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ABSTRACT 

A new simplified method for analysis of 3D motion dynamics of axisymmetric slender bodies falling 

from air through water is presented. Slender-body theory for potential flow of incompressible water is 

combined with 2D+t theory to account for viscous cross-flow separation in the submerged phase. The 

effect of flow separation from the upstream end of a pipe plays an important role. Furthermore, 

asymmetric vortex shedding triggering important 3D motions is considered. The water impact loads 

are based on strip theory and empirical slamming coefficients together with added mass and buoyancy 

loads. The theory is validated by comparing numerical analyses with experimental drop tests of pipes 

performed by Aanesland (1987). Error analyses of the theoretical method are performed and compared 

with tests to explore the sensitivity to input variations. 

Keywords: Dropped cylinder, Slamming, Slender body, 2D+t theory, Impulsively started flow, 3D 

motion 

1 Introduction 

Failure of offshore crane operations leading to objects being dropped to sea represents a major hazard 

for subsea structures, pipelines and risers, and is therefore given attention in offshore engineering. 

Safety engineering on the Norwegian shelf is typically performed using guidelines and recommended 

practices such as DNVGL(2017b) and DNVGL(2017a). These present simplified and analytical 

approaches to define dropped object rates, impact damage and hit probability. As a result, they tend to 
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be very conservative as the most unfavourable drop conditions are considered. More accuracy with 

respect to hit location and impact energy could be achieved by adopting more detailed methods such 

as Computational Fluid Dynamics (CFD).  However, since the problem requires a large set of analyses 

to cover all types of lifted objects and their statistical variations, detailed analysis by CFD becomes 

computationally demanding and impractical. Simplified rational approaches validated against model 

tests are therefore required. This is performed in the following. The focus is placed on tube shaped 

objects dropped to sea, e.g. drill collars, tubing, casings, and scaffolding. An axisymmetric rigid 

slender body falling through water with initial conditions from water impact is considered. A 3D 

solver considering the nonlinear behavior of slender bodies is established and compared with tests by 

Aanesland (1987).  

 

The responses of dropped object in water have been performed by several authors. Aanesland (1987), 

and Aanesland and Huse (1986), were among the first to illustrate the various drop patterns of 

cylindrical objects through experiments and numerical analyses. The description of drop patterns was 

later adopted by DNVGL's recommended practice on the topic, DNVGL(2017b). Other authors have 

studied the matter for applications such as deployment of cylindrical mines. For instance, Chu et al. 

(2005) have presented experimental results of falling objects by dropping three cylinders of various 

lengths into a pool. The controlled parameters are length-to-diameter ratio, center of mass location, 

initial velocity and drop angle. Six trajectory patterns (straight, spiral, flip, flat, seesaw, combination) 

were detected. The center of mass position had the largest influence on the trajectory. Mann et al. 

(2007) made numerical studies of the fall of a cylindrical mine and referred to model tests by Valent 

and Holland (2001). Mann et al. (2007) categorized the trajectories as presented in Table 1. 
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Table 1: Trajectory description of submerged dropped cylinders, as described by Mann et al (2007) 

Drop behavior Description 

Straight motion Occurs when the cylinder maintains a horizontal or vertical orientation. A 
necessary condition is that centers of mass and buoyancy coincide. 
 

Straight-slant 
motion 

A pattern for which the body shows a slant movement during a straight fall 
and is a consequence of directional instability. 
 

Nose-turn motion Involves the quick change of the orientation of the body and is associated 
with directional instability. This motion occurs typically when the body drops 
with an oblique angle or mass center is slightly ahead of the buoyancy center. 
 

Seesaw motion Pitch oscillations that occur when the mass and buoyancy centers are close. 
 

Tumbling motion The cylinder flips over itself. 
 

Travel motion A stable motion with significant horizontal movement but no significant pitch 
or yaw oscillations. In the experiments, this pattern was observed mostly at 
oblique drops and the mass centers are somewhat far from the buoyancy 
center. 
 

Spiral motion A 3D motion that can occur when a cylinder falls through water and a 
straight or seesaw motion develops into spinning motion due to dynamic 
instability. 
 

Combined motion A combination of the motions described above. These may follow in 
sequence or as combined trajectories. 
 

 

Similar observations have also been performed by Chu et al (2005); also here for mine shaped 

cylinders. The L/D ratios presented in these studies were typically in the order of 3 to 6. Aanesland 

(1987) described drop trajectories for dropped drill pipes with intact end caps having L/D ratios in the 

order of 40. This was documented through model tests and numerical analyses based on planar slender 

body theory with viscous corrections. Both submerged and above free surface drop scenarios were 

addressed. Through his work, he detected another and dominant trajectory pattern for slender bodies, 

which we call the "falling-leaf motion". This is illustrated in Figure 1(a) from a simulation in 3D of a 

14 m long drill pipe with end caps, diameter 0.346 m, and weight of 1400 kg, which is dropped to sea. 

The applied drop height is 30 m and the initial drop angle towards the calm free surface is 60 degrees. 

Both the water entry and submerged phases are considered. During the submerged phase, the pipe 

typically exhibits a trajectory as shown in Figure 1, consisting of two paths AB and BC. Along path 
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AB, the pipe receives an inflow with an angle α to the longitudinal axis which generates resistance and 

a de-stabilizing lift effect, see Figure 1(b). Another important resistance component is the pipe’s 

weight in water when the nose points upwards.  Maximum excursion is reached at point B. After point 

B, the pipe starts to “fall” towards the sea floor, exhibiting an oscillatory horizontal motion like a 

“falling leaf in air”.  

                           

(a)                                                             (b) 

Figure 1: (a) Characteristic drop trajectory. The falling-leaf motion is illustrated from B to C. (b) 

Incidental flow 𝑈𝑈∞ at an angle α to the longitudinal axis.  

In the following we present the theory for 3D response of falling submerged pipes with end caps. This 

differs from Aanesland (1987), who studied planar motions of a free-falling rigid pipe with end caps. 

Aanesland (1987) assumed that the centers of gravity and buoyancy coincided while we allow them to 

differ. Aanesland (1987) further applied slender-body theory for potential flow with a correction factor 

adopted from ship maneuvering to express lifting effects. The cross-flow principle and empirical drag 

coefficients were used to express the transverse viscous load. This procedure does not account for that 

cross-flow separation differs along the body, as known from yawed missile analysis Zdravkovich 

(2003) and CFD analysis of ship maneuver at forward speed, Durante et al, (2010). Our proposed 
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2D+t method accounts for varying cross-flow separation along a pipe and is combined with slender-

body theory for potential flow. We also introduce transverse effects from asymmetric separation, as 

presented by Sarpkaya (2010).  

2 Submerged behavior of dropped cylinder - theory 

2.1 Governing equations in fully-submerged condition 

We use sections 10.9.1 and 10.10.2 in Faltinsen (2005) to formulate the equations of motions of a fully 

submerged axisymmetric body. We introduce then a body-fixed coordinate system with definitions in 

Figure 2. The body-fixed coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧)   has origin in the centre of gravity (COG) with 

the 𝑥𝑥 − axis along the symmetry axis of the body.  The centre of buoyancy is at (𝑥𝑥𝐵𝐵, 0, 0). The 

velocity vector V of the COG has components (𝑢𝑢, 𝑣𝑣,𝑤𝑤) and the angular velocity vector Ω of the body 

has components (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) in the body-fixed coordinate system. The Euler angles yaw (ψ), pitch (Θ) and 

roll (Φ) of the body are introduced. The order is yaw, pitch and roll. 

 

Figure 2: Body-fixed coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧) with origin in the centre of gravity (COG) of an 

axisymmetric body. The COG has velocity 𝒗𝒗 =  (𝑢𝑢, 𝑣𝑣,𝑤𝑤) and the angular velocity of the body is 𝜴𝜴 =

(𝑝𝑝, 𝑞𝑞, 𝑟𝑟). The external forces and moments with respect to COG acting on the body are respectively 

(𝑋𝑋,𝑌𝑌,𝑍𝑍) and (𝐿𝐿,𝑀𝑀,𝑁𝑁). 
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It follows from Newton’s second law that  

𝑀𝑀[�̇�𝑢 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣] = 𝑋𝑋 −𝑀𝑀𝑀𝑀sin𝛩𝛩 

𝑀𝑀[�̇�𝑣 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤] = 𝑌𝑌 + 𝑀𝑀𝑀𝑀cos𝛩𝛩sin𝛷𝛷  

𝑀𝑀[�̇�𝑤 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢] = 𝑍𝑍 +𝑀𝑀𝑀𝑀cos𝛩𝛩cos𝛷𝛷 
(1) 

 

Here M is the mass of the body, 𝑀𝑀 is acceleration of gravity and (X, Y, Z) are the hydrodynamic and 

hydrostatic forces acting on the body. We need also to consider external moments about the x, y and z-

axis. We can then write  

𝐼𝐼44�̇�𝑝 − (𝐼𝐼55 − 𝐼𝐼66)𝑞𝑞𝑟𝑟 − 𝐼𝐼64(�̇�𝑟 + 𝑝𝑝𝑞𝑞) = 𝐿𝐿  

𝐼𝐼55�̇�𝑞 − (𝐼𝐼66 − 𝐼𝐼44)𝑟𝑟𝑝𝑝 − 𝐼𝐼64(𝑟𝑟2 − 𝑝𝑝2) = 𝑀𝑀 

𝐼𝐼66�̇�𝑟 − (𝐼𝐼44 − 𝐼𝐼55)𝑝𝑝𝑞𝑞 − 𝐼𝐼64(�̇�𝑝 − 𝑞𝑞𝑟𝑟) = 𝑁𝑁 
(2) 

 

Here 𝐼𝐼𝑗𝑗𝑗𝑗 is the mass moment of inertia of the jth mode and 𝐼𝐼𝑗𝑗𝑗𝑗 is the product of mass inertia with 

respect to the coordinate system(𝑥𝑥,𝑦𝑦, 𝑧𝑧). Furthermore, L, M and N are the external moments about the 

x-, y- and z-axis, respectively. Note that M has been used as a symbol for both mass and an external 

moment component. We can set 𝐼𝐼55 =  𝐼𝐼66,  𝐼𝐼64 = 0 for the considered axisymmetric body. Since the 

considered hydrodynamic loads are pressure loads, the moment component L is zero, which means 

that nonzero p can only be a consequence of initial conditions. 

 

The translational motions of the body are referenced to an Earth-fixed coordinate system (𝑋𝑋𝐸𝐸 ,𝑌𝑌𝐸𝐸 ,𝑍𝑍𝐸𝐸). 

According to equation (10.113) and (10.114) in Faltinsen (2005) we can write 

𝑑𝑑𝑋𝑋𝐸𝐸
𝑑𝑑𝑑𝑑

= 𝑢𝑢 cos𝛩𝛩cos𝛹𝛹 + 𝑣𝑣(sin𝛷𝛷sin𝛩𝛩cos𝛹𝛹 − cos𝛷𝛷sin𝛹𝛹) +𝑤𝑤(cos𝛷𝛷sin𝛩𝛩cos𝛹𝛹 + sin𝛷𝛷sin𝛹𝛹) 

𝑑𝑑𝑌𝑌𝐸𝐸
𝑑𝑑𝑑𝑑

= 𝑢𝑢 cos𝛩𝛩sin𝛹𝛹 + 𝑣𝑣(sin𝛷𝛷sin𝛩𝛩sin𝛹𝛹 + cos𝛷𝛷cos𝛹𝛹) + 𝑤𝑤(cos𝛷𝛷sin𝛩𝛩sin𝛹𝛹 − sin𝛷𝛷cos𝛹𝛹) 

𝑑𝑑𝑍𝑍𝐸𝐸
𝑑𝑑𝑑𝑑

= −𝑢𝑢 sin𝛩𝛩 + 𝑣𝑣 sin𝛷𝛷cos𝛩𝛩 + 𝑤𝑤 cos𝛷𝛷cos𝛩𝛩 

(3) 

 

and 
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𝑑𝑑𝛩𝛩
𝑑𝑑𝑑𝑑

= 𝑞𝑞 cos𝛷𝛷 − 𝑟𝑟 sin𝛷𝛷    

𝑑𝑑𝛷𝛷
𝑑𝑑𝑑𝑑

= 𝑝𝑝 + 𝑞𝑞 sin𝛷𝛷tan𝛩𝛩 + 𝑟𝑟 cos𝛷𝛷tan𝛩𝛩 

𝑑𝑑𝛹𝛹
𝑑𝑑𝑑𝑑

= (𝑞𝑞 sin𝛷𝛷 + 𝑟𝑟 cos𝛷𝛷)sec𝛩𝛩 

 

(4) 

 

We then have presented 12 nonlinear differential equations given by equations (1), (2), (3) and (4) 

with the 12 unknowns 𝑢𝑢, 𝑣𝑣,𝑤𝑤,𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝑋𝑋𝐸𝐸 ,𝑌𝑌𝐸𝐸 ,𝑍𝑍𝐸𝐸 ,𝛩𝛩,𝛷𝛷 and Ψ. To solve these equations numerically we 

need to express the external forces and moments acting on the body and specify initial conditions. 

 

The external forces and moments will be associated with hydrostatics, added mass acceleration loads 

based on potential flow as well as velocity-dependent hydrodynamic loads with lift effects based on 

potential flow and viscous loads. We will use superscripts hs, am, pot and visc to identify them. In 

addition, we use the superscript L to identify lift forces and moments associated with asymmetric 

vortex shedding. 

2.2 Hydrostatics 

We get the following hydrostatic force and moment components for the considered submerged 

axisymmetric body 

𝑋𝑋ℎ𝑠𝑠 = 𝜌𝜌𝜌𝜌𝑀𝑀sin𝛩𝛩   

𝑌𝑌ℎ𝑠𝑠 = −𝜌𝜌𝜌𝜌𝑀𝑀cos𝛩𝛩sin𝛷𝛷 

𝑍𝑍ℎ𝑠𝑠 = −𝜌𝜌𝜌𝜌𝑀𝑀cos𝛩𝛩cos𝛷𝛷 

𝐿𝐿ℎ𝑠𝑠 = 0      

𝑀𝑀ℎ𝑠𝑠 = 𝑥𝑥𝐵𝐵𝜌𝜌𝜌𝜌𝑀𝑀cos𝛩𝛩cos𝛷𝛷 

𝑁𝑁ℎ𝑠𝑠 = −𝑥𝑥𝐵𝐵𝜌𝜌𝜌𝜌𝑀𝑀cos𝛩𝛩sin𝛷𝛷 

 

(5) 

Here ∇ is the displaced volume of water by the body and ρ is the mass density of water. 
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2.3 Potential-flow added mass acceleration loads on a body in infinite fluid 

We introduce the added mass coefficients 𝐴𝐴𝑗𝑗𝑗𝑗 according to potential flow in infinite and 

incompressible water Faltinsen (2005). Some of the coefficients are zero due to geometrical symmetry 

about the x-z and x-y plane. Furthermore, roll cannot induce any potential flow and since there are no 

viscous stresses in potential flow and the hydrodynamic pressure do not cause roll moments, the added 

mass roll moments are zero. This gives that only 

𝐴𝐴11,𝐴𝐴22,𝐴𝐴26 =  𝐴𝐴62,𝐴𝐴33,𝐴𝐴35 =  𝐴𝐴53,𝐴𝐴55,𝐴𝐴66 are, in general, non-zero. Kochin et al (1964) have 

derived the nonlinear, non-lifting and non-viscous force and moment components in a body-fixed 

coordinate system on a maneuvering body in infinite fluid, see also Faltinsen (2005). The acceleration 

dependent force and moment components on the axisymmetric body can be expressed as 

𝑋𝑋𝑎𝑎𝑎𝑎 = −𝐴𝐴11�̇�𝑢 

𝑌𝑌𝑎𝑎𝑎𝑎 = −(𝐴𝐴22�̇�𝑣 + 𝐴𝐴26�̇�𝑟) 

𝑍𝑍𝑎𝑎𝑎𝑎 = −(𝐴𝐴33�̇�𝑤 + 𝐴𝐴35�̇�𝑞) 

𝐿𝐿𝑎𝑎𝑎𝑎 = 0                 

𝑀𝑀𝑎𝑎𝑎𝑎 = −(𝐴𝐴53�̇�𝑤 + 𝐴𝐴55�̇�𝑞) 

𝑁𝑁𝑎𝑎𝑎𝑎 = −(𝐴𝐴62�̇�𝑣 + 𝐴𝐴66�̇�𝑟) 

(6) 

 

When cross-flow separation occurs, 2D U-tube experiments of a circular cylinder of diameter D in 

ambient harmonic oscillatory flow velocity amplitude 𝑈𝑈𝑎𝑎 and period T show that cross-flow 

separation significantly affects the added mass coefficients for Keulegan-Carpenter number  𝐾𝐾𝐾𝐾 =

 𝑈𝑈𝑎𝑎𝑇𝑇/𝐷𝐷  larger than about five, Sarpkaya (2010). The latter fact is not accounted for and is in general 

less important in our case due to the presence of the longitudinal motion. The importance of neglecting 

the influence of viscosity on the acceleration dependent hydrodynamic loads will be discussed in the 

analysis of the free-fall motion of a pipe. Some of the nonlinear potential flow terms by Kochin et al 

(1964) are parts of the slender-body theory expressions presented in the next section. There are in 

addition resistance terms in Kochin et al’s expressions, which may matter in ship maneuvering 

analysis. However, significant empirical corrections due to viscous effects may be needed during the 

turning maneuver of a ship. 
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2.4 Potential-flow hydrodynamic forces and moments in steady flow  

We use slender-body theory based on potential flow of incompressible water (Faltinsen, 2005) and 

assume no internal flow, which means that a pipe must be equipped with end caps. The velocity-

dependent two-dimensional force components in the y- and z- directions can be expressed as 

𝑓𝑓𝑦𝑦2𝐷𝐷 = 𝑢𝑢
𝜕𝜕
𝜕𝜕𝑥𝑥

[𝑎𝑎22(𝑣𝑣 + 𝑥𝑥𝑟𝑟)]  and  𝑓𝑓𝑧𝑧2𝐷𝐷 = 𝑢𝑢
𝜕𝜕
𝜕𝜕𝑥𝑥

[𝑎𝑎33(𝑤𝑤 − 𝑥𝑥𝑞𝑞)] (7) 

 

where the two-dimensional added mass coefficients 𝑎𝑎22  and 𝑎𝑎33 are 𝜌𝜌𝜌𝜌𝐷𝐷2/4 with D as the cross-

sectional diameter. It is essential that the upstream condition at the body end is zero added mass, 

which implies an abrupt change in added mass at the upstream end of a pipe. If the downstream end is 

not pointed and no flow separation occurs before the downstream end, the flow is assumed to separate 

from the downstream end in the downstream direction. The consequence is a lift force. The following 

total force components follow  

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 = 0 

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 =  �
−𝑎𝑎22𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢�𝑣𝑣 + 𝑟𝑟𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�, 𝑢𝑢 > 0
𝑎𝑎22𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢�𝑣𝑣 + 𝑟𝑟𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�, 𝑢𝑢 < 0

  

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 =  �
−𝑎𝑎33𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢�𝑤𝑤 − 𝑞𝑞𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�, 𝑢𝑢 > 0
𝑎𝑎33𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢�𝑤𝑤 − 𝑞𝑞𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�, 𝑢𝑢 < 0

  

(8) 

 

Here 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝 is the x-coordinate where flow separation starts and 𝑎𝑎𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑝𝑝 denotes 𝑎𝑎𝑗𝑗𝑗𝑗 at 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝. The moment 

components are 

𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 = 0 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =  

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎33𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�𝑤𝑤 − 𝑞𝑞𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝� + 𝑢𝑢� 𝑎𝑎33(𝑥𝑥)

𝑥𝑥𝑁𝑁

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
(𝑤𝑤 − 𝑥𝑥𝑞𝑞)𝑑𝑑𝑥𝑥,  𝑢𝑢 > 0

−𝑎𝑎33𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�𝑤𝑤 − 𝑞𝑞𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝� + 𝑢𝑢� 𝑎𝑎33(𝑥𝑥)
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥𝑇𝑇
(𝑤𝑤 − 𝑥𝑥𝑞𝑞)𝑑𝑑𝑥𝑥,  𝑢𝑢 < 0

 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 =  

⎩
⎪
⎨

⎪
⎧−𝑎𝑎22𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�𝑣𝑣 + 𝑟𝑟𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝� − 𝑢𝑢� 𝑎𝑎22(𝑥𝑥)

𝑥𝑥𝑁𝑁

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
(𝑣𝑣 + 𝑥𝑥𝑟𝑟)𝑑𝑑𝑥𝑥,  𝑢𝑢 > 0

𝑎𝑎22𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝�𝑣𝑣 + 𝑟𝑟𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝� − 𝑢𝑢� 𝑎𝑎22(𝑥𝑥)
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥𝑇𝑇
(𝑣𝑣 + 𝑥𝑥𝑟𝑟)𝑑𝑑𝑥𝑥,  𝑢𝑢 < 0

 

(9) 
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If we consider a pipe, flow separation starts at the upstream end and 𝑎𝑎𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑝𝑝 =  𝜌𝜌𝜌𝜌𝐷𝐷2/4. The 

expressions show that the center of pressure is at 𝑥𝑥𝑁𝑁 when  𝑢𝑢 > 0 and at 𝑥𝑥𝑇𝑇when 𝑢𝑢 < 0. Aanesland 

(1987) adopted an approach from ship maneuvering and set 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝, except in the integral part, to be 

between 30% and 0% of the pipe length from the downstream end. 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝 is set at the downstream end 

in the evaluation of the integrals, which then represent destabilizing Munk moments for a non-lifting 

body. The argument in selecting 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝 in ship maneuvering analysis is diminishing cross-sectional 

areas in the aft body and associated flow separation. Furthermore, the drift angle in ship maneuvering 

is, in general, smaller than for a falling pipe in water. 

2.5 Viscous velocity-dependent forces and moments  

The longitudinal viscous force can be expressed in terms of frictional and drag coefficients. If we 

consider a pipe with length L and diameter D and there is turbulent axisymmetric flow along a smooth 

surface, we can write 

𝑋𝑋𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 = −0.5𝜌𝜌𝐾𝐾𝐹𝐹𝜌𝜌𝐷𝐷𝐿𝐿𝑢𝑢|𝑢𝑢| −
𝜌𝜌
8
𝜌𝜌𝐾𝐾𝐷𝐷𝑥𝑥𝐷𝐷2𝑢𝑢|𝑢𝑢| (10) 

 

where the frictional coefficient 

𝐾𝐾𝐹𝐹 = 0.0015 + �0.30 + 0.015 �
2𝐿𝐿
𝐷𝐷
�
0.4

�𝑅𝑅𝑛𝑛−1/3 (11) 

 

is based on White (1972). Here 𝑅𝑅𝑛𝑛 =  |𝑢𝑢|𝐿𝐿/𝜐𝜐 means the Reynolds number with υ as the kinematic 

viscosity coefficient. The assumptions are 106 < 𝑅𝑅𝑛𝑛 <  109 for purely longitudinal motion. 

Furthermore, 𝐾𝐾𝐷𝐷𝑥𝑥 represents the sum of a fore body and base drag coefficient. The fore-body pressure 

drag coefficient for a pipe is 0.65 according to Hoerner (1958). Aanesland (1987) assumes laminar 

boundary layer flow when comparing with his model tests and applies the formula of Blasius, as 

described by Schlichting (1979), which states that 𝐾𝐾𝐹𝐹 = 1.328/√𝑅𝑅𝑛𝑛. In our formulation of frictional 

drag, we combine expressions for both laminar and turbulent boundary layer flow. For simplicity, we 

neglect the transition zone and assume turbulent flow for Rn > 106.  
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We express the drag-induced transverse force components, and pitch and yaw-moments due to flow 

separation as 

𝑌𝑌𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 = −
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐷𝐷(𝑥𝑥)𝐷𝐷(𝑥𝑥)(𝑣𝑣 + 𝑥𝑥𝑟𝑟)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑍𝑍𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 = −
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐷𝐷(𝑥𝑥)𝐷𝐷(𝑥𝑥)(𝑤𝑤 − 𝑥𝑥𝑞𝑞)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑀𝑀𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 =
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐷𝐷(𝑥𝑥)𝐷𝐷(𝑥𝑥) 𝑥𝑥(𝑤𝑤 − 𝑥𝑥𝑞𝑞)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑁𝑁𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 = −
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐷𝐷(𝑥𝑥)𝐷𝐷(𝑥𝑥) 𝑥𝑥(𝑣𝑣 + 𝑥𝑥𝑟𝑟)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

(12) 

 

Here 𝐷𝐷(𝑥𝑥) is the cross-sectional diameter and 𝐾𝐾𝐷𝐷(𝑥𝑥) is the drag coefficient. By “drag-induced” we 

mean that we consider sectional forces along the local inflow velocity direction. The cross-flow 

principle leads to a strip theory approach and implies that the drag coefficient 𝐾𝐾𝐷𝐷 is the same as 

assuming no hydrodynamic interaction between the strips, with an inflow velocity with components 

(𝑣𝑣 + 𝑥𝑥𝑟𝑟) and (𝑤𝑤 − 𝑥𝑥𝑞𝑞) along the y and z axis, respectively.  

 

Extensive relevant research has been carried out for missiles with high angle of incidence between free 

stream velocity and missile longitudinal axis (Zdravkovich, 2003). The cross-flow separation starts at 

a distance from the pointed streamlined (ogive) nose similarly as shown in Figure 3. Werle (1979) 

carried out detailed flow visualization at different cross-sections. The results indicated that asymmetric 

cross-flow separation happens when  𝑋𝑋 > 𝑋𝑋𝑎𝑎𝑠𝑠 = 4.2𝐷𝐷/|𝛼𝛼| where the longitudinal coordinate from the 

nose is X. D is the constant diameter after the ogive nose and α is the angle between the incident flow 

and the missile longitudinal axis, as illustrated in Figure 1(b). The consequence of asymmetric cross-

flow separation is a lateral force. Lamont and Hunt (1976) evaluated the normal drag and lateral force 

along a missile with an ogive nose based on pressure measurements. There is implicitly hydrodynamic 

interaction between the cross-sections causing largest 𝐾𝐾𝐷𝐷 in the downstream part of a slender 
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axisymmetric body. We see indirectly an example on this in Figure 4 by a 2D+t illustration of a pipe 

with a streamlined pointed nose. The transverse velocity of the body is assumed constant along the 

body after an initial time. The shed vorticity in Figure 4 is largest in the downstream part.  

 

Figure 3: 2D+t analysis of a cylinder with constant forward velocity U and constant transverse 

velocity V. The cross-flow starts to separate at longitudinal distance 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝 from the front end. 

In addition to drag, a lift-induced force and moment components associated with asymmetric vortex 

shedding is introduced. This can be written as follows, where 𝐾𝐾𝐿𝐿(𝑥𝑥) is an x-dependent lift coefficient.   

𝑌𝑌𝐿𝐿 =
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐿𝐿(𝑥𝑥)𝐷𝐷(𝑥𝑥)(𝑤𝑤 − 𝑥𝑥𝑞𝑞)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑍𝑍𝐿𝐿 = −
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐿𝐿(𝑥𝑥)𝐷𝐷(𝑥𝑥)(𝑣𝑣 + 𝑥𝑥𝑟𝑟)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑀𝑀𝐿𝐿 =
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐿𝐿(𝑥𝑥)𝐷𝐷(𝑥𝑥) 𝑥𝑥(𝑣𝑣 + 𝑥𝑥𝑟𝑟)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

𝑁𝑁𝐿𝐿 =
𝜌𝜌
2
� 𝑑𝑑𝑥𝑥 𝐾𝐾𝐿𝐿(𝑥𝑥)𝐷𝐷(𝑥𝑥) 𝑥𝑥(𝑤𝑤 − 𝑥𝑥𝑞𝑞)
𝑥𝑥𝑁𝑁

𝑥𝑥𝑇𝑇
�(𝑣𝑣 + 𝑥𝑥𝑟𝑟)2 + (𝑤𝑤 − 𝑥𝑥𝑞𝑞)2 

(13) 

 

We will generalize the 2D+t analysis as presented in Faltinsen (2005). The problem is analyzed in the 

time domain in different Earth-fixed cross planes as illustrated in Figure 3. It is the flow development 

in impulsively started flow in an Earth-fixed cross plane that determines the drag coefficient. This 

depends on how much the cylinder has moved in this Earth-fixed cross plane relative to its radius. We 
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will use experiments by Sarpkaya (1966, 2010) for laminar boundary layer conditions and suggest 

how to scale the results to other Reynolds number conditions. The experimental results are based on 

constant unidirectional transverse cylinder motions after a nearly impulsive start. We modify the 

results by accounting for the fact that the cylinder motions are spatially varying and are not 

unidirectional. It is assumed implicitly that the transverse force per unit length is in the direction of the 

cross-sectional velocity of the pipe.   

 

We start out by considering a given time, 𝑑𝑑, and want to find how the drag coefficient 𝐾𝐾𝐷𝐷(𝑥𝑥) varies 

along the pipe at a certain time frame. The result will depend on previous values of angular velocities 

as well as longitudinal velocities. We must account for the possibility that 𝑢𝑢 can be both positive and 

negative and that the sign changes as during a falling leaf motion. We define an initial time 𝑑𝑑0, which 

is the time instant when 𝑢𝑢 starts to be either positive or negative. We consider a given position 𝑥𝑥 at 

time 𝑑𝑑, which must be considered for all values of x. There are two scenarios when  𝑢𝑢 > 0. One 

scenario is that the time  𝑑𝑑0𝑥𝑥 when the nose first penetrated the Earth-fixed plane located at 𝑥𝑥 at time 𝑑𝑑  

is larger or equal to the time 𝑑𝑑0. We will exemplify the procedure by setting previous values of angular 

velocities as well as longitudinal velocities to be constant. We can write  

𝑥𝑥𝑁𝑁 − 𝑥𝑥 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0𝑥𝑥
= 𝑢𝑢(𝑑𝑑 − 𝑑𝑑0𝑥𝑥) (14) 

 

when 𝑑𝑑0𝑥𝑥 < 𝑑𝑑0, the initial x-coordinate 𝑥𝑥0 of the Earth-fixed plane located at 𝑥𝑥 at time 𝑑𝑑 is given by 

𝑥𝑥0 − 𝑥𝑥 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0
= 𝑢𝑢(𝑑𝑑 − 𝑑𝑑0) (15) 

 

We have to identify the x-coordinate 𝑥𝑥𝑝𝑝 of the Earth-fixed plane at any time instant max(𝑑𝑑0𝑥𝑥 , 𝑑𝑑0) <

𝜏𝜏 < 𝑑𝑑. It is given by either 

𝑥𝑥𝑁𝑁 − 𝑥𝑥𝑃𝑃 = 𝑢𝑢(𝜏𝜏 − 𝑑𝑑0𝑥𝑥) or 𝑥𝑥0 − 𝑥𝑥𝑃𝑃 = 𝑢𝑢(𝜏𝜏 − 𝑑𝑑0) (16) 
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We can express how much the cylinder has moved transversely at x in the y-and z-directions as well as 

totally since the cylinder penetrated the considered Earth-fixed plane at its nose or at initial time as  

𝑠𝑠𝑦𝑦 = � [𝑣𝑣(𝜏𝜏) + 𝑥𝑥𝑃𝑃(𝜏𝜏)𝑟𝑟(𝜏𝜏)]
𝑝𝑝

𝑝𝑝0𝑥𝑥
𝑑𝑑𝜏𝜏 = 𝑣𝑣

𝑥𝑥𝑁𝑁 − 𝑥𝑥
𝑢𝑢

+
𝑟𝑟
𝑢𝑢

[𝑥𝑥𝑁𝑁(𝑥𝑥𝑁𝑁 − 𝑥𝑥) −
1
2

(𝑥𝑥𝑁𝑁 − 𝑥𝑥)2] 

𝑠𝑠𝑧𝑧 = � [𝑤𝑤(𝜏𝜏) − 𝑥𝑥𝑃𝑃(𝜏𝜏)𝑞𝑞(𝜏𝜏)]
𝑝𝑝

𝑝𝑝0𝑥𝑥
𝑑𝑑𝜏𝜏 = 𝑤𝑤

𝑥𝑥𝑁𝑁 − 𝑥𝑥
𝑢𝑢

−
𝑞𝑞
𝑢𝑢

[𝑥𝑥𝑁𝑁(𝑥𝑥𝑁𝑁 − 𝑥𝑥) +
1
2

(𝑥𝑥𝑁𝑁 − 𝑥𝑥)2] 

𝑠𝑠 = �𝑠𝑠𝑦𝑦2 + 𝑠𝑠𝑧𝑧2 

 

(17) 

 

If 𝑑𝑑0𝑥𝑥 < 𝑑𝑑0, we replace 𝑥𝑥𝑁𝑁 by  𝑥𝑥0 in the expressions for s. 

 

We start by considering a body with streamlined upstream end and introduce the non-dimensional 

variable  

𝑑𝑑′ =
𝑠𝑠
𝑅𝑅
− 0.351 (18) 

 

as a generalization of Faltinsen (2005). Here 𝑅𝑅(𝑥𝑥) is the cross-sectional radius. If 𝑑𝑑′ < 0, flow 

separation has not occurred and 𝐾𝐾𝐷𝐷 = 0. If 𝑑𝑑′ > 0, we base the drag coefficient on experimental results 

by Sarpkaya (1966) and write by curve-fitting for 𝑑𝑑′ < 25 that 

𝐾𝐾𝐷𝐷 = �𝑝𝑝1𝑑𝑑′
5 + 𝑝𝑝2𝑑𝑑′

4 + 𝑝𝑝3𝑑𝑑′
3 + 𝑝𝑝4𝑑𝑑′

2 + 𝑝𝑝5𝑑𝑑′ + 𝑝𝑝6�
𝐾𝐾𝐷𝐷∞
1.2

 (19) 
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Figure 4: Drag coefficient 𝐾𝐾𝐷𝐷𝑙𝑙𝑎𝑎𝑎𝑎 for a circular cylinder with nearly impulsively started laminar 

boundary layer flow versus non-dimensional time t'. Approximation of experiments by Sarpkaya 

(1966).       

 

Here the non-dimensional 𝑝𝑝𝑣𝑣-coefficients are given for the range  0 < 𝑑𝑑′ < 25 in Table 2. When  𝑑𝑑′ >

25, then 𝐾𝐾𝐷𝐷 = 𝐾𝐾𝐷𝐷∞, i.e. the drag coefficient in steady-state conditions with steady ambient flow.  

 

Table 2: Polynomial 𝑝𝑝𝑣𝑣-coefficients for eq. (19) as visualized in Figure 4 in the range  0 < 𝑑𝑑′ < 25.  

p1 p2 p3 p4 p5 p6 

2.4805 ∙ 10−7 −3.647 ∙ 10−5 1.9058 ∙ 10−3 −4.4173 ∙ 10−2 4.3146 ∙ 10−1 7.3386 ∙ 10−2 

 

The term 𝐾𝐾𝐷𝐷∞ is equal to 1.2 in the experiments by Sarpkaya (1966) corresponding to laminar 

boundary layer flow. The results are presented in Figure 4. We can follow a similar procedure when 

𝑢𝑢 < 0. We let the time 𝑑𝑑0𝑥𝑥 mean the time when the tail first penetrated the Earth-fixed plane located at 

𝑥𝑥 at time 𝑑𝑑, which should be larger or equal to the time 𝑑𝑑0. We can then find 𝑑𝑑0𝑥𝑥 by  
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𝑥𝑥𝑇𝑇 − 𝑥𝑥 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0𝑥𝑥
 (20) 

 

When 𝑑𝑑0𝑥𝑥 <  𝑑𝑑0, then the initial x-coordinate 𝑥𝑥0 of the considered Earth-fixed plane is given by 

𝑥𝑥0 − 𝑥𝑥 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0
 (21) 

 

We must identify the x-coordinate 𝑥𝑥𝑃𝑃 of the considered Earth-fixed plane at any time instant  

max (𝑑𝑑0𝑥𝑥, 𝑑𝑑0) < 𝜏𝜏 < 𝑑𝑑. We have either 

𝑥𝑥𝑇𝑇 − 𝑥𝑥𝑃𝑃 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0𝑥𝑥
 (22) 

 

or 

𝑥𝑥0 − 𝑥𝑥𝑃𝑃 = � 𝑢𝑢𝑑𝑑𝑑𝑑
𝑝𝑝

𝑝𝑝0
 (23) 

 

We can then proceed as we did for 𝑢𝑢 > 0. 

 

Classical experimental results for 2D circular cylinder can be used to determine the Reynolds number 

dependence of 𝐾𝐾𝐷𝐷∞.  Possible surface roughness effects as well as turbulence in the incident flow can 

be considered. There will be 3D flow effects at the downstream end of the cylinder that cannot be 

evaluated by a 2D+t theory. A pragmatic way is to let the 2D+t sectional loads go linearly to zero at 

the downstream end over the order of the diameter. The suggested procedure is quasi-steady, which 

means that it may not be consistent with known experimental results as a function of the Keulegan-

Carpenter number. Furthermore, transition between laminar and turbulent boundary layer flow cannot 

be accounted for. Ersdal and Faltinsen (2006) studied the latter effect experimentally for a yawed 

cylinder at forward speed. If we define an incident flow velocity 𝑈𝑈∞ with angle α relative to the 

cylinder axis, then the Reynolds number 𝑈𝑈∞𝐷𝐷 sin 𝛼𝛼/𝜈𝜈 can be used to define critical flow regimes in 
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the same way as the Reynolds number for 2D cross-flow past a circular cylinder. Since the flow will 

separate from the upstream end of a pipe, the described 2D+t approach must be modified such as there 

is a non-zero drag coefficient at the upstream end. We will as an example set the drag coefficient 𝐾𝐾𝐷𝐷𝐷𝐷 

at the upstream end equal to half its steady value 𝐾𝐾𝐷𝐷∞ to reflect roughly the three-dimensionality of 

the flow at the nose. As illustrated in Figure 4, this is obtained by expressing t' as follows: 

𝑑𝑑′ = 𝑠𝑠/𝑅𝑅 + 1.4 (24) 
 

We will later investigate the sensitivity of the choice of the drag coefficient at the upstream end by 

comparing with model tests of free-fall motion of a pipe in water.  

 

The lift coefficient associated with eq. (13) can be approximated based on tests performed by 

Sarpkaya (2010) for an impulsively started flow. We use the following approximation 

𝐾𝐾𝐿𝐿 = �𝐾𝐾 𝐾𝐾𝐿𝐿𝑎𝑎sin[𝜌𝜌𝜋𝜋𝑑𝑑(𝑑𝑑′ − 8)], 𝑑𝑑′ > 8
0, otherwise (25) 

 

Here 𝜋𝜋𝑑𝑑 =  𝑓𝑓𝑣𝑣𝐷𝐷/ 𝑉𝑉 is the Reynolds-number dependent Strouhal number with 𝑓𝑓𝑣𝑣 as the vortex shedding 

frequency and V as the cross-flow ambient velocity. 𝜋𝜋𝑑𝑑 =  0.2 is an approximate value in the 

experiments by Sarpkaya (2010). Furthermore, 𝐾𝐾 = ±1 reflects that the sign of the initial lift at 𝑑𝑑′ = 8 

is stochastic. An example on lift coefficient amplitude 𝐾𝐾𝐿𝐿𝑎𝑎 is 0.2 Sarpkaya (2010). However, higher 

values are possible. If we consider a pipe of constant diameter D and an angle α between a steady 

incident flow and the cylinder axis, the 2D+t approach together with Sarpkaya’s (1966) experiments 

show that asymmetric cross-flow separation with resulting side force happens when  𝑋𝑋 > 𝑋𝑋𝑎𝑎𝑠𝑠 =

4.2𝐷𝐷/|tan𝛼𝛼|, where X is the longitudinal coordinate from the nose. When 𝛼𝛼 → 𝜌𝜌/2, 𝑋𝑋𝑎𝑎𝑠𝑠 → ∞. The 

result agrees reasonably with Werle (1979) for |𝛼𝛼| ≲ 𝜌𝜌/9.  
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3 Validation and error analysis  

We start by validating the effect of 2D+t theory and choice of upstream drag coefficient as defined eq. 

(19) and eq. (24). This implies that we set the drag coefficient 𝐾𝐾𝐷𝐷𝐷𝐷 at the upstream end equal to half its 

steady value 𝐾𝐾𝐷𝐷∞. This is then compared with model tests in air performed by Reif and Powell (1917) 

of transverse force Y  on a fixed pipe of length L in a steady inflow velocity 𝑈𝑈∞ with angle α relative 

to the cylinder axis, see Figure 1(b). Their model test conditions are L/D = 80 and Reynolds 

number 𝑈𝑈∞𝐷𝐷/𝜈𝜈 = 7.7 ∙ 103. If we use the cross-flow principle for the viscous loads as, for instance, 

Aanesland (1987) does, it means by adding the potential flow lift force that the normalized force can 

be written as follows 

𝑌𝑌
0.5𝜌𝜌𝑈𝑈∞2 𝐿𝐿𝐷𝐷

=
𝜌𝜌
2
𝐷𝐷
𝐿𝐿

sin𝛼𝛼 cos𝛼𝛼 + 𝐾𝐾𝐷𝐷 sin2𝛼𝛼 (26) 

 

Here ρ is the fluid density and 𝐾𝐾𝐷𝐷 is the Reynolds-number dependent drag coefficient for 2D flow past 

a circular cylinder. From eq. (26) we see that the importance of the potential flow lift force decreases 

with decreasing D/L. It is further observed that the contribution from potential flow is equally 

important as the viscous part when 𝛼𝛼 = 1° if we for the relevant Reynholds number set 𝐾𝐾𝐷𝐷 = 1.1, 𝑖𝑖.e.  

𝛼𝛼 = arctan (0.5𝜋𝜋𝐷𝐷
𝐿𝐿𝐶𝐶𝐷𝐷

). 

 

A convenient way to investigate the variations in transverse force for various inflow angles is by 

investigating the force ratio 𝑌𝑌(𝛼𝛼) [𝑌𝑌(𝜌𝜌/2)sin2𝛼𝛼]⁄ . For the smooth cylinder, Reif and Powell (1917) 

reported results for angles 𝛼𝛼 = 10°, 20°, 30°, 40°,  50°, 60°, 70° and 80° with corresponding values 

1.22, 1.15, 1.14, 1.07, 1.06, 1.03 and 1.01, respectively. If we use eq. (26) and apply the cross-flow 

principle for viscous drag, we get that  𝑌𝑌(𝛼𝛼) [𝑌𝑌(𝜌𝜌/2)sin2𝛼𝛼]⁄  is 1.10, 1.05, 1.03, 1.02 for 𝛼𝛼 =

10°, 20°, 30°and 40°, respectively.  When applying the 2D+t theory for the viscous loads, we let the 

flow separate at the nose section with an upstream drag coefficient 𝐾𝐾𝐷𝐷𝐷𝐷 of half its steady value 𝐾𝐾𝐷𝐷∞. 

The result is that Y(𝛼𝛼) / [𝑌𝑌(𝜌𝜌/2)sin2𝛼𝛼] is 1.18, 1.09, 1.06 and 1.03 for 𝛼𝛼 = 10°, 20°, 30°and 40°, 

respectively.   We could have chosen a higher value of 𝐾𝐾𝐷𝐷𝐷𝐷 to get even better agreement with the 
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experimental results. However, experiments have also errors, which we do not know in the present 

case. We will rather leave 𝐾𝐾𝐷𝐷𝐷𝐷 as a parameter that we can vary when later comparing with 

experimental results for the free fall of a pipe through water.  

 

In the following we will compare the theory from section 2 by use of numerical analysis towards drop 

tests performed by Aanesland (1987). Two set of model tests were performed by Aanesland. The first 

set of tests were performed fully submerged where the pipe was released with different angles just 

below the free surface. The second set of tests were performed with drops from above the free surface 

to investigate the effect of water entry on the final position of the pipe at the tank bottom. For the 

submerged tests, the initial angles between the submerged pipe axis and the free surface were 

0°, 30°, 45° and 90°. The drop tests were followed by numerical analyses based on slender body 

theory and a viscous correction with an artificial separation point 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝. Aanesland’s theoretical model 

showed a significant influence by varying 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝/𝐿𝐿 between zero and 0.5. For analysis, 𝑥𝑥𝑠𝑠𝑠𝑠𝑝𝑝/𝐿𝐿 = 0.4 

was recommended. Aanesland applied the cross-flow principle for viscous drag resistance and 

indicated that the cross-flow Reynolds number varied between 1000 and 10000 with corresponding 

variation of drag coefficient between 1.0 and 1.2.  He demonstrated that using a drag coefficient for 

cross-flow as either 1.0 or 1.2 did clearly influence the motion path.  

3.1 Validation in the submerged phase 

In the following, the theory in section 2 is solved numerically for case studies based on Aanesland's 

experiments. The numerical analyses are performed for submerged drops of scaled down "weight 

tubes" which are closed at both ends. The depth of the test basin is 5 m. The dimensions of the 

cylinders are presented in Table 3. 
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Table 3: Pipe characteristics according to Aanesland (1987) 

Dimension Value 

Length 450 mm 

Diameter 10 mm 

Mass per meter 0.548 kg/m 

 

Our analyses are benchmarked with Aanesland’s submerged drop tests performed with initial angles of 

30°, 45° and 60°. The analyses of the submerged drops have been performed with an upstream drag 

coefficient DUC that is half the value of the steady state coefficient 𝐾𝐾𝐷𝐷∞. As presented in section 2.5 

and eq. (24), this means that we set 𝑑𝑑′ = 𝑠𝑠
𝑅𝑅

+ 1.4 in the expression for 𝐾𝐾𝐷𝐷. For 𝐾𝐾𝐷𝐷∞ = 1.1, this implies 

a base value at the upstream end equal to 𝐾𝐾𝐷𝐷𝐷𝐷 = 0.55.  The lift coefficient associated with asymmetric 

vortex shedding is set to 𝐾𝐾𝐿𝐿𝑎𝑎 = 0.25. 

 

Figure 5, 6, and 7 show comparisons of the motions of the center of gravity of the pipe for drop angles 

30°, 45° and 60°, respectively. The figures present the drop path of the 3D analyses using our model 

compared to the maximum and minimum envelopes of Aanesland's test. For the 60° drop angle, it was 

reported that the pipe touched the bottom of the tank at an angle tangential to the tank floor. This is 

similar to the response observed for the analysis using the base values for 𝐾𝐾𝐷𝐷∞ and 𝐾𝐾𝐷𝐷𝐷𝐷. For initial 

drop angles of 30° and 45°, it is observed that the drop trajectory has a falling leaf pattern that falls 

within the envelope of Aanesland's tests. 
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Figure 5:  Drop trajectory for the 30°submerged drop. Stapled lines illustrate the envelope from 

Aanesland's tests 

 

Figure 6: Drop trajectory for the 45° submerged drop. Stapled lines illustrate the envelope from 

Aanesland's tests 
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Figure 7 Drop trajectory for the 60° submerged drop. Stapled lines illustrate the envelope from 

Aanesland's tests 

 

The velocity profile longitudinal and transverse to the pipe for the three drop angles are presented in 

Figure 8. It is observed that the transverse velocity at COG for drop angles 30° and 60° settles at 

around 0.9 m/s, followed by small oscillations as the falling leaf behavior develops. Peak forward 

velocity is developed between the release time and the point of maximum excursion. As observed, the 

maximum forward component varies between 2 m/s to 4 m/s, depending on initial drop angle. This 

corresponds to a Reynholds number above 106 for before the pipe reaches maximum excursion, which 

suggests turbulent boundary layer flow. 
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Figure 8: Velocity profiles for submerged drop cases with initial drop angles 30° − 60°. Longitudinal 

and cross-flow velocities at COG are plotted towards global vertical positions. 

 

It is interesting to compare the effects of drag model on the drop response of the pipe. In Figure 9, the 

trajectories of the dropped pipe using both 2D+t theory and the cross-flow principle are compared. In 

the case of 2D+t theory, the same base values for 𝐾𝐾𝐷𝐷𝐷𝐷 and 𝐾𝐾𝐷𝐷∞ are applied with values 0.55 and 1.1, 

respectively. For the cross-flow principle, 𝐾𝐾𝐷𝐷∞ is applied over the entire length of the pipe. From 

Figure 9 it is observed that the two drag models produce different responses for initial drop angles 30° 

and 60°. In case of the 30°.drop, the falling leaf behaviour starts earlier when applying 2D+t theory 

than when the cross-flow principle is applied, Figure 9 (a). At 60° drop angle the cross-flow principle 

and 2D+t theory yields similar results in the 5 m depth range that is displayed. If the drop angle is 

further increased beyond 60°, one can observe that the 2D+t theory produces the falling leaf 

behaviour at larger depths than the cross-flow principle. This response is characteristic when 

comparing the two methods and can be reflected by considering the stationary problem without 

rotations. We then see that the combination of high forward speed and low transverse speed tends to 

pull the peak value of the drag coefficient distribution towards the pipe tail. The opposite scenario 
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pushes the drag coefficient distribution towards the nose of the pipe. This effect is visible when 

comparing our model towards equivalent analyses applying the cross-flow principle for small and 

steep drop angles.  

  

(a)                     (b) 

Figure 9: Comparison of dropped object trajectories generated by 2D+t theory and the cross-flow 

principle. Trajectories for initial submerged drop angles (a) 30° and (b) 60° are presented. 

3.2 Error analysis 

In the following an error analysis of for the chosen parameters is performed. Error sources in our 

model for the submerged phase are: 

- Added mass acceleration loads 

- Viscous resistance 

- Initial perturbations  

- Upstream drag coefficient 𝐾𝐾𝐷𝐷𝐷𝐷 used in the 2D+t theory 

- Steady-state drag coefficient 𝐾𝐾𝐷𝐷∞ used in the 2D+t theory 

- Lift coefficient amplitude 𝐾𝐾𝐿𝐿𝑎𝑎 associated with asymmetric separation 

The influence of varying added mass acceleration loads, and viscous resistance is small. The mass of 

the pipe is much higher than the added mass components. Reducing the added mass coefficients to 

70% of the potential-flow value, to qualitatively mimic the influence of cross-flow separation, has 
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very little effect on the response of the pipe. The viscous resistance was calculated by assuming 

combined laminar and turbulent flow. Variations in the order of ±10% on the axial drag yield little 

influence in response for the tested cases (30° and 60° drops). The effect of the pipe’s weight in water 

when the nose points upwards is a far more important resistance component.  

The influence of the other error sources (transverse drag) are performed by selecting values ±10% of 

the base values and independently investigating the influence on time and excursion to locations B and 

C, as illustrated in Figure 1(a). Here B and C represents excursions at maximum and tank bottom, 

respectively. Similarly, the durations 𝑑𝑑𝐵𝐵 and 𝑑𝑑𝐶𝐶 represents the time to reach points B and C. Note that 

any hydrodynamic effect of proximity to the tank bottom or impact is not considered in the analyses. 

An error associated with reaching maximum excursion a was calculated as 

𝛥𝛥𝐵𝐵 = �(𝛥𝛥𝐵𝐵𝐶𝐶𝐷𝐷𝐷𝐷)2 + (𝛥𝛥𝐵𝐵𝐶𝐶𝐷𝐷∞)2 + (𝛥𝛥𝐵𝐵𝐶𝐶𝐿𝐿𝑎𝑎)2 (27) 

 

where 2∆𝐵𝐵𝐶𝐶𝐷𝐷𝐷𝐷is the difference in excursion length to point B by varying the base value of 𝐾𝐾𝐷𝐷𝐷𝐷 ±10%, 

combined with the base values of 𝐾𝐾𝐷𝐷∞ and 𝐾𝐾𝐿𝐿𝑎𝑎. The same is performed to estimate ∆𝐶𝐶 ,  ∆𝑝𝑝𝐵𝐵,  ∆𝑝𝑝𝐶𝐶. The 

results are presented in Table 4. 

 

Table 4: Error estimation for a ±10% variation of base values for 𝐾𝐾𝐷𝐷𝐷𝐷,𝐾𝐾𝐷𝐷∞ and 𝐾𝐾𝐿𝐿𝑎𝑎.  

Drop angle ΔB ΔtB ΔC ΔtC 
30o 0.29 0.11 0.19 0.21 
45o 0.49 0.18 0.46 0.07 
60o 0.52 0.53 0.47 0.65 

 

From Table 4 we observe, with a few exceptions, an increase in error estimates with increasing drop 

angle. The same tendency is observed when plotting the pipe trajectories for the same 𝐾𝐾𝐷𝐷∞ and 𝐾𝐾𝐷𝐷𝐷𝐷 

variations, see  Figure 10-12. A reason for the increased spread in excursion with steeper drop angles 

may be that steep drop angles create high forward speed before the pipe becomes instable and turns. 

Small variations in time at the onset of oscillation will then have a large effect on the spatial position 
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of the instability taking place. Further, by varying 𝐾𝐾𝐷𝐷𝐷𝐷we displace the peak drag value presented in 

Figure 4 either towards the nose or the tail of the pipe. Increasing 𝐾𝐾𝐷𝐷𝐷𝐷, means pulling the peak 

coefficient in Figure 4 towards the nose of the pipe, while decreasing 𝐾𝐾𝐷𝐷𝐷𝐷 has the opposite effect. This 

may explain that high values for 𝐾𝐾𝐷𝐷𝐷𝐷 forces the pipe to start its oscillatory behaviour earlier than by 

lower 𝐾𝐾𝐷𝐷𝐷𝐷 values. The effect is not as visible for the 60° drop angle, as this case does not fully contain 

the turning motion before reaching the tank bottom. 

 

Variations in 𝐾𝐾𝐷𝐷∞ have a significant effect on the drop trajectory of the pipe, especially for steep drop 

angles. The same effect was also witnessed by Aanesland (1987), and Xiang et al. (2017), who both 

varied the drag coefficient 1-1.2 for the same tests using the cross-flow principle.  

 

(a)                                                                     (b) 

Figure 10: Variation of 2D+t drag for 30° submerged drop, (a) drag at nose varied ±10% from its 
base value of 0.55; (b) 𝐾𝐾𝐷𝐷∞ is varied by ±10% from its base value of 1.1 
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(a)                                                                     (b) 

Figure 11: Variation of 2D+t drag for 45° submerged drop, (a) drag at nose varied ±10% from its 
base value of 0.55; (b) 𝐾𝐾𝐷𝐷∞ is varied by ±10% from its base value of 1.1 

 

 

(a)                                                                     (b) 

Figure 12: Variation of 2D+t drag for 60° submerged drop, (a) drag at nose varied ±10% from its 
base value of 0.55; (b) 𝐾𝐾𝐷𝐷∞ is varied by ±10% from its base value of 1.1 

 

3.3 Evaluation of 3D effects 

In our evaluation of three dimensional effects, we have proposed that the lateral motion from the 

dropped pipe may origin from non-symmetric vortex shedding along the length of the pipe. The effect 

is published by Sarpkaya (2010), and introduces a lateral pressure distribution on the pipe, which we 

estimate using eq. (25). In the analyses the lift coefficient amplitude, 𝐾𝐾𝐿𝐿𝑎𝑎 , is set to 0.25. This is 

different from the methods applied by Xiang et al. (2017), who studied response of falling tubes 

subjected to the Magnus effect. In their analyses, they investigated the same drop cases as we do, 
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assuming the dropped pipes to have an initial roll velocity of 0.01 to 0.1 rad/s. It was claimed that this 

has a significant effect on out of planar motions. However, they applied a very high lift coefficient for 

their roll driven Magnus effect compared with experiments presented by Goldstein (1965) and Prandtl 

and Tietjens (1934). To exemplify, if we consider a rotating circular cylinder of radius R with a steady 

peripheral velocity 𝑉𝑉0 = 𝑝𝑝𝑅𝑅 in a constant cross-flow velocity 𝑈𝑈0, the mean lift coefficient 𝐾𝐾𝐿𝐿 is   

2𝜌𝜌𝑉𝑉0/𝑈𝑈0 if adopting the approach of Xiang et al. (2017). However, Goldstein (1965) and Prandtl and 

Tietjens (1934) estimate by neglecting viscous effects that a maximum mean lift coefficient of 4𝜌𝜌 

occurs at 𝑉𝑉0/𝑈𝑈0 = 4. The latter is in fair agreement with the experimental results when end plates are 

used to minimize 3D flow effects. Xiang et al.’s (2017) formula is unrealistically conservative for the 

considered values of 𝑉𝑉0/𝑈𝑈0 and gives, for instance, 𝐾𝐾𝐿𝐿 = 2𝜌𝜌 when 𝑉𝑉0/𝑈𝑈0 = 1, while the experiments 

show 𝐾𝐾𝐿𝐿 = 1. If we apply the same roll rate of 0.1 rad/s, as assumed by Xiang et al, we observe 

variations of  𝑉𝑉0/𝑈𝑈0 in the order of 0.0005, which give very small values for CL and negligible lateral 

forces. The Magnus effect has therefore not been considered further in this presentation. 

 

The drop trajectory of the pipe is illustrated in Figure 13 for a range of initial drop angles varying 

between 0°-90°. All analyses are performed completely submerged and with the same input as 

presented for the base case analyses presented in section 3. For simplicity, the stochastic sign 

parameter K in eq. (25) is kept positive, i.e. K=1. The drop trajectory is shown in both the XZ and YZ 

planes. From the analyses, asymmetric flow separation as presented through eq. (25), provokes out of 

plane motions. Without this component, the pipe moves within the XZ plane.   
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(b)                                                                     (b) 

Figure 13: XZ and YZ plane trajectories of submerged drops. Initial drop angles are varied 0° to 90°. 

 

In Figure 14, the initial drop angle is varied between 0°-90° and the touch down coordinates at the 

tank bottom are registered. As seen from Figure 14, the out of plane excursion varies significantly with 

drop angle, which is strongest for drop angles between 60° and 70°. The sensitivity to drop angle is 

also observed from Figure 13(b) and is an effect of the sine formulation in eq. (25). This implies that 

out of plane forces and varies considerably with the variation of t'. The effect will be disturbed even 

further if the stochastic sign parameter K is activated.   
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Figure 14: Drop excursion at 5 m depth (bottom of tank) using 2D+t theory and lateral lift effect. 

Initial drop angles towards the calm free surface is varied between 0° to 90°. 

4 Cylinder dropped from air 

4.1 Water entry 

So far, we have only evaluated the dropped pipe behaviour for events that involve an initially 

submerged pipe. In addition to performing submerged drop tests, Aanesland (1987) also performed 

free fall tests from air using the same pipe dimensions. There, he applied the same drop angles and 

performed tests that involved a 1.48 m free fall, and water depths of 2.5 and 5 m. In the following, an 

attempt to describe the theory for the transient water impact phase and combine this with the 

description of the submerged phase presented in section 2. A numerical description of the drop 

behaviour is then finally compared with Aanesland's (1987) experiments. 

 

When the dropped axisymmetric body is dropped from air, the body dynamics in air and during the 

water impact phase is essential in providing initial conditions for the fully submerged phase. When the 

angle between the body axis and the free surface is small, large water-impact loads associated with a 
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rapidly changing wetted surface, strong up-rise of water and air cavities occur. Mann et al. (2007) 

compared their approximate numerical method with field measurements by Richardson et al. (2001) of 

a horizontal cylindrical mine that was released 1.0 m above the water surface. The numerical and 

experimental vertical accelerations of the mine showed initially clear influence of air-cavity 

oscillations. The oscillation frequency can be explained by making an analogy to the natural frequency 

of a mass-spring system where the spring effect is due to compressibility of air and the mass is a 

generalized added mass caused by the cavity-induced pressure oscillations in the water Faltinsen 

(2005). Bodily et al. (2004) studied experimentally air cavity formation during vertical and nearly 

vertical water entry of slender axisymmetric bodies. Since the air-cavity oscillations die out on the 

time scale of a fully submerged simulation, the effect will be neglected. The fact that ricochet motion 

can occur for nearly horizontal water entry is not studied. 

 

We assume planar motions in the air and water-impact phases. We will neglect aerodynamic loads and 

assume the body falls in air with a constant angle. The vertical impact velocity is then �2𝑀𝑀ℎ where h is 

the drop height above the water surface. The effects of water waves and platform motions will not be 

considered. The described scenario during water entry (impact) is illustrated in Figure 15. A strip theory 

approach is followed and only the transverse hydrodynamic loads are considered. Campbell and 

Weinberg’s (1980) experimental slamming coefficients and Faltinsen’s (1990) description for water 

entry of a circular cylinder are used in the analysis. Large slamming forces are associated with large 

changes of the wetted area over a short time. The transverse slamming force per unit length is expressed 

as  

𝑓𝑓𝑧𝑧
slamming = −

1
2
𝜌𝜌𝐾𝐾𝑆𝑆𝐷𝐷(𝑤𝑤 − 𝑥𝑥𝑞𝑞)2, 𝐾𝐾𝑆𝑆 =

5.15

1 + 19ℎ
𝐷𝐷

+ 0.55
ℎ
𝐷𝐷

, 
ℎ
𝐷𝐷

< 1 (28) 

 

Here, D is the cross-sectional external diameter. The submergence h of the cross-section relative to 

calm water level is defined in Figure 15. 
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Figure 15: Water entry phase with partially wetted length. 

 

Campbell and Weynberg (1980) demonstrated the validity of the formula for |𝛽𝛽| < 8° (see Figure 15 

for a definition of β). We propose to use the formula for any β. When  ℎ/𝐷𝐷 > 1 in the slamming 

phase, 𝐾𝐾𝑠𝑠 is proposed set constant for ℎ/𝐷𝐷 = 1. Figure 16 compares for 𝛽𝛽 = 0 the formula by 

Campbell and Weynberg (1980) with other experimental data and with numerical calculations based 

on potential flow with exact free-surface conditions as well as the approximate generalized Wagner 

model Chezhian (2003). Since the effect of viscosity can be considered negligible, the exact numerical 

result is a relevant comparison for the empirical method by Campbell and Weynberg (1980). Relevant 

error sources are three-dimensional flow and deceleration of the dropped object. The results in Figure 

16 can be considered as a basis for prediction of predicted paths of a pipe dropped from air into water.  
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Figure 16: Slamming coefficient 𝐾𝐾𝑆𝑆 = 𝐹𝐹3/𝜌𝜌𝑉𝑉2𝑅𝑅 for the water entry of a circular cylinder versus non-

dimensional time  𝑉𝑉𝑑𝑑/𝑅𝑅, using a fully nonlinear method, generalized Wagner method and published 

experimental results Chezhian (2005). The results are provided by Rong Zhao (unpublished, 2001) 

 

In addition, added mass loads must be added by accounting for that a cavity is formed above the cross-

section when ℎ > 0.5𝐷𝐷. The added mass loads per unit length in the z-direction is approximated as 

𝑓𝑓𝑧𝑧added mass = −𝑎𝑎33(�̇�𝑤 − 𝑥𝑥�̇�𝑞) (29) 
 

When ℎ ≤ 0.5𝐷𝐷, the 2D heave added mass a33 with high-frequency free-surface condition for a 

partially submerged circular cylinder of radius R and draft h based on Lockwood Taylor (1930) is 

used, i.e. 

𝑎𝑎33
𝜌𝜌𝜌𝜌𝑅𝑅2

=
𝜌𝜌2

3
(1 − cos𝜃𝜃)
(2𝜌𝜌 − 𝜃𝜃)2

+
(1 − cos𝜃𝜃)

6
+

sin𝜃𝜃 − 𝜃𝜃
2𝜌𝜌

,    where 𝜃𝜃 = 2arccos(1− ℎ/𝑅𝑅) (30) 

 

When ℎ > 0.5𝐷𝐷 and 𝑎𝑎33 = 0.125𝜌𝜌𝜌𝜌𝐷𝐷2. 

The collapse time of the cavity depends on the Froude number with cross-flow impact velocity as 

characteristic length and the diameter as characteristic length (Faltinsen et al., 1977). We may 
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pragmatically assume that the slamming phase is over when ℎ/𝐷𝐷 = 2. The sensitivity to this 

assumption is a matter of investigations. When high slamming loads occur, we can neglect hydrostatic 

and viscous loads in solving the equations of motions.  

4.2 Validation of drops from above the free surface 

The air-water response of dropped cylinders has been documented trough experiments recorded at 

high speed by Ueda et al (2011) for L/D ratios equal to 25. The cylinders had a diameter of 12 mm, 

length of 300 mm and density of 1258 kg/m3. Ueda monitored the response of both hydrophobic and 

hydrophilic surfaces. Only the response of the hydrophilic cylinder is investigated herein. 

 

Ueda et al. (2011) dropped cylinders from a height of 200 mm, with a 36° drop angle to the free 

surface. From the test on hydrophilic material, local air cavities formed at both ends of the cylinder 

when passing through the water surface. The cavity at the cylinder nose stretched a couple of 

diameters behind the upstream end and collapsed off the cylinder at about 5-6 diameters depth. The 

cavity at the tail of the cylinder showed similar characteristics as the upstream end.  

 

The drop response of the test by Ueda et al. is reproduced numerically using slamming and added 

mass theory as presented in section 4.1. As observed from high speed photos presented by Ueda et al, 

the cylinder rotates at water impact. When fully submerged, the cylinder had an approximate angle of 

15° to the waterline. This took place about 0.085 s after first water entry, see fig 2 (g) in Ueda et al 

(2011). For comparison, our numerical model rotates to an angle of about 14° to the waterline when 

the tail is fully submerged. This takes place 0.078 s after entering the water, which implies an 8% 

difference in duration of the slamming phase. After this point, the pipe is considered fully submerged. 

The numerical response is illustrated in Figure 17. It is realized that although our one-point validation 

of our slamming model shows agreement with Ueda's experiment, it is a lightweight validation of the 

model. However, in lack of other data, the model will be applied for numerical reproduction of the 

drop tests from above the free surface by Aanesland (1987). 
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(a)                                                                              (b) 

Figure 17:  Water entry response from simulation of a hydrophilic cylinder (L=300mm, D=12mm, 

ρ=1258 kg/m3) dropped from a height of 200 mm at and angle to the free surface of  36°. Figure (a) 

shows the global velocities in X and Z directions of the COG (y-axis on left side) and angular 

variation in degrees (y-axis on right side). Figure (b) shows the spatial response as the cylinder enters 

water. 

 

4.3 Analysis of Aanesland's above free surface drop experiments 

In the following, we describe four sets of drop tests from above the free surface presented by 

Aanesland (1987), and Aanesland and Huse (1986). The drop tests were carried out from a drop height 

of 1.48 m above the free surface for drop angles 30° and 60°. For each drop angle, two depth 

variations were tested; 2.5 m and 5 m. Within each drop scenario, 8-14 drop tests were performed. The 

final impact locations at the tank bottom are presented in figure 18. As observed from the digitized 

plots, the 30° case indicates that the final position of the dropped pipes cluster together into two 

locations, which is especially visible for the 5 m depth case. Whether this is due to oscillatory 

behavior or drops simply being performed at 30° or −30° degrees are unclear. It is, however, 

interesting to observe that the clusters of pipes are positioned at about 1 m radially from the drop 

center and that the pipes have a heading in the plane it was dropped.  
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The 60° drop tests introduce a fan shaped scatter. For the 5 m depth cases, maximum excursion is 

about 5 m, while the minimum excursion is about 2 m. For the 2.5 m depth scenario, Figure 18 (b) the 

pipes are more spatially focused. The reason for this pattern, may be that at 2.5 m depth, the pipe has 

not reached the maximum excursion point, while at 5 m depth, the pipe has reached the falling leaf 

behavior. See for instance Figure 19 (b). 

  
(a)                                                                        (b) 

Figure 18:  Birds eye view of final positions of pipes dropped from air to water. Figure shows (a) 30° 

degree drop angle, and (b) 60° drop angle. Water depth is 2.5 m (red), and 5m (black). Drop height is 

1.48 m. Test data extracted from, Aanesland & Huse (1986) 

The four drop scenarios presented in Figure 18 have been reproduced by numerical analysis using 

theory outlined in section 2 and 4.1. Our analyses are split in two phases, water entry and submerged 

phases, respectively. As seen from Aanesland's experiments, we see for some cases a noticeable 

scatter occurs in the lateral direction.  We see from analyses that we as well can create an out of plane 

scatter, but not to the same extent as in the tests. To do so we must vary initial conditions, or 

parameters such as  CDU, CD∞ and CLa, all which we have limited information about. We thus restrict 

ourselves only to consider the radial trajectory using the input from the slamming phase and continue 

the submerged phase with the same base values as for the submerged drops. The results of the analyses 

are presented in Figure 19 and compared with histograms showing the hit-locations of the tests. The 

bin interval of the histogram is about 10 cm. For the 30° drop cases, the hit points are in dense and 
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clustered zones. By comparing the numerical analyses for the 30° drop angle, Figure 19 (a), it is 

observed that the trajectory of the simulation aligns with the registered hit points from experiments. 

The same is observed for the series of drops with initial angle of 60° degrees, which predicts the 

excursion at both 2.5 and 5 m reasonably well. It is worth mentioning here, that we only analyze the 

trajectory of the pipe and disregard any effects or contact with ground. This means that we also 

disregard possible sliding effects after the pipe touches ground, as may be the case for the 60° drop at 

2.5 water depth. Finally, as observed in section 4.2, the water entry phase introduces initial conditions 

for the submerged phase (pitch rotation, and velocity components) which alters the trajectory for the 

submerged phase. If we, for instance, compare the trajectory of the 60° drop angle from Figure 19 

with the equivalent submerged drop presented in Figure 12, we see that the drop from above the free 

surface reaches the maximum excursion at shallower depth than the submerged drop. This is important 

and verifies that initial conditions passed on from the water entry phase to the submerged phase needs 

to be accounted for to predict the touch down position on the seabed. 

  

   (a)        (b) 

Figure 19: Comparison between numerical analyses and measured hit locations for initial drop 

angles; (a) 30° and (b) 60°. Two water depths are recorded: 2.5 m and 5 m. Drop height above water 

is 1.48 m. 
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5 Conclusions 

Cylinder shaped objects lifted from offshore support vessels to offshore rigs comprise a significant 

part of the dropped object potential for subsea structures and pipelines. Existing methods for 

characterizing the risk level for failure of production systems due to dropped object impacts are very 

coarse and simplified. The presented 3D theory provides a methodology that can provide a rational 

and deterministic description of how the pipe travels through water when dropped to sea. This is 

important as it provides better information of the radial reach of dropped objects and their kinetic 

energy at impact. As the presented method is simplified, it is also computationally efficient. It implies 

that a large set of analyses can be performed to establish a statistical representation of hit location and 

impact energy. In turn this may be applied in risk based dropped object analyses. The latter discussion 

is, however, beyond the scope of this paper. Our focus is in the deterministic response of the falling 

pipe. 

 

In the investigation of the dropped pipe response, our main contribution is the introduction of 2D+t 

theory and application of Sarpkaya's work on transverse drag. This is important as forward speed will 

affect the development of vortices downstream the pipe nose, and hence affect the drag force and 

moment on the pipe. Application of the model shows in general a good correlation with tests 

performed by Aanesland (1987).  

 

Our analyses using 2D+t theory introduces some modifications to Sarpkaya's representation of the 

evolution of the impulsive flow and hence the representation of the drag coefficients. As the nose of 

the pipe is blunt, we assume separation at the nose section and introduce an initial drag, 𝐾𝐾𝐷𝐷𝐷𝐷,  which is 

half its steady value 𝐾𝐾𝐷𝐷∞. Comparison with experiments by Reif and Powell (1917), suggest that this 

is reasonable, and so do our analyses of the dropped pipe. Variation of the above coefficients indicate 

that the system is sensitive to changes, and further studies on other pipe geometries should therefore 

be undertaken to further verify 𝐾𝐾𝐷𝐷𝐷𝐷 and 𝐾𝐾𝐷𝐷∞. 
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The effect of non-planar motion is investigated. To introduce out of plane motions, a lateral driving 

force is required. This is obtained by introducing the 2D+t theory and the effect of non-symmetric 

vortex shedding along the cylinder as it travels through water. This generates lateral lift forces and 

yaw moments, which in turn twists the trajectory of the pipe. Our approximation of lateral forces is 

based on lateral lift coefficients derived from tests, Sarpkaya (2010). This is presented in eq (25) using 

a lift coefficient CLa of 0.25. We emphasize that direct comparison towards test have not been 

performed. Further studies should therefore be performed to verify the formulation of eq (25) and the 

magnitude of CLa. Lift forces generated by the Magnus effect is also introduced using roll rates in the 

order of 0.1 rad/s, as investigated by Xiang et al. (2017). However, with basis in experiments 

performed by Goldstein (1965) and Prandtl and Tietjens (1934), analyses indicated that the Magnus 

effect was negligible for the magnitude of the considered roll velocity. It is thus concluded that out of 

plane motion is a result of other effects, where asymmetric vortex separation is considered as a likely 

candidate.  

 

In addition to the submerged phase, the water entry phase is described. This is performed by 

introducing the slamming load and varying added mass. Both are distributed over the wetted length of 

the pipe as it enters the water. An important effect of this is that the slamming phase introduces a 

transient change in pitch angle, and pitch rate, which has a significant effect on the following 

submerged phase. Comparison between tests and analyses shows reasonable correlation between hit 

locations at the seabed when investigating the radial excursion. The tests further show a large spread 

in lateral and radial excursion. The reason for this spread is not attempted explained herein. We only 

investigate the correlation between analyses and how they correlate with the distribution of hit location 

from the tests. 
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For the future, the model should be further verified towards experiments. This implies that more tests 

need to be performed in order to form a basis for an extended verification. New experiments should 

address variations in L/D ratio, weight and position of the COG. It is also recommended that more 

work is carried out to further study 3D effects at the pipe nose and its effect on the flow separation. 

This can provide a better foundation for quantifying the development of cross flow drag and lateral lift 

forces on the falling pipe. This may further be important when considering variations in geometry such 

as L/D ratio or effects from potential end flanges. 
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