
1 INTRODUCTION  

Decision problems regarding operation and mainte-
nance (O&M) of offshore wind farms are related to 
different time scales. Thus, methods and models that 
support decision making can be classified into the cat-
egories strategic, tactical and operational, e.g. as sug-
gested by Shafiee (2015). Typical time-horizons for 
the decisions are one or a few days (operational), sev-
eral weeks or months (tactical) and several years 
(strategic) (Welte et al. 2018). For operational 
maintenance decisions, such as the choice of the next 
inspection interval or the decision about which com-
ponents to replace or repair, decision rules are often 
used. Different decision rules comprise different 
maintenance strategies. For example, replacement of 
components after a fixed time interval results in a 
strategy with predetermined preventive (scheduled, 
or calendar-based) maintenance, and replacement 
based on the outcome of the last inspection results in 
a condition-based maintenance (CBM) strategy. 

The identification and selection of the best mainte-
nance strategy is a strategic decision problem, and 
strategic O&M simulation models may be used to es-
timate availability and costs for different strategies. 
Accurate evaluation of an O&M strategy requires a 
representation of operational aspects in the simulation 
model. This implies estimating the influence of deci-
sion variables for operational decision problems on 

other aspects of offshore wind farm O&M, such as 
logistics and turbine access. Therefore, the integra-
tion of operational aspects in strategic models is of 
interest in wind farm O&M modelling and optimiza-
tion. Typical decision variables are time of next in-
spection or maintenance task, and maintenance inter-
vention level (i.e. technical condition or level of 
degradation that triggers a maintenance task or re-
placement of the component). 

Generally, aspects of the wind farm O&M decision 
problem are modelled with different accuracy by dif-
ferent models. Furthermore, different model aspects 
might interact. Simulation-based strategy models, 
which are typically used for optimizing maintenance 
logistics strategies, accurately capture system effects 
related to logistics, e.g. concerning sharing of vessels 
for several maintenance tasks or splitting of mainte-
nance tasks over multiple weather windows. How-
ever, most such models do not represent aspects of 
CBM of deteriorating components accurately, and 
they usually do not consider directly the influence of 
inspection, condition monitoring, and repair strategy 
on the failure rate. These effects are instead consid-
ered indirectly through different choices of high-level 
input data such as annual failure and maintenance 
rates, see e.g. (Welte et al. 2017). A challenging prob-
lem is to find good estimates for the high-level inputs 
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as a function of different strategies. Integration of dif-
ferent models can provide in many cases a good solu-
tion for this problem. 

The influence of a CBM strategy can be directly 
considered using a risk-based approach based on 
Bayesian pre-posterior decision analysis. An efficient 
approach to solve the decision problem is to apply  de-
cision rules and discrete Bayesian networks for mod-
elling of deterioration and effect of inspection and re-
pair strategies (Nielsen and Sørensen 2017a). These 
approaches usually include only simple representa-
tions of the influence of weather, vessels and system 
effects related to vessel utilization through the spe-
cific costs. However, by integration of the risk-based 
approach with a strategic O&M model, more ad-
vanced representations of these interactions can be in-
cluded. 

In this paper, an efficient approach developed 
within the EU FP7 LEANWIND project 
(www.leanwind.eu) is presented for accurate integra-
tion of CBM in strategic simulation models. In sec-
tion 2, approaches for strategic maintenance planning 
are discussed with focus on simulation-based strategy 
models and risk-based models. In section 3, general 
approaches for integration of models are discussed, 
and a novel integration approach based on Bayesian 
networks is presented. In section 4, the approach is 
illustrated by an example considering CBM for wind 
turbine blades. Section 5 summarizes the findings of 
the paper. 

2 STRATEGIC MAINTENANCE PLANNING 

Methods and models for strategic maintenance plan-
ning typically aim for minimization of total expected 
O&M costs including lost revenue. An overview of 
models can be found in the review by Hofmann 
(2011) and in (Welte et al. 2018).  Several of the mod-
els consider the whole wind farm, and some include 
the full life cycle, but many focus just on selected as-
pects and parts of the wind farm. Some of the models 
are optimization models that use mathematical opti-
mization approaches. However, most models are sim-
ulation models. 

For timing of inspection and maintenance, a re-
view can be found in (Shafiee and Sørensen 2017). It 
is essential to model the influence of the maintenance 
strategy on the failure rate, which is generally the fo-
cus of risk-based maintenance models (Nielsen and 
Sørensen 2014, 2017a). To do this, probabilistic mod-
els for deterioration, inspection, condition monitoring 
(CM), and repair are needed. The basis for the risk-
based approach is the Bayesian pre-posterior decision 
analysis and the risk-based inspection (RBI) approach 
developed for oil and gas structures (Faber 2002).  

2.1 Simulation-based strategy models 

Offshore wind farm O&M simulation models are 
used to analyse and provide decision support for dif-
ferent aspects of offshore wind farm operation. Ex-
amples of decision problems such models are used for 
are wind farm investment decisions (calculate ex-
pected availability and O&M costs for planned wind 
farm to assess profitability), O&M vessel selection 
(which vessel types and how many vessels of each 
type), logistic strategies (e.g. shore‐based or investing 
in an offshore O&M base), and O&M investment de-
cisions (e.g. buying or developing an improved CM 
system); see (Welte et al. 2018) for further details. 

Most strategic simulation models include the fol-
lowing features: weather model, failure model, cor-
rective and (pre-determined) preventive maintenance 
tasks, offshore logistics (vessels and technicians), ac-
cessibility limits, and lead/mobilization times for 
spare parts/vessels. Other features that are less com-
mon are the effect of corrective and preventive 
maintenance on component reliability and condition, 
or the representation of CBM, to mention some ex-
amples. 

In this paper, the NOWIcob model developed by 
SINTEF Energy Research has been used for simulat-
ing wind farm O&M. NOWIcob uses a time-sequen-
tial (discrete-event) Monte Carlo simulation tech-
nique. Descriptions of the model and the simulation 
methodology can be found in (Hofmann and Sperstad 
2013) and (Sperstad et al. 2017). Maintenance opera-
tions and related logistics are simulated by the model 
with an hourly resolution over a specified number of 
years. Wind farm performance parameters such as 
wind turbine availability and O&M costs are esti-
mated by the model. Typical input and output param-
eters of the model are illustrated in Figure 1. 

 

 
 

Figure 1. Typical input and output parameters of simulation-
based strategy model (NOWIcob). 

2.2 Risk-based O&M models 

Risk-based O&M models are used for timing and se-
lection of methods for CM, inspections, and mainte-
nance, and for the assessment of value of information 
(VoI) of CM. Nielsen and Sørensen (2017a) pre-
sented a framework for optimal timing of inspections 
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and preventive maintenance, both containing classic 
simple inspection strategies, but also advanced strat-
egies utilizing all available CM data and observations 
from inspections. Simple strategies implemented in 
this framework include equidistant inspections, and 
inspections when a CM threshold is exceeded. Imple-
mented advanced strategies include inspections when 
a threshold for the probability of failure (or expected 
damage size) is exceeded.  

For the probabilistic modelling, discrete Bayesian 
networks were applied. For simple strategies, Bayes-
ian networks were used directly for computation of 
the expected number of inspections, preventive re-
pairs, and corrective repairs in each month of the 
planned lifetime. For advanced strategies, Monte 
Carlo simulations were run using the same discrete 
probability distributions as used for the simple model, 
and Bayesian networks were used within simulations 
for updating of the probability of failure for decision 
making.  

For both simple and advanced decision rules, the 
total expected lifetime O&M costs are found by mul-
tiplication of probabilities for inspections, preventive 
repairs and corrective repairs by specific costs for 
these maintenance operations. The specific costs 
should include all relevant contributions such as spare 
parts, vessel, equipment, salary, fuel, and lost reve-
nue. These contributions are not modelled explicitly 
in the risk-based O&M model, and the influence of 
the vessel types, fleet size, jack-up vessel strategy etc. 
is only considered through the specific costs. For in-
stance, effects related to sharing of vessels for multi-
ple repairs cannot be considered directly.   

3 INTEGRATION OF MODELS 

To model accurately decision problems for CBM 
where system effects in relation to logistics are im-
portant for the estimation of maintenance costs, nei-
ther of the models presented above have a sufficiently 
detailed representation of all relevant aspects. 

To combine the advantages of two models in solv-
ing a decision problem, one can broadly speaking dis-
tinguish between the following approaches to integra-
tion of the models: Full integration and data 

interfacing. For full integration, a time-consuming 
simulation-based model needs to be run to optimize 
decision variables for inspections and repairs. Espe-
cially for advanced strategies, this seems inefficient. 
Furthermore, the design of a flexible input format for 
CBM in the simulation-based strategy model (e.g. in-
cluding different deterioration processes) is not 
straightforward. For data interfacing, output from one 
model is used as input for the other. 

One approach for data interfacing is the loose in-
tegration approach presented in (Welte et al. 2017). 
Here, CBM was modelled through the failure rate, 
overall probability of detection before failure, pdet, 
and pre-warning time, Tdet (i.e. time from detec-
tion/repair decision, tR, to time of potential failure, tF). 
A disadvantage of this approach is that events are not 
distributed correctly in time, although the mean value 
is correct. This could lead to wrong predictions of the 
utilization of vessels, benefit of sharing of vessels, 
and to a wrong estimate of the probability of failure 
in the period after detection while waiting for a pre-
ventive repair to be performed.  

3.1 Integration approach using Bayesian networks 

In this section, a new approach is presented for model 
integration using data interfacing between the risk-
based O&M model and NOWIcob, which could also 
be implemented for other strategic O&M simulation 
models. Compared to the loose integration approach 
presented by Welte et al. (2017), the new approach is 
more accurate because it models the distribution of 
failures, inspections, and maintenance events more 
accurately in time. In the proposed new integration 
approach, input to NOWIcob is generated using an 
extension of the framework for risk-based planning 
presented in (Nielsen and Sørensen 2017a), and there-
fore risk-based strategies can easily be integrated in 
NOWIcob with the new approach, as illustrated in 
Figure 2. 

First, the optimal strategies are found using the 
risk-based O&M model, using a cost model that con-
siders each maintenance task separately. Then, for the 
optimal strategy, the input to NOWIcob is generated. 
Using Bayesian networks, the probability distribution 
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Figure 2. Overview of the integration of risk-based decisions in the simulation-based O&M strategy model. 



P(tF) for the time of failure given no CBM is first es-
timated. Then, the conditional probability distribution 
P(tR|tF) for the time of detection (i.e. time of the deci-
sion to make a preventive repair) given the time of 
failure is estimated, which accounts for the CBM 
strategy. The following simulation procedure is then 
applied in NOWIcob for each component: 

1. Draw time of potential failure from distribu-
tion P(tF) 

2. Draw time of detection (or no detection) from 
P(tR|tF) 

3. At ‘time of detection’, schedule CBM task 
(preventive repair). 

4. If not repaired before time of failure, schedule 
corrective repair. After repair, draw new time 
of failure and time of detection. 

The costs obtained by simulations in NOWIcob are 
then compared to the costs found by the risk-based 
model, to assess the influence of the more detailed lo-
gistics model capable of considering system effects. 
If large deviations are found, the optimal strategy 
found by the risk-based model could in fact be sub-
optimal, and an iterative process could be applied to 
find the true optimal strategies. 

3.2 Estimation of distributions  

To use the approach, the distributions P(tF) and 
P(tR|tF) must be found. The distribution P(tF) only de-
pends on the deterioration model, and can be found 
directly from a Bayesian network using a forward al-
gorithm similar to those used in (Nielsen and 
Sørensen 2017a).  

For simple decision rules, the conditional distribu-
tion P(tR|tF) can also be found using Bayesian net-
works. Here the evidence of failure in time step j, and 
evidence of no failure in all preceding time steps is 
entered in the network shown in Figure 3, and 
smoothing is performed using a forward-backward al-
gorithm inspired by (Straub 2009), to estimate the 
probability of making the decision to repair (detection 
above threshold for repairs) in all preceding time 
steps. The network is defined by conditional proba-
bility distributions: the distributions for M (deteriora-
tion model parameter) and D (damage size) represent 

the deterioration model, and the distribution for R (re-
pair decision) is estimated based on strategies for CM, 
inspections and repairs; for details see (Nielsen and 
Sørensen 2017a). The node F (event of failure), is in 
the fault state, when D is in the fault state, and is in-
cluded to allow hard evidence to be entered on the 
event ‘no failure’. 

For advanced decision rules, simulations are run 
using the deterioration model, CM model, inspection 
model, and strategy for inspections and CBM. The 
time of detection tR is stored, but the repair is not ex-
ecuted. Instead, the simulations continue without CM 
and inspections until failure, to find the time of failure 
tF. A parameterized distribution P(tR|tF) can then be 
fitted based on the pairs of tR and tF values. An ap-
proach for this will be presented in section 4.4. 

3.3 Inspections 

To estimate the costs of inspections, the implication 
for logistics and inspection tasks should be included 
in NOWIcob, although the influence of inspections 
on CBM is already included by using the P(tR|tF) dis-
tribution. Correct stochastic distribution of inspec-
tions for individual turbines, resembling realistic se-
quences of events preceding CBM tasks, is only 
possible to capture in the simulation-based strategy 
model through a full integration approach. Instead, 
we could aim to get the correct expected number of 
inspections for the wind farm in each month by mod-
elling inspections as random events with a rate equal 
to the rate estimated in the risk-based O&M model.  

Since inspections cannot be modelled with a time-
varying inspection rate in NOWIcob's module for 
predetermined preventive maintenance tasks, inspec-
tions are instead represented as a corrective mainte-
nance tasks with a time-varying ’failure’ rate. For the 
ease of implementation, the rate for this maintenance 
task is assumed constant for each year, but NOWIcob 
could be extended to allow for rates changing within 
the year, to place inspections in the correct months. 
The turbine is only required to shut down in the dura-
tion of this maintenance task. 

4 EXAMPLE 

This example considers risk-based O&M for wind 
turbine blades with and without CM. First, the opti-
mal decision rules for inspections and repairs are 
found using the risk-based model (Nielsen and 
Sørensen 2017a) based on simple estimations of the 
specific costs. Second, input is generated for the stra-
tegic O&M simulation model, which is then run to 
give a more accurate estimation of the costs for that 
strategy, and the costs are compared to the costs 
found by the risk-based model. The planned lifetime 
of the wind farm is set to 20 years. 
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Figure 3. Bayesian network for estimation of the distribution for
time of repair given time of failure P(tR|tF). M: deterioration
model parameter, D: damage size, R: repair decision (yes/no), F: 
event of failure (yes/no). 



The following four strategies for inspections are 
considered, see (Nielsen and Sørensen 2017a) for de-
tails: 

a) Equidistant inspections (constant inspection 
interval) 

b) Dynamic inspection scheduling based on the 
probability of failure (estimated based on the 
outcome of the inspections, without consider-
ing CM) 

c) Inspections when CM outcome exceeds a 
threshold 

d) Dynamic inspection scheduling based on the 
probability of failure (estimated based on the 
outcome of the inspections and CM) 

For all strategies, the decision to repair is based on 
the outcome of the inspection. Strategy a) and c) are 
simple strategies, where the distributions can be 
found directly using Bayesian networks, and strategy 
b) and d) are advanced strategies, where the distribu-
tion P(tR|tF) is fitted based on simulations.  

4.1 Costs 

The example is based on the LEANWIND reference 
wind farm with 125 wind turbines, 8 MW each, lo-
cated at West Gabbard; this case was also used in 
(Welte et al. 2017). Only maintenance tasks related to 
blade maintenance are included: inspections, CBM 
and corrective maintenance, and the main assump-
tions for these tasks are shown in Table 1. The direct 
costs include spare part costs and technician costs. 
For corrective maintenance, a jack-up vessel is re-
quired. Here, a 30 days mobilization time, a day rate 
of € 140 000, and mobilization costs of € 840 000 are 
assumed. Inspections and CBM tasks are always 
completed within one weather window, thus perfect 
weather forecast is assumed for the duration of the 
tasks. Corrective maintenance tasks can be split up 
over several weather windows.  

For strategies b), c), and d), all three blades of a 
turbine are not necessarily inspected at the same time 
when one of the blades is inspected. The number of 
inspections of 3, 2, and 1 blades in each time step is 
estimated based on the probability p that the optimal 
decision would be to inspect a given blade. When 
looking at a wind turbine in a large wind farm, the 
number of inspected blades in a random wind turbine 
in one time step will follow a binomial distribution 
thus yielding the probabilities of each type of inspec-
tions: P(3 blades)=p3, P(2 blades)=3p2(1-p), and P(1 
blade)=3p(1-p)2. 

In NOWIcob, a logistics time of 0.2 hours is in-
cluded for inspections and CBM, and a technician 
transfer time and a vessel approach time is included 
for the crew transfer vessel (CTV). Costs for the 
CTVs and fuel costs are also included. Details on ves-
sel operational phases, weather limits, and estimation 
of lost revenue are given in (Welte et al. 2017) and 
the associated supplementary material. 

 
 

Table 1. Main assumptions for inspection and maintenance 
tasks. 

Task Dura-
tion 
[hours] 

Direct 
costs  
[€] 

No. technicians / 
vessel type 

Inspection 1 blade 2 1600 2 / CTV 
Inspection 2 blades 3 2400 2 / CTV 
Inspection 3 blades 4 3200 2 / CTV 
CBM 6 6000 3 / CTV 
Corrective mainte-
nance 

6+24+4 400000 - /  
jack-up vessel 

4.2 Input to risk-based model 

In this example, deterioration for a wind turbine blade 
is modelled using a Markov model for the size of the 
largest crack in the blade. Based on inspection data, a 
model was fitted in (Nielsen and Sørensen 2017b), 
and this model is used here. The deterioration state 
can take discrete values from 0 to 6, and the transition 
probabilities per month were found using a maximum 
likelihood approach.  

Both preventive and corrective repairs are as-
sumed to be perfect, thus taking the blade to as good 
as new conditions. Preventive repairs can be per-
formed for damages of state 1 to 4, whereas corrective 
maintenance is needed for damages of state 5 and 6. 
The reliability of inspections is described by the prob-
ability of detection, which increase with damage size. 
If a damage is detected, the measurement of the dam-
age size is assumed to be correct. 

For CM, four outcomes are possible, ’No detec-
tion’, ’Low alarm’, ’High alarm’, and ’Failure’. The 
probability of alarm increases with damage size, and 
the probability of high alarm, given there is an alarm, 
increase with damage size. For both inspections and 
CM, the models presented in (Nielsen and Sørensen 
2017b) are used.  

For the risk-based model, the specific costs of in-
spections, CBM and corrective maintenance are 
needed. For the estimation of these, a cost model for 
separate maintenance tasks is used. For inspections 
and CBM, inspection/repair costs and lost revenue are 
included. For corrective repairs, repair costs, jack-up 
vessel charter costs, and lost revenue are included. 
The lost revenue and number of jack-up vessel day 
rates are estimated based on access limits and time 
series of significant wave height and mean wind 
speed. 

The specific costs for CBM are estimated to 
€ 7340, and for corrective maintenance they are 
€ 2 740 000. The costs associated with an inspection 
of three blades are estimated to € 3790. For inspection 
of two blades, ¾ of these costs are assumed, and for 
one blade, ½ of these costs. Using the binomial distri-
bution with parameter p equal to the probability of in-
spection in each time step, and €3790/3 as base, the 



inspection costs were corrected to account for higher 
costs per blade, when less than three blades were in-
spected. 

4.3  Optimal risk-based strategies 

Using the input presented in the previous section, the 
optimal decision rules were found using the risk-
based O&M model (Nielsen and Sørensen 2017a) for 
each of the four strategies. For strategy a) and c) the 
expected lifetime costs are found directly using 
Bayesian networks, and for strategy b) and d) they are 
found using 100 000 simulations. The probabil-
ity/simulated frequency (i.e. the estimated probabil-
ity) of inspection and CBM for each time step is 
shown in Figure 4 for all strategies, where the simu-
lation-based results show fluctuations due to the lim-
ited number of simulations.  

For strategy a), inspections have predefined inter-
vals, and the probability of inspection is either zero or 
one. For strategy b), where a threshold for the proba-
bility of failure (Pf) is used, the probability of inspec-
tion is in the beginning close to either zero or one, but 
the probability becomes more constant as more and 
more CBM tasks have been performed. For the strat-
egies with CM, c) shows similar behaviour to d), but 
d) generally has slightly more inspections and CBM 
tasks than c). The total expected lifetime costs are 
shown in Figure 5, and the optimal decision rules for 
inspections are: a) 12 months interval, b) threshold for 
annual Pf : 10-5, c) threshold for CM: ’Low alarm’, 
and d) threshold for Pf : 3·10-7. The optimal decision 
rule for CBM was to repair whenever a damage was 
detected. Without CM, the optimal strategy is a). It 

performs better than the more advanced strategy b) 
because of increased inspection costs for b), as not all 
three blades are inspected together. However, when 
CM is included, the advanced strategy d) performs 
better than c), as the information from CM is better 
exploited. The value of information (VoI) of CM is 
the difference between the best strategy with and 
without CM and is here found to € 27 700 per blade. 

4.4 Input to simulation-based strategy model 

The distribution for time to failure, given no preven-
tive maintenance, only depends on the deterioration 
model, and can be found using a Bayesian network. 
As it should be possible to generate failures happen-
ing after the planned lifetime, because they could gen-
erate CBM within the lifetime, the distribution is 
computed for 50 years (600 timesteps). The probabil-
ity of failure later than 50 years is found to be 0.15%, 
and this number is added to the last time step to make 
the distribution a valid probability mass function. The 
distribution is shown in Figure 6.  

For the simple strategies a) and c), the conditional 
probability distribution for time of detection given 
time of failure can be estimated directly using Bayes-
ian networks, as described in section 3.2. The condi-
tional distributions for time of failure in years 5, 10, 
15, and 20 are shown in Figure 7. For the advanced 
strategies b) and d), a distribution can be fitted to the 
outcome of simulations (time of detection and time of 
failure). Examination of histograms of tR values for 
small ranges of tF values revealed that a beta distribu-
tion would fit the ratio tR/tF well for a given tF, and 
that the distribution parameters would vary with tF. 
Therefore, the two parameters α and β in the beta dis-
tribution were each represented by a 2nd order poly-
nomial of tF. Thereby, the conditional distribution 
P(tR|tF) is determined by six parameters. These pa-
rameters were found using the Maximum likelihood 
method. A nonlinear solver for constrained optimiza-
tion was used under the constraints α > 0 and β > 0 
for all t. The conditional distributions for time of fail-
ure in years 5, 10, 15, and 20 are shown in Figure 8. Figure 4. Frequency of inspection and CBM for each time step

per blade. 

Figure 5. Total expected lifetime costs per blade for each strat-
egy for the risk-based model. 



The distributions are multiplied by the overall proba-
bility of detection pdet, and the probability of no-de-
tection is then 1-pdet.  

The overall probability of detection is estimated as 
the ratio between the number of simulations with de-
tection before failure, and the total number of simula-
tions with failure within the time horizon used in the 
simulations. If pdet had been found to depend on the 
time of failure, this could have been considered in the 
distribution P(tR|tF). For verification of the distribu-
tions, pdet was estimated by simulating from the dis-
tributions, and was compared to the values found us-
ing the risk-based O&M model. Agreement was 
found on the values: a) 99.79%, b) 99.82%, c) 99.86, 
d) 99.88%, which means that almost all defects are 
detected prior to failure. 

4.5 Results from simulation-based strategy model 

The NOWIcob model was run for each of the four 
strategies using the input presented in the previous 
sections for a lifetime of 20 years. Only inspection 
and maintenance tasks related to blade maintenance 
were included. The total expected lifetime O&M 
costs for the wind farm is shown in Figure 9 for each 
strategy together with results from the risk-based 
model, which have been split up into the same contri-
butions as for the NOWIcob model. 

Generally, good agreement is observed between 
the costs of inspections and CBM. The direct costs of 
corrective repairs, cost of jack-up vessel charter, and 
downtime show larger variations, but the overall 
ranking of strategies remains the same. Variations in 
jack-up charter costs and lost revenue were expected, 
as the NOWIcob model has a more detailed model of 
the execution of maintenance tasks, thus these costs 
are affected by the simulated duration of the tasks. 
However, direct costs of corrective maintenance only 
depend on the number of corrective tasks, not the du-
ration, and better agreement between models was ex-
pected, as it would mainly be influenced by the time 
to failure and overall probability of detection pdet, 
which was verified to be unchanged in the input dis-
tributions used in the NOWIcob model. However, 
some of these discrepancies could be explained by 
some CBM tasks ending up being executed as correc-
tive maintenance tasks according to the simulations in 
NOWIcob, if there was not enough time from detec-
tion to the potential failure to execute the CBM task.  

For the presented example, the pdet values are gen-
erally very high due to very proactive strategies used 
(due to very large failure costs compared to CBM 
costs). Thus, the resulting probability of failure, con-
sidering the maintenance strategy, is very low. There-
fore, rare events such as failures happening in the pe-
riod between the decision to repair and the execution 
of the repair, will cause noticeable changes to the 
overall costs of corrective maintenance. In such cases, 
it is therefore important to model the tail of the distri-

Figure 8. Conditional probability distribution for time of detec-
tion given time of failure for strategies b) and d) for time to fail-
ure tF equal to 5, 10, 15 and 20 years. 

Figure 9. Comparison of total expected lifetime O&M costs for 
the wind farm for the risk-based model and the NOWIcob sim-
ulation-based strategy model (sim) for each strategy. 

Figure 7. Conditional probability distributions for time of detec-
tion given time of failure for strategies a) and c) for time to fail-
ure tF equal to 5, 10, 15 and 20 years.

Figure 6. Probability density function for time to failure.
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bution for time of repair given time of detection accu-
rately. Also, the way events in discrete time steps are 
converted to continuous time can be important for 
correct estimation of the amount of CBM tasks being 
converted to corrective.  

Figure 10 shows the frequency of inspection and 
CBM tasks as function of time for the risk-based 
model and the NOWIcob simulation-based strategy 
model for strategy c). The models show similar re-
sults, however the frequency of inspections increases 
stepwise for the simulation model results, as the mean 
rate is used for each year. 

5 CONCLUSIONS 

This paper presented a novel method for integration 
of CBM of deteriorating components in simulation-
based O&M strategy models for offshore wind farms. 
Various types of risk-based CBM strategies could be 
implemented, and CBM and corrective maintenance 
tasks were distributed correctly over the lifetime. For 
simple strategies, Bayesian networks were used to 
generate input to a simulation-based strategy model, 
and this gave correct overall distribution of repairs 
and correct distribution over the year. For advanced 
strategies, simulations were used, and a distribution 
was fitted to the simulation results. This approxi-
mated the overall distribution well but did not capture 
variations within the year.  

The example confirmed that additional effects in-
fluencing the costs were seen in the simulation-based 
strategy model, where logistics was modelled more 
accurately compared to the risk-based model. Care 
should be taken to ensure that these effects are realis-
tic and not a result of approximations made in the 
strategy model and how its integration with the risk-
based model was implemented. For example, when 
fitting the distribution to the simulation results, the 
modelling of the tail has importance for the occur-
rence of failures while waiting for CBM to be com-
pleted. On the other hand, the correct mean value of 
the time of repair given time of failure is of im-
portance to get the correct total expected number of 
CBM tasks, and thus the correct estimation of the 
costs. The presented approach will allow a decision 
maker to combine detailed CBM modelling with de-

tailed logistics modelling, to get a more accurate esti-
mation of expected costs for a given strategy, and 
therefore a better basis for identifying the optimal 
strategy. 
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Figure 10. Comparison of distribution of inspections and CBM
tasks in time for the risk-based model and the NOWIcob simu-
lation-based strategy model (sim) for strategy c). 
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