The mean value 
of their difference (error) is -0.017 MW and the 
standard deviation is 0.7 MW. Both are higher than 
what was obtained for the training data set, but the 
prediction is still reasonable. Also, this error is dis-
tributed according to a normal distribution shape.

Furthermore, model f1 was used with data 
not contained in the training set, covering the 
period from November 25, 2015 to May 31, 2017.  
Figure 7 shows the results obtained from the model. 
The real behavior observed is near to the predicted 

Figure 5. Estimated value for oil tank level in percent-
age predicted by the normal behavior model and the real 
value observed for the training set using the power gener-
ated, the oil tank temperature and the oil level in accumu-
lator 3 for the guide vanes.

Figure  6. Estimated value for power generated pre-
dicted by the normal behavior model and the real value 
observed for the testing data set using the guide vane 
position, the flow through the turbine and the difference 
between the headwater and tailwater levels.
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one in some cases in the central part of the figure 
and different in the rest of the period studied. This 
means that the behavior observed in the training 
data set is different from the one observed in the 
new test data set at some periods. An abnormal 
behavior was detected in the relationships between 
the output and input variables of this model for 
the test period. Once this was detected, it became 
necessary to investigate the cause.

The cause of abnormal behavior detected that 
is breaking the relationship modelled by f1 can be 
any of the variables used in this model. The vari-
able power generated cannot be the cause due to 
the test carried out in model f and presented in 
Figure 6 which confirms that no abnormal genera-
tion of power exists. The rest of the variables could 
be candidates to be anomalous and they are related 
with the oil tank (level and temperature) and the 
accumulator 1 level of the turbine runner.

A model similar to the one presented in Equa-
tion 2 was developed replacing the variable A1TR 
(Oil level in accumulator 1 of the turbine runner) 
by another equivalent model, but measuring the 
oil level in accumulator 2 of the turbine runner. 
The model obtained was very good and similar to 
that presented in Figure 4. This model was checked 
with data not contained in the training set, cover-
ing the period from November 25, 2015 to May 31, 
2017 as for accumulator 1 of the turbine runner.

The result is presented in Figure  8. The profile 
between predicted and real oil tank levels are almost 
the same in Figures 7 and 8. The same broken rela-
tionship is shown between the oil tank level and the 
oil level in accumulators 1 and 2 of the turbine runner. 
This induces the thought that it is not probable that 
the problem of the abnormal behavior observed is 

due to some anomaly in both turbine runner accumu-
lators at the same time and it is therefore convenient 
to closely monitor the oil tank level.

In this way, model f2 was also tested with data 
covering the period from October 14, 2016 to May 
31, 2017. This period includes data from sample 
8000 till the end of the graphics in both Figures 7 
and 8. Figure 9 presents the results of the applica-
tion of model f2 to the data set mentioned. The 
discrepancy between predicted and real values 
for the oil tank level is clear. This is lower than 
expected for the working conditions of accumula-
tor 3 of the guide vanes. In fact, it seems that the 
difference between the real and expected values for 
the oil tank level is increasing over time, except in 
the last part of the graphic in Figure 9 where the 
real and expected values are approaching.

Two similar models to f2 were built and tested 
during the same periods of time replacing the 
variable A3GV (Oil level in accumulator 3 for the 
guide vanes) by other equivalent elated respectively 
to accumulators 1 and 2 for the guide vanes. The 
results were similar.

According to the results obtained, all five models 
applied for anomaly detection in the oil tank level 
(three of them presented in Figures 7, 8 and 9) coin-
cide in that they indicate a lower level of oil over 
time. This is an indicator of a possible leakage of oil 
in the oil tank level or surrounding locations. The 
accumulators are working as expected, but the total 
oil level in the tank of the HPU is decreasing. This 
was verified and a leakage was discovered from the 
oil side to the nitrogen side of the accumulators.

These examples demonstrate that the deviation 
values obtained from the comparison of the real 
value and predicted one by the patterns of normal 

Figure 7. Estimated value for oil tank level in percent-
age predicted by the normal behavior model and the real 
value observed for the testing data set using as inputs the 
power generated, the oil tank temperature and the oil 
level in accumulator 1 of the turbine runner.

Figure 8. Estimated value for oil tank level in percent-
age predicted by the normal behavior model and the real 
value observed for the testing data set using as inputs the 
power generated, the oil tank temperature and the oil 
level in accumulator 2 of the turbine runner.
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behavior can be good indicators for alerting when a 
typical relationship among variables could be broken.

In this case, the unexpected decreasing level in 
the oil tank must be monitored.

6 CONCLUSIONS

This paper describes a methodology for the early 
detection of anomalous behavior conditions of 
selected Kaplan turbine components. The method 
is based on discovering behavior patterns, also 
called normal behavior models, from the observa-
tion of the typical relationships existing between a 
set of variables used as inputs to the models and the 
corresponding output of a target variable whose 
expected value has to be predicted. The criteria to 
select the variables to use in the models are based 
on the physical working principles of the compo-
nent in order to detect symptoms of abnormal 
behavior that can cause a possible failure mode.

The data set used for pattern discovering of nor-
mal behavior comes from the SCADA system of the 
plant. Abnormal behavior is any significant devia-
tion or difference between the predicted output of 
the models and its corresponding real observation.

The paper presented some examples of normal 
behavior models for the cases of characterization of 
power generated by the hydropower plant and the 
oil tank level considered from different perspectives 
such as the oil level in the bank of accumulators of 
the turbine runner and the bank of accumulators of 
the guide vanes. Once the models were created, they 
were applied to new examples of operation. The 
predicted amount of generated power was always as 
expected, but the oil tank level was not. The analysis 

of deviations of normal behavior described in the 
paper shows that the oil levels in the accumulator 
banks were according to their working conditions, 
but the oil tank level was continuously decreasing 
during the time analyzed. This suggests a need for 
close monitoring of this level in order to search for 
the cause of this potential detected leakage.

In future works, an approach based on different 
algorithms working in parallel for anomaly discov-
ering will be tested. This will improve even more 
the robustness of the anomaly detection method 
proposed.
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