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Abstract—Transformer manufacturers make routine use of 
white-box detailed transformer models for ensuring that the 
transformer will pass the lightning impulse test. For use in general 
simulation studies, the model should additionally be multi-phase 
and properly reproduce the transformer's input impedance 
characteristics and voltage ratios at 50/60 Hz. One challenge in 
such general modeling scope is to properly represent the 
frequency-dependent damping of the transformer's many 
resonances. In this work we show how to properly include 
empirical damping factors in a multi-phase admittance-based 
formulation of the state-equations. It is shown that the substitution 
of the real part of the state matrix eigenvalues causes some 
undesired changes to the model's behavior at lower frequencies, 
but this deficiency is mitigated by a correction to the output 
matrix. The resulting model can be directly included in EMTP-
type simulation programs via a companion model, or via a 
terminal model with an add-on model for optional calculation of 
selected internal node voltages. Application of the modeling 
approach to a single-phase three-winding transformer 
demonstrates its merit in terms of accuracy and efficiency. Finally, 
the limitations of the model are discussed regarding accuracy and 
applications scope. 
 

Index Terms—Transformer, White box model, EMTP, 
Simulation. 

I.  INTRODUCTION 
RANSFORMER manufacturers apply dedicated 
computational tools for assessing the dielectric stresses 

inside windings due to factory test with the lightning impulse 
voltage [1]. The calculations are performed using so-called 
white-box transformer models [2], [3] where the windings are 
modeled in detail, typically using lumped parameter type 
models, or transmission line models.  

There is an increasing interest in utilizing the manufacturer's 
white-box models in EMTP-type circuit simulators for studies 
of high-frequency interactions between transformers and the 
system. The lumped parameter type models involve a circuit of 
coupled RLC elements which can in principle be directly 
imported into EMTP-type tools; however, the manufacturers 
are sometimes reluctant to sharing such detailed models with a 
customer. The authors recently proposed [4] an alternative state 
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space-based approach for interfacing such models with EMTP 
tools which permits the manufacturer to conceal information 
about internal voltages. A different approach [5] is to calculate 
admittance parameters with respect to external nodes in the 
frequency domain, and fit a black-box model to the data via 
curve fitting. Internal voltages can be simulated via a rational 
function model of the voltage transfer function from the 
external nodes to all internal nodes. Such approach can also 
include the frequency-dependency in the parameters [6], but the 
its accurate determination can be challenging.  

In practice it can be difficult to determine the losses in the 
transformer as function of frequency and thereby the values of 
the matrices of series resistance R and shunt conductance G. In 
the k-factor approach [4], the resistances are chosen equal to dc 
values and scaled with an appropriate (large) value to give an 
acceptable agreement with observed voltage wave shapes. 
However, this method leads to large errors at 50/60 Hz due to 
overdamping, limiting the scope of the model. A different 
approach was taken in [7], based on a state-space model with 
voltage application on one terminal as input and voltage 
response on internal winding points as outputs. The real parts 
of the state matrix eigenvalues were substituted with frequency-
dependent empirical values obtained from observation of 
transient responses. This damping approach method is 
commonly applied among manufacturers for assessing the 
winding voltage distribution during the lightning impulse test.  

In this work we introduce the damping factor in a multi-port 
state-space model of the transformer. That formulation has 
current injection as input and voltage response as output, 
thereby including information about the terminal input  
impedance, unlike the voltage transfer formulation in the 
original damping factor approach [7]. Based on a consideration 
of how the damping factor affects the model's accuracy via its 
points of resonance and anti-resonance, we modify the state-
space model such that the input is applied voltage on external 
terminals while the response is current on external terminals 
and voltage on internal nodes. We next introduce the empirical 
damping factor into the eigenvalues of the state matrix, thereby 
achieving frequency-dependent attenuation of the modes, 
leading to a d-factor model. A correction factor is introduced 
which mitigates undesired changes to the model's behavior at 
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low frequencies that are caused by the damping factor. The 
interfacing of the model with EMTP-type circuit simulators is 
described in some detail. The modeling approach is 
demonstrated for a single-phase three-winding transformer and 
simulation results are compared against actual measurements.   

II.  DAMPING FACTOR METHOD  

A.  Damping Factor  
For calculation of internal oscillations in transformer 

windings it has been proposed [7] to use an experimentally 
obtained damping function (1) which relates resonance 
frequency (β) and damping (α), 

  ( )fα β=   (1) 

The damping function was obtained from samples ( )i ijα β+
associated with observed voltage oscillations [7], 

  ( ) cos( )i t
i i i

i
y t k e tα β θ= +∑   (2) 

The samples ( )i ijα β+  are also the eigenvalues of a 
corresponding state equation. It is further observed that (𝛼𝛼/𝛽𝛽) 
defines the damping factor of the oscillation, i.e. by which 
factor  each of the natural oscillations is scaled down by 
damping effects.   

In the work [7], measurements were performed on 25 
transformers of different sizes, giving the damping factor (3). 
Here, ω represents the eigenvalue imaginary part, β. 

  6 5( ) (0.022 0.058 10 ) , 5 10α ω ω
ω

−= − + ⋅ ⋅ ≤ ⋅   (3a) 

 5( ) 0.050 , 5 10α ω
ω

= − > ⋅   (3b) 

B.  Uniqueness 
Consider a linear model with input u and output y. In the 

frequency domain we can write 

 ( ) ( ) ( )y s H s u s= ⋅  (4) 

The transfer function H can be expressed on alternative 
forms, by a state-space model (5a), a pole-residue model (5b) 
and pole-zero model (5c).   

 1( ) ( )TH s s dc I A b−= − +  (5a) 

 ( ) i

i i

r
H s d

s a
= +

−∑  (5b) 
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s z
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s a

−
=

−

∏
∏

 (5c) 

The complex poles and zeros in (5) appear as conjugate pairs. 
With the damping factor method, one replaces the real part of 
each complex pole by a different value according to some 
(empirical) function via (1),  

 𝑎𝑎𝑖𝑖 = 𝛼𝛼𝑖𝑖 ± 𝑗𝑗𝛽𝛽𝑖𝑖  →  𝑎𝑎�𝑖𝑖 = 𝛼𝛼�𝑖𝑖 ± 𝑗𝑗𝛽𝛽𝑖𝑖 (6) 

It follows that the damping function affects the state matrix 
A and the poles ai, while the other coefficients remain 
unchanged.  Consider that one interchanges input and output in 
(4). One observes from (5c) that the poles and zeros of the 
original model respectively become zeros and poles in the new 
model. This tells us that the damping factor is not unique in the 
sense that its impact on the model's behavior depends on the 
choice of input and output. For instance, if the original model 
represents admittance, the voltage is input. This model will with 
a current application give a different result than an impedance-
based model with current application, when the eigenvalues of 
each model have been modified by a damping function (3). This 
consideration to uniqueness can be generalized to multi-port 
systems as the poles are the eigenvalues of A. It follows that the 
choice of input and output variables for a white-box transformer 
model is not arbitrary.  

III.  STATE-SPACE MODELING  

A.  Circuit Equations 
We consider a lumped-parameter white-box model of a 

transformer with spatial discretization of its windings. The 
fundamental equations defining the electrical behavior was 
described in [4] but is briefly repeated here. The basic equations 
related to the circuit parameters (matrices) R, L, C, G is defined 
by (7), (8), and (9). The model has N nodes and M branches. 
Variables v, i and e denote node voltages, inductive branch 
currents, and inductive branch voltages.   

 C =i Cv  (7) 

 G =i Gv  (8) 

 = +e Li Ri  (9) 

An incidence matrix T (10), dependent on internal 
connections, is used for relating node voltages v with inductive 
branch voltages e, and for relating the inductive branch currents 
i with the sum iL of all inductive branch currents flowing out of 
branch nodes,  

 =e Tv  (10) 

 T
L =i T i  (11) 

At each node, the total iS current flowing into each node is 

 C L G S+ + =i i i i  (12) 

Introducing (7), (8), (10) and (11) in (12) and (9) gives:  

 T
SCv Gv T i i= − − +  (13) 

 = −Li Tv Ri  (14) 

B.  State-Space Model 
The above equations can be combined into the state equation 

(15) as  
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1 1 1

1 1

T
S

− − −

− −

   − −     
= ⋅ +        −        

v v iC G C T C 0
i i 0L T L R 0 0




 (15) 

Connections between nodes and grounding of nodes is 
achieved by a modification of matrices C, G and T based on the 
procedure described in the Appendix of [4]. 

For convenience we introduce the reordering matrix Q which 
makes the external n1 nodes come first and the internal n2 nodes 
last (n1+n2=N) via the relations (16).  

 1, , T
S Sv Qv i Qi Q Q−= = =   (16) 

The state-space model (15) becomes  

 
1 1 1

1 1

T T T

ST

− − −

− −

     − −  
= ⋅ +      −       

vv QC GQ QC T QC Q
i

ii L TQ L R 0





 (17) 

C.  Modifying Input and Output Variables 
The transformer input impedance at high frequencies is 

usually high as compared to the components to which it is 
connected, e.g. the characteristic impedance of cables and 
overhead lines. The transformer terminals are therefore 
subjected to voltage applications rather than current 
applications. From the reasoning in Section II.B it follows that 
it can be advantageous to base the model on a formulation with 
voltage as input instead of current.  

The notation for (17) is first simplified by partitioning the 
variables according to external voltages/currents. This gives for 
the complete state space model, 

 [ ] [ ]ext ext ext
1 2 1 2

2 2 2

v v i
A A B B

x x u
     

= ⋅ +     
     





 (18a) 

 ext ext ext

2 2 2

v I 0 v
x 0 I x

     
= ⋅     

     
 (18b) 

We next introduce resistors in series with the external 
terminals as shown in Fig. 1. Each resistance should be a small 
fraction of the DC resistance of the associated winding.  

  
Fig. 1.  Introducing resistors in series with transformer's external terminals. 
 

For the series connection in Fig. 1 we can write 

 ext ext ext ext( )i G v v′ ′= −  (19) 

where Gext is a diagonal matrix holding the inverse of the 
resistor elements in Fig. 1, ext , 1( , ) 1/ , 1s iG i i R i n   . 
Introducing (19) in (18) and noting that u2=0 gives a new state-
space model,  

 [ ] [ ]ext ext
1 1 ext 2 1 ext ext

2 2

( )
v v

A B G A B G v
x x

    ′= − ⋅ +   
   





 (20a) 

 ext ext ext ext
ext

2 2 2

0i G v G
v

x 0 I x 0
′ −        ′= ⋅ +       

      
 (20b) 

It is observed that in this model, external voltage extv  is input 

and external current ext ext i i  is output. As will be shown in 
Section IX.A, the change of variable has the advantage that  the 
large eigenvalues of the terminal admittance matrix at 50/60 Hz 
becomes much less affected by the damping factor which is 
introduced in Section IV.  

IV.  DAMPING FACTOR METHOD  

A.  Inclusion of Damping Factor in State Space Model 
To simplify notation, we write (20) on standard form, 

 
x Ax Bu
y Cx Du

= +
= +



 (21) 

The state matrix of the model (21) is subjected to 
diagonalization by eigenvector decomposition, 

 

1−=A SAS  (22) 

Since A is a real matrix, its eigenvalues and associated 
eigenvectors are real or come in complex conjugate pairs. Each 
complex eigenvalue  

 i i ijλ α β= ±  (23) 

has its real part replaced with the empirical value given by (1), 

 ( )i ifα β←  (24) 

where f is the damping function. In the case that the original 
eigenvalues represent a system with losses ignored or greatly 
underestimated (e.g. calculated at 50/60 Hz), β is effectively the 
undamped resonance frequency. To obtain the damped 
resonance frequency we update β , 

 2 2
i i iβ β α← −  (25) 

The substitutions (24) and (25) lead to a modified state 
matrix in (21),  

 A A A= + ∆  (26) 

B.  Recovering Accuracy at 50/60 Hz 
As will be shown in Section VII, the replacement of A with 

A  causes the low-frequency behavior of the terminal 
admittance matrix to change at lower frequencies. The change 
to the input-output transfer function H (5a) due to (26) is in the 
frequency domain given as 

    1 1ˆ( ) ( ) ( ) ( )s sH C sI A B H C sI A B− −= − → = −  (27) 

In order to retain the original behavior at low frequencies, 
we enforce the condition that the change to H at 50/60 Hz is 
zero. Denoting this frequency (50/60 Hz) as s0 we introduce an 
unknown scaling matrix F so that     

 1 1
0 0( ) ( )s sCF I A B C I A B− −− = −  (28) 

ext,1v ext ,1v ext ,1i,1sR

ext ,2v ext ,2v ext ,2i

1ext ,nv
1ext ,nv

1ext ,ni

,2sR

1,s nR
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whose solution is  

    1
0 0( ) ( )s sF I A I A−= − −  (29) 

F has a small imaginary part which is undesirable as it 
prevents a real-valued realization of the final state space model. 
This difficulty is avoided by first expressing F on its diagonal 
form (30a), (30b), see proof in Appendix.  

 1( )sF SΛS−=  (30a) 

 0

0

i
i i i

i

s a
j

s a
λ λ λ

− ′ ′′= = +
−

 (30b) 

A real-valued F is achieved by enforcing that its eigenvalues 
(30b) are real or complex conjugate, compliant with the 
columns of S and rows of S-1. The complex pairs are identified 
via the eigenvalues of the original state matrix A. For any 
complex pair  

 1 1( ) , ( )i i i ij jλ λ λ λ+ +′ ′′ ′ ′′+ −  (31) 

the following substitutions are made via averaging, 

 1 1
1 1,

2 2
i i i i

i i i i
λ λ λ λ

λ λ λ λ+ +
+ +

′ ′ ′′ ′′+ +′ ′ ′′ ′′= ← = ←  (32) 

With the modified eigenvalues (32), the real-valued F is 
calculated via (30a) which gives the final state space model 

 
( )

x Ax Bu
y CF x Du

= +
= +

  (33) 

V.    DIRECT INTERFACING WITH CIRCUIT SIMULATORS 
The model (33) can be directly interfaced with circuit 

simulation programs via its admittance parameter 
representation, defined by the first n1 elements of u ( extv ) and 
first n1 elements of y ( exti ). In order to achieve high 
computational efficiency in a time domain simulation, it is 
necessary to utilize the state equation on its diagonal form. This 
gives for (33), 

 
1

( )
x Ax S Bu
y CFS x Du

−= +
= +





 



 (34) 

The actual implementation is similar to that of the k-factor 
model in [4] by use of a Norton-type companion model in 
combination with recursive convolution. The model optionally 
gives out the internal node voltages by including the 
corresponding rows of CFS in the model.  

VI.  ALTERNATIVE INTERFACING APPROACH 
Most EMTP-type circuit simulators lack the capability of 

direct inclusion of the model (34) with proper utilization of the 
sparse structure. Until such capability is made available, it is 
possible to do the interfacing with a pole-residue model that 
represents external terminals and an optional voltage transfer 
block that gives the voltage on selected internal nodes. The 
voltage transfer can also be implemented as an offline model in 

a separate program, e.g. Matlab.   

A.  External Terminals 
The model is interfaced via a pole-residue model that 

represents the terminal behavior only. This model is obtained 
by calculating frequency samples for the terminal admittance 
matrix Yext(sk) that is subjected to least squares rational fitting 
and passivity enforcement [8] by the (symmetrical) model  

    ext 0( ) , 1i
k s

i k i

s k N
s a

R
Y R≅ + =

−∑   (35) 

The calculation of samples of Yext(sk) is done in a robust and 
efficient manner by utilizing the diagonal form (34) of the state-
space matrix. When also replacing F by its diagonal form (30a), 
one gets  

    1
ext sub ext( ) ( ) ( ) ( )s sY CS E S B G−= ⋅ ⋅ +  (36a) 

where (CS)sub denotes the first n1 rows of CS, 

    sub 1( ) ( )(1: ,:)nCS CS=  (36b) 

E(s) is a diagonal matrix with elements  

 ( ) i
ii

i

e s
s a

λ
−

 (36c) 

where iλ , and ia  are the eigenvalues of F and A ,  respectively.  
When internal connections and grounding of nodes are 

handled as in this work (see Appendix in [4]), the state matrix 
A gets one or more zero eigenvalues. The zero eigenvalues are 
removed by deleting corresponding entries in E, and ditto 
columns of CS and rows of 1S B .  

B.  Internal Node Voltages and Branch Currents 
 The internal node voltages and branch currents are obtained 

via models J1 and J2,   

 int 1 ext( ) ( ) ( )s s sv J v′= ⋅  (37a) 

 branch 2 ext( ) ( ) ( )s s si J v′= ⋅  (37b) 

where  

 1
1 1 1( ) ( )( : ,:) ( ) ( )s n N sJ CS E S B−= ⋅ ⋅  (38a) 

 1
2 ( ) ( )( 1: ,:) ( ) ( )s N N M sJ CS E S B−= + + ⋅ ⋅  (38b) 

J1 and J2 are in (38a) and (38b) seen to be calculated using 
different rows of CS, from n1 to N1 and from N1+1 to N+M, 
respectively.  

C.  Time Domain Simulation 
In a time domain simulation, the pole-residue model (35) is 

interfaced with the circuit simulator by recursive convolution 
via a Norton equivalent as described in [9]. The simulation 
gives in each time point tk the voltage ext ( )ktv  on the 
transformer external terminals. 

For calculation of internal node voltages and branch currents, 
the model (38) is interfaced with the circuit simulator as a state-
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space model on diagonal form with usage of recursive 
convolution, with the calculated value for ext ( )ktv  as input, 

 int 1 ext( ) ( ) ( )t J t tv v′= ∗  (39a) 

 branch 2 ext( ) ( ) ( )t J t ti v′= ∗  (39b) 

The convolutions (39a) and (39b) can be performed off-line 
since they do not interact with the system. 

VII.  APPLICATION TO SINGLE-PHASE TRANSFORMER 

A.  Transformer 

We consider a single-phase three-winding transformer as 
shown in Fig. 2. This is a 50 MVA unit with rated voltage 
230 / 3 , 69 / 3 , 13.8 kV at 60 Hz. The core has one mid-leg 
and two return legs.  

B.  White-Box Modeling 
A white-box lumped parameter type model is calculated via 

spatial discretization and analytical formulae following a 
similar approach as in [4]. The model has N=219 nodes and 
M=213 inductive branches. Terminals H1, X1, Y1 and Y2 are 
treated as external terminals, giving n1=4. Terminals H0 and X0 
are grounded. The calculations are performed with a k-factor 
k=1, i.e. using DC resistances.  

 
Fig. 2.  Single phase transformer with external terminals and internal 
connections.   

C.  Damping Function 
A suitable damping curve can be extracted directly from the 

measured frequency domain responses via rational fitting [10]. 
For the given transformer, several voltage transfer 
measurements were performed [11]. As an example, we 
consider the measured voltage response to two alternative 
voltage applications as shown in Table I. The tap setting is in 
middle position.  

 
 
 
 

TABLE I   
VOLTAGE TRANSFER MEASUREMENTS. 

Case Voltage 
applied on  

Grounded 
terminals 

Voltage 
response on  

6 H1 H0, X0 X1, Y1, Y2  
38 X1 H0, X0 H1, Y1, Y2  

 
The responses are fitted using a high-order common pole set 

as shown in Fig. 3. From the extracted poles, a damping 
function (40) is calculated based on the extracted poles using 
least squares approximation, see Fig. 4. The model has 
parameters a=−0.00590, b=0.9762. The damping function is in 
Fig. 4 compared to the one (3) in [7] denoted "Fergestad", 
showing a remarkably good agreement above 5⋅105 rad/sec. 
Below this frequency, the Fergestad curve gives too low 
damping. 

The state matrix A is diagonalized (22) and the eigenvalues 
are modified by the damping function (40) via (24) and (25), 
using the calculated (fitted) model in Fig. 4. 

 
Fig. 3.  Fitting the voltage transfer functions with a rational model.  

 baα ω= ⋅  (40) 

 
Fig. 4.  Damping curve for extracted poles.  

D.  Core Losses 
The white-box model used as starting point in Section VII.B 

includes an inductive core equivalent by the approach described 
in Appendix in [4]. In addition, we add a resistor between Y1 
and Y2 which represents the no-load losses. This resistor R is 
added externally to the model, after introduction of the damping 
factor. Since the associated hysteresis losses are not present at 
high frequencies, we add a series inductance L to block the loss 



0885-8977 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2018.2847725, IEEE
Transactions on Power Delivery

 6 

effect at high frequencies. The inductance is chosen such that 
ωL=R at 1 kHz.  

E.  Terminal Admittance Matrix 
The terminal admittance matrix Yext is calculated using the 

approach described in Section VI-A, with Rs=1 mΩ. In order to 
recover the original behavior at low frequencies, the matrix F 
(29) is utilized with 0 2 60s j   . Fig. 5 shows the resulting 16 
elements of Yext, before and after introduction of the damping 
factor. It is observed that the resulting model preserves the 
original behavior at low frequencies and that it gives a strong 
damping of the resonance peaks at higher frequencies.   

 
Fig. 5.  Impact of damping function on terminal admittance matrix.  
 

The improvement by introducing F (29) is highlighted in 
Fig. 6 which shows the eigenvalues of Yext. It is observed that 
by usage of F, the original behavior of the two small 
eigenvalues of Yext is recovered at low frequencies. These 
eigenvalues are respectively associated with the no-load 
currents and the tertiary winding common mode capacitive 
charging current. The large eigenvalues are virtually unaffected 
by F since they were not noticeably affected by the damping 
factor. At higher frequencies, the resonance peaks appear 
unchanged while the anti-resonance peaks are more damped. 
Table II shows the impact of using F on the voltage ratios X/H 
and X/T, as well as the short-circuit and open-circuit impedance 
seen from terminal H at 60 Hz. It is observed that the impact of 
the damping factor is negligible on the voltage ratio and on the 
short-circuit impedance while it has a large impact on the open-
circuit impedance. However, with usage of F also the open 
circuit impedance becomes close to that in the original value.  

The last row in Table II shows the corresponding data from 
the transformer's Factory Acceptance Test (FAT), taken as the 
average of seven sister units. The impedances, losses and 
currents are referred to the high-voltage side. The agreement 
between calculations and FAT results is seen to be very good, 
except for the no-load current. The reason for the deviation in 
no-load current is that the applied common flux inductance L0 
as defined in Appendix A in [4]  is too small in the white-box 
model, which was calculated prior to the measurements. By 
increasing the inductance from L0=0.582 mH to L0=2.2 mH, a 
very good accuracy is achieved for the no-load current as well.   

 
Fig. 6. Eigenvalues of Yext, with and without usage of F. 
 

TABLE II   
VOLTAGE RATIOS, SHORT-CIRCUIT IMPEDANCE, OPEN-CIRCUIT LOSSES AND 

CURRENT. 
 VS /VP VT /VP Zk  

[Ω] 
Poc 

[kW] 
Ioc 
[A] 

Original 
model 

0.300 0.104 1.51+j74.4 33.4 0.93 

Model with  
d-factor 

0.300 0.104 1.55+j74.4 140.1 1.38 

Model with  
d-factor and F 

0.300 0.104 1.51+j74.4 33.4 0.93 

FAT 0.300* 0.104* 1.50+j75.1 33.0 0.32 
*Calculated from turns ratio 

F.  Model Extraction 
The terminal admittance matrix Yext (with usage of F) is 

subjected to symmetrical pole-residue fitting by vector fitting 
[12]. The passivity violations were found to be very small and 
were easily removed by passivity enforcement via perturbation 
of residue matrix elements [13]. Since the transformer has an 
ungrounded tertiary, the use of a mode-revealing 
transformation [14] was essential to retain the behavior of the 
small eigenvalue of Yext, both during fitting and passivity 
enforcement. 

Fig. 7 shows the eigenvalues of Yext in terms of samples and 
the extracted model using 120 pole-residue terms. The model 
extraction is seen to be highly accurate for small and large 
eigenvalues alike, implying that the model can be applied in a 
wide range of applications without error magnifications.  

Fig. 8 shows a few elements of matrix J1 (38a), 
demonstrating the effect of the damping factor and of F. The 
damping factor is seen to give the desired effect of attenuating 
the resonance peaks. The F-matrix  does however not have any 
noticeable affect on the responses of J1, which represent the 
voltage transfer from external terminals (with known voltages) 
to internal nodes. It follows that the significance of F is mainly 
for the terminal behavior of the model as described by Yext since 
the small eigenvalues of Yext are sensitive to F, see Fig. 6. 
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Fig. 7.  Eigenvalues of extracted model.  

 
Fig. 8.  Internal voltages due to voltage excitation on H1.  

VIII.  COMPARISON AGAINST MEASUREMENTS 
Extensive measurements have been performed on this 

transformer as described in [11], including terminal admittance 
and voltage transfer. 

A.  Terminal Admittance in Frequency Domain  
Fig. 9 compares the eigenvalues of the model's Yext with 

those of a direct admittance measurement. It is observed that 
the damping characteristics are reproduced quite accurately 
except at very high frequencies (above 1 MHz) where the 
white-box model's spatial discretization starts becoming 
inadequate and where the measurements are possibly 
inaccurate. At low frequencies, there is a big deviation in the 
small eigenvalue that is related to the no-load current. This 
deviation is in part due to inaccurate measurements since the 
applied small-signal measurements do not sufficiently excite 
the steel core to reach the proper magnetization level.  

 
Fig. 9.  Terminal admittance matrix eigenvalues.   

B.  Voltage Transfer in Time Domain 
We consider one case where a 1.2/50 µs lightning impulse 

voltage wave is applied to H1 with X1, Y1 and Y2 open. The 
voltage responses were obtained via frequency sweep 
measurements followed by rational fitting and recursive 
convolution as detailed in [11]. The measured time domain 
responses are shown in Fig. 10 along with simulated responses 
by the passive pole-residue model. Fig. 10 also shows the result 
when losses are represented by DC resistances in the model 
(k-factor=1). It is observed that usage of the damping factor 
gives a satisfactory representation of the damping of the 
responses, compliant with the frequency domain result in 
Fig. 9. The dominating oscillation frequency is about 10% 
lower in the simulated result, due to inaccuracies in the 
calculation of the model's parameters (matrices L and C). 
Ongoing calculations within CIGRE JWG A2/C4.52 show that 
for this example, the biggest differences in the natural 
frequencies are likely to result from the calculation of C.  

Fig. 11 shows the voltage on three inner points in the 
regulating winding. These voltages are calculated by the state-
space model having external terminal voltages as input, 
obtained by simulation using the pole-residue model. The 
simulated result is shown to agree well with the measurement. 
In this case, the inclusion of the damping factor had only a small 
effect on the responses in the given time window. The initial 
part of the measurement is seen  to contain a high-frequency 
oscillation component that is not represented in the white-box 
model.  

 
Fig. 10.  Measured and simulated voltage transfer from H1 to X1, Y1, Y2. 
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Fig. 11.  Measured and simulated voltage transfer from H1 to R1, R5, R11.  

C.  Voltage Application on LV Terminal 
Fig. 12 shows the calculated voltage response on terminals 

H1, Y1, and Y2 when applying the 1.2/50 µs voltage wave on 
X1.  It is observed that the pole-residue model with inclusion of 
the damping factor gives a satisfactory representation of the 
damping of the high-frequency superimposed oscillation.  

 
Fig. 12.  Measured and simulated voltage transfer from X1 to H1, Y1, Y2. 

D.  Computation Time 
Table III lists the CPU time for an implementation in Matlab. 

The calculation involves 5001 time domain samples with a state 
matrix of 432 states. It is observed that the computation time is 
about one second. 
 

TABLE III   
CPU TIME FOR CALCULATING 5000 TIME STEPS. 

Step Time [sec] 
Calculate four terminal voltages.  
(pole-residue model) 

0.12 

Calculate 213 internal node voltages. 
(sparse state-space model) 

0.95 

IX.  DISCUSSION  

A.  Significance of Modifying Input and Output Variables 
In the adopted state-space model we modified the 

formulation by introducing small series resistors to obtain 
external voltages vext as input and external currents iext as output 
(admittance). Without this change, we have iext as input and vext 
as output (impedance). With the latter formulation, the use of 
matrix F becomes mandatory. Fig. 13 shows the eigenvalues of 

Yext as calculated from the inverse of Zext. It is observed that at 
50/60 Hz, the large eigenvalues of Yext become highly incorrect 
unless F is applied, implying much too large short-circuit 
impedances in the model. Even with the use of F, the resonance 
peaks at high frequencies are observed to become exaggerated, 
e.g. at 200 kHz. Table IV shows the effect of the damping factor 
on 60 Hz parameters. 

 
Fig. 13. Eigenvalues of Yext by impedance-based model, with and without 
usage of F.  
 

TABLE IV   
VOLTAGE RATIOS, SHORT-CIRCUIT IMPEDANCE, OPEN-CIRCUIT LOSSES AND 

CURRENT.  IMPEDANCE-BASED MODEL 
 VS /VP VT /VP Zk  

[Ω] 
Poc 

[kW] 
Ioc 
[A] 

Original 
model 

0.300 0.104 1.49+j74.4 34.3 0.93 

Model with  
d-factor 

0.300 0.101 3466+j151 57.8 0.96 

Model with  
d-factor and F 

0.300 0.104 1.51+j74.4 34.3 0.93 

FAT 0.300* 0.104* 1.50+j75.1 33.0 0.32 
*Calculated from turns ratio 

B.  Limiting Information About Internal Node Voltages 
The manufacturer could be reluctant to provide a model 

which gives information about the internal overvoltages. This 
issue is resolved by providing only a terminal equivalent for the 
transformer, either by (34) with the first n1 rows of CFS, or by 
the pole-residue model (34). The manufacturer may 
additionally give access to any subset of the internal node 
voltages by providing additional rows in CFS (34), or by 
providing a subset of rows in J1 (38a) for use with (37a).  

C.  Damping of Anti-Resonances  
The proposed model formulation has two partitions which 

respectively represent the terminal admittance and the voltage 
transfer from external terminals to internal nodes. In order for 
the model to behave reasonably accurate in any situation, one 
must require that the terminal admittance matrix eigenvalues 
are accurate in the relative sense. Since the terminal admittance 
defines the current response to a voltage application, it follows 
that the admittance resonance peaks must have the correct 
damping. If the model is to be applied in simulations with some 
terminals open or lightly loaded, one must in addition require 
that the anti-resonance points have the correct damping since a 
part of the admittance matrix is then effectively inverted. The 
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inversion causes the anti-resonances to appear as resonances in 
the voltage response on the open terminals as explained in 
Section II.B. It is reassuring that the model seems to give a 
reasonable damping of also the anti-resonances points as is 
evident in Fig. 13. The situation is very different in the case of 
the voltage transfer. Here, only the damping of the resonance 
peaks is of importance since there is no matrix inversion 
involved. 

D.  Damping Factor Scattering 
It is important to realize that a model based on empirical 

damping factors will always have certain limitations in 
accuracy simply because the scattering of the actual damping 
around the empirical damping curve is substantial, see Fig. 4. 
This deficiency will be a problem in simulation of resonant 
overvoltages where one requires high accuracy for both 
resonance frequencies and their associated damping.  Still, for 
use in more general simulations where the accuracy 
requirement of the transformer model is not critical, the use of 
damping functions can be a very practical approach. 

X.  CONCLUSIONS 
We presented a new approach for including an empirical 

damping factor function in a lumped-parameter type white-box 
model. The impedance-based state space model that naturally 
arises is reformulated as a multi-terminal admittance-based 
model with respect to external terminals. Internal node voltages 
are optionally calculated from the voltage transfer from external 
nodes to internal nodes. The undesired change to the model's 
behavior at lower frequencies caused by the damping factor is 
mitigated by a correction to the output matrix. The approach 
was successfully applied to the modeling of a single-phase 
transformer, showing good agreement between simulated and 
measured transients in terms of damping of high-frequency 
oscillations.     
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APPENDIX 
For (29) we can write 

  
1

0 0
1 1 1

0 0

[ ] [ ]

[ ( ) ] [ ( ) ]

s s

s s

F I A I A

S I Λ S S I Λ S

−

− − −

= − −

= − −
 (41) 

Applying the rule of matrix inverse, 1 1 1( )  AB B A , gives 

    
1 1 1

0 0
1 1

0 0

[ ( ) ][ ( ) ]

( ) ( )

s s

s s

F S I Λ S S I Λ S

S I Λ I Λ S

− − −

− −

= − −

= − −
 (42) 

REFERENCES 
[1] R.M. Del Vecchio, B. Poulin, P.T. Feghali, D.M. Shah, and R. Ahuja, 

Transformer design principles, CRC Press, 2010.    

[2] W.J. McNutt, T.J. Blalock, R.A. Hinton : "Response of Transformer 
Windings to System Transient Voltages", IEEE Trans. Power Apparatus 
and Systems,Vol. PAS-93, Issue 2, 1974, pp 457-467. 

[3] CIGRE Technical Brochure 577A, "Electrical transient interaction 
between transformers and the power system. Part 1 – Expertise", CIGRE 
JWG A2/C4.39, April 2014. 

[4] B. Gustavsen and A. Portillo, "Interfacing k-factor based white-box 
transformer models with electromagnetic transients programs", IEEE 
Trans. Power Delivery, vol. 29, no. 6, pp. 2534-2542, Dec. 2014. 

[5] B. Gustavsen, A. Portillo, "A black-box approach for interfacing white-
box transformer models with electromagnetic transients programs", IEEE 
PES GM 2014, Washington DC, July 27-31, 2014, 5 p.  

[6] A. Semlyen, F. De León: "Eddy current add-on frequency dependent 
representation of winding losses in transformer models used in computing 
electromagnetic transients", IEE Proc.Gener.Transm.Distrib., Vol.141, 
N°3, May 1994, pp 209-214 

[7] P. I. Fergestad and T. Henriksen, “Transient oscillations in multiwinding 
transformers,” IEEE Trans. Power App. Syst., vol. PAS-93, no. 2, pp. 
500–509, Mar. 1974. 

[8] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory and 
Applications, John Wiley and Sons, 2015. 

[9] B. Gustavsen and H.M.J. De Silva, "Inclusion of rational models in an 
electromagnetic transients program – Y-parameters, Z-parameters, S-
parameters, transfer functions", IEEE Trans. Power Delivery, vol. 28, no. 
2, pp. 1164-1174, April 2013. 

[10] Y.M. Zheng and Z.J. Wang, "Determining the broadband loss 
characteristics of power transformer based on measured transformer 
network functions and vector fitting method", IEEE Trans. Power 
Delivery, vol. 28, no. 4, pp. 2456-2464, October 2013.  

[11] B. Gustavsen, A. Portillo, R. Ronchi, A. Mjelve, "Measurements for 
validation of manufacturer's white-box transformer models", Procedia 
Engineering 202 (2017), pp. 240-250. 

[12] B. Gustavsen, and A. Semlyen, “Rational approximation of frequency 
domain responses by vector fitting”, IEEE Trans. Power Delivery, vol. 
14, no. 3, pp. 1052-1061, July 1999. 

[13] B. Gustavsen, and A. Semlyen, “Enforcing passivity for admittance 
matrices approximated by rational functions”, IEEE Trans. Power 
Systems, vol. 16, no. 1, pp. 97-104, Feb. 2001. 

[14] B. Gustavsen, "Rational modeling of multi-port systems via a symmetry 
and passivity preserving mode-revealing transformation", IEEE Trans. 
Power Delivery, vol. 29, no. 1, pp.199-205, February 2014. 

BIOGRAPHIES 
Bjørn Gustavsen (M'94–SM'2003–F'2014) was born in Norway in 1965. He 
received the M.Sc. degree and the Dr. Ing. degree in Electrical Engineering 
from the Norwegian Institute of Technology in Trondheim, Norway, in 1989 
and 1993, respectively. Since 1994 he has been working at SINTEF Energy 
Research, currently as Chief Research Scientist. His interests include 
simulation of electromagnetic transients and modeling of frequency dependent 
effects. He spent 1996 as a Visiting Researcher at the University of Toronto, 
Canada, and the summer of 1998 at the Manitoba HVDC Research Centre, 
Winnipeg, Canada. He was Marie Curie Fellow at the University of Stuttgart, 
Germany, August 2001–August 2002. He is convenor of CIGRE JWG 
A2/C4.52. 
 
Álvaro Portillo(M'84–SM'2001) was born in Uruguay in 1954. He graduated 
in Electrical Engineering in the Uruguay University in 1979. He worked in the 
Uruguayan electrical utility (UTE) up to 1985 in activities related with 
transformers acceptance, installation and maintenance. From 1985 to 1999 he 
worked in MAK (Uruguayan manufacturer of transformers), from 2000 to 2007 
as consultant in TRAFO (Brazilian manufacturer of transformers) and from 
2007 up today as consultant in software tools development for transformer 
design at WEG (Brazilian manufacturer of transformers). He is a professor at 
the Uruguayan Republic University since 1977, now responsible for all post-
graduation courses about transformers and also work as consultant of electric 
utilities in the elaboration of technical specifications and design review of 
power transformers. He is a task force leader within CIGRE JWG A2/C4.52. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.McNutt,%20W.J..QT.&searchWithin=p_Author_Ids:37299268600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Blalock,%20T.J..QT.&searchWithin=p_Author_Ids:38122180900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hinton,%20R.A..QT.&newsearch=true

