
Article

Coordinating Knowledge Work
in Multiteam Programs: Findings From
a Large-Scale Agile Development Program

Torgeir Dingsøyr1,2, Nils Brede Moe1, and Eva Amdahl Seim1

Abstract
Software development projects have undergone remarkable changes with the arrival of agile development approaches. Although
intended for small, self-managing teams, these approaches are used today for large development programs. A major challenge of
such programs is coordinating many teams. This case study describes the coordination of knowledge work in a large-scale agile
development program with 12 teams. The findings highlight coordination modes based on feedback, the use of a number of
mechanisms, and how coordination practices change over time. The findings can improve the outcomes of large knowledge-based
development programs by tailoring coordination practices to needs over time.

Keywords
program management, interteam coordination, agile software development, agile approaches, software engineering, method
tailoring

Introduction

Software development has undergone remarkable changes

since the arrival of agile development approaches in the late

1990s (Dingsøyr, Nerur, Baijepally, & Moe, 2012). Agile

approaches emphasize customer involvement, technical

product quality, incorporating changing and emerging require-

ments, and the idea that software development is best done in

small, colocated, and self-managed teams (Hoda, Noble, &

Marshall, 2012). These approaches have led to far-reaching

changes in how software projects are planned and managed,

with an increased focus on software development as teamwork

(Melo, Cruzes, Kon, & Conradi, 2013; Moe, Dingsøyr, &

Dybå, 2010). There has also been an emphasis on arenas for

planning, synchronization, and review, and on practices to

make teams work efficiently together, such as establishing

shared code ownership and discussing and learning through

practices such as programming in pairs.

From being used for small colocated teams, agile approaches

are increasingly also being used in other settings, such as in

large programs with multiple teams (Xu, 2009). Large pro-

grams generally incorporate technical and organizational

complexity. This includes a large number of stakeholders, a

large number of program participants, a large number of

requirements, lines of software code, and often very complex

interdependencies among tasks as well as teams that depend

on other teams. Programs using agile approaches risk a lack of

interaction and difficulties in communication (Xu, 2009)

because most communication is done orally within the teams.

Such complexity generally has a negative effect on project

performance (Floricel, Michela, & Piperca, 2016). Large-

scale programs pose a greater risk and are often associated

with cost overruns, late completions, and project failures

(Flyvbjerg, 2014; Flyvbjerg & Budzier, 2011).

The success of large programs is dependent on the pro-

gram’s ability to manage this complexity. Coordination is crit-

ical because the work is carried out simultaneously by many

development teams (Fagan, 2004; Hoegl, Weinkauf, &

Gemuenden, 2004). Therefore, it is important to study how

coordination practices are used in large-scale agile develop-

ment. The literature on coordination has emphasized perma-

nent constellations such as organizations. There is less

emphasis on temporal constellations such as projects and pro-

grams (Dietrich, Kujala, & Artto, 2013).

This study describes agile practices in a large, multiteam

program, focusing on how the practices enable coordination

of knowledge work on the interteam, project, and program

levels. We describe development approaches that blend agile

1 SINTEF Research Foundation, Trondheim, Norway
2 Department of Computer Science, Norwegian University of Science and

Technology, Norway

Corresponding Author:

Torgeir Dingsøyr, SINTEF Research Foundation, Trondheim, Norway.

Email: torgeir.dingsoyr@sintef.no

Project Management Journal
Vol. 49(6) 64–77

ª 2018 Project Management Institute, Inc.

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/8756972818798980

journals.sagepub.com/home/pmx

https://sagepub.com/journals-permissions
https://doi.org/10.1177/8756972818798980
http://journals.sagepub.com/home/pmx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F8756972818798980&domain=pdf&date_stamp=2018-10-05

and traditional approaches and discuss how this combination

improves coordination. We address the following research

questions:

1. How are coordination practices used in large-scale agile

development programs?

2. How do coordination practices change over time?

The understanding of coordination in large programs is cur-

rently limited (Dietrich et al., 2013). Software development

programs have created new ways of working that could provide

relevant insight for other types of knowledge-intensive projects

(Conforto, Salum, Amaral, da Silva, & de Almeida, 2014; Ser-

rador & Pinto, 2015). In addition, agile development on a large

scale challenges assumptions in existing approaches (Rolland,

Fitzgerald, Dingsøyr, & Stol, 2016). Further, large programs

are often critical for our society, and today most advice on

conducting such programs is based on experience rather than

research. This study offers rich descriptions of the use of con-

crete practices. These practices add to what is described in the

existing advice on agile software development. Finally, how

coordination changes over time is relatively unstudied in the

literature (Jarzabkowski, Le, & Feldman, 2012). The size of the

program will change during execution, and learning among

participants and the state of the product could influence coor-

dination needs. Understanding changes in practices will enable

participants to adjust coordination practices to the needs of the

program. We position this research in line with thoughts on

rethinking project management, focusing on handling the com-

plexity of projects, and aiming to develop theory for practice

(Winter, Smith, Morris, & Cicmil, 2006).

Large-Scale Agile Development

Software development is a nonroutine activity because most

systems developed are unique and cannot be developed again.

Software development is often described as creative work

where a single optimal solution may not exist, and progress

toward completion can be difficult to estimate (Kraut & Stre-

eter, 1995; Shepperd, 2014).

One reason for this is that interdependencies among differ-

ent tasks may be uncertain or challenging to identify. This

makes it difficult to know who should be involved in work and

whether there is a correct order in which parties should com-

plete their own specialized work (Okhuysen & Bechky, 2009).

Changes in customer needs and in technology also pose chal-

lenges for software development projects and emphasize other

needs for project management than what is found as engineer-

ing practices in other domains (Bryant, 2000). Agile software

development allows for changing requirements throughout the

development cycle and stresses collaboration with customers

and early product delivery.

Agile development is an umbrella term for a range of

approaches (Dingsøyr, Dybå, & Moe, 2010) that share a set

of key ideas formulated in the Agile Manifesto (Manifesto for

Agile Software Development, 2001). We define agile

approaches as development approaches that “rapidly or inher-

ently create change, proactively or reactively embrace change,

and learn from change while contributing to perceived cus-

tomer value (economy, quality and simplicity)” (Conboy,

2009, p. 340).

The most widely used agile approach thus far is Scrum

(Rising & Janoff, 2000; Schwaber & Beedle, 2001). This

approach also provides the most advice on how to manage a

development project (Abrahamsson, Oza, & Siponen, 2010).

However, because a development team is self-managing,

the project manager role is removed. The only roles in the

team are developers and a team facilitator—that is, the scrum

master. The scrum master is responsible for solving problems

that prevent the Scrum team (typically five to nine people)

from working effectively. The scrum master works to remove

impediments from the process. This role ensures decision

making in daily meetings and validates decisions with man-

agement (Schwaber & Beedle, 2001). Software is developed

by the self-managing team in iterations called sprints, starting

with a planning meeting and ending with a review and demon-

stration of the product and a retrospective that focuses on

process improvement. During a sprint, the team coordinates

through daily meetings, often in front of a Scrum board. Fea-

tures to be implemented are registered in a product backlog as

user stories that should be understandable by the customer

organization. User stories are often grouped into broader

epics. The product owner provides priority on backlog items

in dialogue with the team. The tasks to be performed in the

next iteration are listed in the sprint backlog. Multiple stake-

holders can participate in generating product backlog items

such as customer, project team, marketing and sales, manage-

ment, and support (Abrahamsson, Salo, Ronkainen, & Warsta,

2002).

Recently, there has been increasing attention placed on how

agile approaches can be used in large development projects or

programs (Hobbs & Petit, 2017). We define very large-scale

agile development as “agile development efforts with more

than ten teams” (Dingsøyr, Fægri, & Itkonen, 2014, p. 275),

which have complex knowledge boundaries within the program

as the result of many technical and business domains and the

number of tasks and dependencies between tasks. Further, such

programs are characterized by a complex interplay with a

larger number of technologies involved and usually a large set

of stakeholders (Rolland et al., 2016).

Coordination

Coordination can be understood as “managing of dependencies

between activities” (Malone & Crowston, 1994, p. 90) and

coordination mechanisms—”the organizational arrangements

that allow individuals to realize a collective performance”

(Okhuysen & Bechky, 2009, p. 472). Interdependencies

include the sharing of resources, synchronization of activities,

and prerequisite activities.

Dingsøyr et al. 65

Basic mechanisms for coordination are discussed in man-

agement science (Mintzberg, 1989) and include direct super-

vision; mutual adjustment; and standardization of work,

outputs, skills, and norms. Direct supervision is when one per-

son is responsible for coordinating the work and gives direc-

tives to those who do the work. Mutual adjustment is when

workers adjust themselves to one another as their work pro-

ceeds. The other mechanisms are different kinds of preplanned

standardization: standardization of work, output, skills and

knowledge, and norms.

Knowledge-intensive work such as developing services

based on software brings a new sense of acuteness to the coor-

dination challenge because the speed of innovation invalidates

predetermined interdependencies (Ramesh, Pries-Heje, & Bas-

kerville, 2002). In such work, team members need mutual

awareness to coordinate themselves by adjusting their own

work to the work of others. Research has proposed different

conceptual approaches for such adjustments—for example,

transactive memory systems (Wegner, 1986), sensemaking

(Weick, 1995), shared cognition (Cannon-Bowers & Salas,

2001), Complex Adaptive Systems (Vidgen & Wang, 2009),

collective problem solving (Hutchins, 1991; Weick, Sutcliffe,

& Obstfeld, 1999), and the collective mind (Crowston & Kam-

merer, 1998). These studies and studies on expertise coordina-

tion (Faraj & Sproull, 2000) offer insight into how team

members can coordinate their actions in response to what other

team members or people outside the team are doing. In studies

of multiteam systems, intrateam coordination has been found to

influence interteam coordination (Firth, Hollenbeck, Miles,

Ilgen, & Barnes, 2015).

Agile approaches are designed to cope with change and

uncertainty for small teams. These approaches “de-emphasize

traditional coordination mechanisms such as forward planning,

extensive documentation, specific coordination roles, con-

tracts, and strict adherence to a pre-defined specified process”

(Strode, Huff, Hope, & Link, 2012, p. 1222) and mainly pro-

mote informal coordination (Xu, 2009). Agile development

approaches embrace change by moving decision authority to

the team level, making the team responsible for rough long-

term plans and detailed short-term plans. In their article entitled

“Why Scrum Works,” Pries-Heje and Pries-Heje (2011, p. 25)

state that Scrum “requires very little time trying to foresee and

negotiate the work flow and coordination mechanisms prior to

actually conducting the work.”

Pries-Heje and Pries-Heje (2011) emphasize four artifacts

that they believe are especially useful for coordination: the

product backlog, the sprint backlog, the Scrum board, and daily

meetings. Strode et al. (2012) provide a comprehensive review

of coordination studies in agile development and developed a

model of coordination in agile software development projects

(at the team level) that describes coordination strategies in

terms of synchronization (activities and artifacts), structure

(proximity of team members, availability of team members,

substitutability of team members), and boundary spanning

(interaction with other organizations outside of the project).

A particular mechanism to facilitate synchronization is the

length of iterations. Shorter iterations will increase coordina-

tion but at the cost of more frequent planning and review meet-

ings. Two-week iterations are common in small project teams.

There is a small body of studies on how teams coordinate in

very large-scale agile development, such as Xu’s (2009)

research. Vlietland and van Vliet (2015) propose that

embedded coordination practices within and between Scrum

teams positively impact delivery predictability in large proj-

ects. A study of Scrum of Scrums (a meeting to coordinate

development teams) suggests that this forum did not lead to

satisfactory coordination: Feature-specific or site-specific for-

ums were better, but coordination at the project level was still a

challenge (Paasivaara, Lassenius, & Heikkila, 2012). Paasi-

vaara and Lassenius (2014) describe a very large-scale devel-

opment initiative at Ericsson with 40 teams where four types of

communities of practice are used to coordinate teams. A survey

on coordination in large-scale software teams found that

respondents hoped for more effective and efficient communi-

cation as well as an emphasis on the importance of good per-

sonal relationships (Begel, Nagappan, Poile, & Layman, 2009).

The influence of coordination configurations on coordina-

tion effectiveness has also been the focus of researchers work-

ing closely with SAP (Bick, Spohrer, Hoda, Scheere, & Heinzl,

2018; Scheerer, Hildenbrand, & Kude, 2014; Scheerer & Kude,

2014) while inspired by work in organizational psychology on

multiteam systems (Mathieu, Marks, & Zaccaro, 2001;

Zaccaro, Marks, & DeChurch, 2012). Findings in this field

include that interteam (cross-team) processes are more impor-

tant than intrateam (within-team) processes for the perfor-

mance of multiteam systems (Marks, DeChurch, Mathiu,

Panzer, & Alonso, 2005). Multiteam systems are defined as

“two or more teams that interface directly and interdependently

in response to environmental contingencies toward the accom-

plishment of collective goals” (Mathieu et al., 2001, p. 289). A

project developing a software and hardware solution is

described as coordinating through extensive use of face-to-

face contact (Marks & Luvison, 2012).

Coordination Modes

Work is often given to teams in large projects and programs.

Several factors then define the need for coordination between the

teams. Van de Ven, Delbecq, and Koenig (1976) discussed three

main determinants of coordination mechanisms for organizations:

� Task uncertainty—the difficulty and variability of work

undertaken by an organizational unit. Higher degrees of

complexity, thinking time to solve problems, or time

required before an outcome is known all indicate higher

task uncertainty.

� Task interdependence—the extent to which people in an

organizational unit depend on others to perform their

work. A high degree of task-related collaboration means

high interdependence.

66 Project Management Journal 49(6)

� Size of work unit—the number of people in a work unit.

Increases in participants in a project or program mean an

increase in the size of the work unit.

A number of mechanisms can be applied to achieve coordina-

tion, and coordination is usually exercised through several

mechanisms (Dietrich et al., 2013). Van de Ven et al. (1976)

proposed three coordinating modes that were used by Dietrich

et al. (2013) in their study of multiteam projects. The first two

are based on feedback (or mutual adjustment; Mintzberg,

1989), and the last is based on codification (Table 1).

Group mode is the mechanism for mutual adjustment

(Mintzberg, 1989). It is vested in a group of role occupants

through scheduled or unscheduled meetings. Scheduled meet-

ings are usually used for planned communication; unscheduled

meetings are used for unplanned communication among more

than two participants. In agile development, group mode coor-

dination at the team level is ensured through sprint planning

meetings, daily Scrum meetings, sprint demonstration meet-

ings, and retrospectives (Strode et al., 2012; Xu, 2009).

Individual mode is where individual role occupants make

mutual task adjustments through either vertical or horizontal

channels of communication. In horizontal channels, the

“linkage function is assumed by an individual unit member

who communicates directly with other role actors on a one-

to-one basis in a non-hierarchical relationship” (Van de Ven

et al., 1976, p. 323). The mechanisms for vertical communica-

tion are usually line managers and unit supervisors. In large

programs, this includes program management, project and sub-

project managers, and team leaders. In agile development,

practices in extreme programming (Beck & Andres, 2004),

such as pair programming, colocation, shared code ownership

(Strode et al., 2012), and onsite customers (Xu, 2009), support

horizontal coordination.

Impersonal mode involves coordination mechanisms that

are programmed or codified. Once implemented, they require

minimal verbal communication between people. Examples

are pre-established plans, process documentation, intranet

pages, information technology tools, and roadmaps. A

“codified blueprint of action is impersonally specified” (Van

de Ven et al., 1976, p. 323). This is present in agile approaches

such as in coding standards (Xu, 2009), but we can also see

agile approaches themselves as a type of impersonal mode.

The Scrum approach codifies types of meetings and roles and

sets expectations for stakeholders.

As determinants change, prior studies have indicated corre-

sponding changes in coordination mode. Van de Ven et al.

(1976) found that increases in task uncertainty lead to a substitu-

tion of impersonal coordination with horizontal coordination

mechanisms and group meetings. Increased task uncertainty

causes a need for extensive and dynamic knowledge exchange

to solve problems and adjust for emerging changes (Van de Ven

et al., 1976). Dietrich et al. (2013) also pointed to prior studies,

which found that technological novelty relates to a higher rate of

group meetings instituted by management. Project managers can

achieve more control of work in such uncertain situations by

relying on group-driven interaction in scheduled meetings.

Increased interdependence among people in units in general

leads to an increased use of personal modes of coordination

(Dietrich et al., 2013), especially in the individual mode (Van de

Ven et al., 1976). Increased unit size, however, is associated with

greater use of impersonal coordination and hierarchy (but no

decrease in group mode coordination; Dietrich et al., 2013).

In their study of multiteam projects, Dietrich et al. (2013)

describe an information systems project in addition to five

cases from other domains. The project had three concurrent

teams as well as a project manager, steering group, a quality

control group, a coordination group, and a one-person project

office. All teams had a dedicated team leader. There is no

information about the development process in the case descrip-

tion. This project was characterized by a high degree of use of

personal coordination modes—especially with a high use of the

individual coordination modes. The study also reports the use

of some mechanisms in the impersonal mode.

In addition, large projects and programs are temporal con-

structions requiring a great need to learn because everyone is

new to the program. In these programs, developers typically

need to learn about the business domain. There are also con-

stant developments in technology and work approaches that

require learning. Changes in coordination practices are a sig-

nificant influence on information sharing, work flow fluency

between teams, and the efficiency of projects (Dietrich et al.,

2013). Thus, it is interesting to investigate changes over time.

Change Over Time: From Coordination to
Coordinating

Early research on coordination mechanisms adopted a static

view on coordination. This focus was later criticized

Table 1. Coordination Modes, Definitions, and Main Coordination
Mechanisms

Coordination
Mode

Definition
(Dietrich et al., 2013)

Coordination
Mechanism (van de
Ven et al., 1976)

Group mode of
personal
coordination

Use of mechanisms in which
mutual adjustments occur
in a group of occupants
(more than two) through
meetings

Scheduled
meetings

Unscheduled
meetings

Individual mode
of personal
coordination

Use of mechanisms in which
individual role occupants
make mutual task
adjustments through
vertical or horizontal
communication

Horizontal
channels

Vertical channels

Impersonal mode
of coordination

Use of a codified blueprint of
action that is impersonally
specified

Blueprints of action

Dingsøyr et al. 67

(Crowston, 1997; Harrison, Mohammed, McGrath, Florey, &

Vanderstoep, 2003; Jarzabkowski et al., 2012; Okhuysen &

Bechky, 2009). To capture the dynamic nature of coordination,

Marks, Mathieu, and Zaccaro (2001) outlined a framework of

team processes focusing on team performance as a connected

input-process-outcome occurring over time. As the interdepen-

dencies among different pieces of work become more uncer-

tain, complex, or challenging to identify, more of the

coordination becomes situated. Thus, common awareness is

essential for effective coordination (Okhuysen & Becky,

2009). Effective temporal planning by groups creates temporal

awareness norms that are necessary to adapt, change, and avoid

problems to perform at high levels and reduce coordination

difficulties (Janicik & Bartel, 2003). The nature of develop-

ment teams will change over time: Teams that work over time

have higher levels of speed and quality than one-shot teams

(Harrison et al., 2003).

Temporal organizations such as projects and programs are

likely to change coordination practices over time. The degree

of coordination will depend on the nature of the project. Not

surprisingly, studies of open source development projects indi-

cate that emergent projects have more coordination than stable,

mature projects (Chua & Yeow, 2010). An aspect that differ-

entiates projects from permanent organizations is that projects

have deadlines and milestones, and are thus affected by time

pressure. Time pressure has been shown to weaken projects’

ability to synchronize pace, ensure timely coordination, and

utilize knowledge (van Berkel, Ferguson, & Groenewegen,

2016). Further, the three factors influencing coordination

mode—task uncertainty, task interdependence, and size of

work unit—are likely to change during the execution of a proj-

ect. Task uncertainty is likely to change as project members

develop understanding of the domain and the technical choices

made. A study of evolution of coordination in outsourced soft-

ware projects found that uncertainty changed because of the

involvement of new individuals (Sabherwal, 2003). The degree

of task interdependence can change as a result of technical

choices made during a project. A large project will typically

start with a small team, extend to a peak with several teams,

and have a tail with fewer people involved.

The changing needs in different phases of a project are

illustrated by a study on multiteam projects that examined

differences in coordination in the concept and development

phases. The study found that managing team interfaces is

particularly important during the concept stage (Hoegl &

Weinkauf, 2005). Further, a focus on structuring and support-

ing the project is most important during the development

phase, though this activity can hinder team performance in

the concept stage.

Coordination mechanisms adjust to adapt to uncertainty,

novelty, and change over time (Jarzabkowski et al., 2012). This

study explains coordination mechanisms as “dynamic social

practices that are under continuous construction” and further

describes how coordination mechanisms change over time.

In uncertain situations with major changes, hierarchies and

rule-based systems have been found to be less useful than

informal and interpersonal communications.

Method and Case

This study builds on a revelatory case study that investigates

how agile approaches can be adapted on a very large scale

(Dingsøyr, Moe, Fægri, & Seim, 2017), which also includes a

focus on coordination practices.

The case was chosen because practitioners described it as

a successful, very large program that extensively used agile

development approaches. The entire program was colocated

and coordination mechanisms could be studied in a setting

that is well suited for agile approaches. The Perform pro-

gram developed a new office automation system for the

Norwegian Public Service Pension Fund. The program was

managed by the department and involved consulting com-

panies Accenture and Sopra Steria as subcontractors in the

project development. The program ran from 2008 to 2012.

At its highest point, 12 teams were working in parallel on

development (175 total people).

Data Collection and Analysis

Data were collected through two sources: First, 12 retrospec-

tive group interviews were conducted with the public depart-

ment and the two main consulting companies on interteam

coordination and knowledge sharing as well as architecture

and customer involvement. There were 24 program partici-

pants and each interview lasted 2 hours, producing 247 pages

of transcribed material in total. The participants had roles that

included project management, subproject management, tech-

nical architecture, functional architecture, testing, scrum mas-

ters, and development. All participants were senior-level

employees with at least four years of experience in software

development. The interview guide for interteam coordination

is provided in the Appendix at the end of this article. Second,

we got access to three documents: an official report after

program completion, an internal experience report, and the

quality assurance report from the program. These reports con-

tain 277 pages of text.

We analyzed the material with a software package for qua-

litative analysis (QSR International, 2017) and used the frame-

work established in the background section to identify

expressions relating to coordination modes and changes in

coordination mechanisms over time. For example, the state-

ment “On an overall level, the teams worked quite similarly

after exchanging experience. So the Scrum boards were used

quite similarly across the teams. There were differences in

colors, but the function was quite similar” was coded as Scrum

boards, which was later grouped with other concepts as

unscheduled meetings under group mode in the framework

created by Van de Ven et al. (1976). See Dingsøyr et al.

(2017) for further details on data collection and analysis.

68 Project Management Journal 49(6)

Case: The Perform Program

Perform is one of the largest IT programs in Norway, with a

final budget of about EUR 140 million. The program started in

January 2008 and lasted until March 2012. Of the 175 people

involved, 100 were external consultants from five companies.

The program used both time and material and target price

contracts for subcontractors. About 800,000 person-hours were

used to develop around 300 epics with a total of about 2,500

user stories. These epics were divided into 12 releases.

The program was managed by a program director who

mainly focused on external relations; a program manager

focusing on the operations; as well as a controller and four

project managers responsible for the architecture, test, busi-

ness, and development projects, respectively:

� Architecture—responsible for defining the overall archi-

tecture in the program and for detailing user stories in

the solution description phase.

� Test—responsible for testing procedures and approving

deliverables from the development teams.

� Business—responsible for analysis of needs through

defining and prioritizing epics and user stories in a prod-

uct backlog.

� Development —divided into three subprojects: one led by

the Norwegian Public Service Pension Fund (six teams) with

their own people and people from five consulting compa-

nies, and two other subprojects led by external consulting

companies Accenture and Sopra Steria (three teams).

There were also projects for communication and adoption to

prepare users for the new systems, totaling six projects.

The program used a matrix structure where the business and

development projects took part in the architecture and test

projects. This matrix structure meant that a feature team would

mainly participate in project development while also devoting

resources to project architecture (through a technical architect),

business (through a functional architect), and test (through a

test responsible).

Initially, the development process included four phases

per release:

� Analysis of needs—walkthrough of the target function-

ality of a release and identification of high-level user

stories.

� Solution description—user stories were assigned to

epics and were described in more detail, including

design and architectural choices.

� Construction—development and delivery of function-

ally tested solutions from the product backlog. Five to

seven three-week iterations per release. The teams used

Scrum with sprint planning, daily meetings, sprint

demonstration, and sprint retrospectives.

� Approval—a formal functional and nonfunctional test to

verify that the entire release worked according to

expectations.

To ensure development work on high-priority user stories,

there was pressure to have solution descriptions ready for the

feature teams. This meant that releases were constantly being

planned, constructed, and tested. Thus, given the roles in a team

(developers, technical architect, functional architect, test

responsible, and scrum master), a feature team would con-

stantly be engaged in construction for the current release while

approving delivered functionality in the previous release and

analyzing the needs for the next release. After approval of the

program, new releases were acceptance tested, set in produc-

tion, and underwent an approval phase before being accepted

by the operational IT section of the department.

Results

This section provides an overview of the main coordination

modes used in the program, the group mode of personal coor-

dination, the individual mode of personal coordination, and the

impersonal mode of coordination. Coordination mechanisms

found in these modes are shown in Table 2. In addition, we

describe how the coordination mechanisms changed over time.

Group Mode of Personal Coordination

The program was characterized by a number of scheduled

meetings as well as arenas for unscheduled meetings for coor-

dination in groups. We first describe scheduled meetings at the

program and project levels.

At the program level, the only arena where everyone would

meet was at demonstration meetings. These were held every

three weeks. In addition, the program management met two

times a week in the Metascrum. This meeting included man-

agers from the main projects and the central program manage-

ment, giving attention to high-level obstacles to progress and

assessment of risks in the program. Well into the program, a

new arena was introduced—the open space technology. Open

space was a way to get the entire program to establish a number

of meetings across the project organization to discuss chal-

lenges and improvement initiatives. The decision to use a chat-

ting tool was a result of these meetings. In addition, there were

separate meetings to identify dependencies in tasks before

work was assigned to teams.

At the project level, there were three main types of

scheduled meetings: meetings prescribed by the agile

approach Scrum, meetings in the main projects in the pro-

gram, and fora at the project level to share experience

across the development teams.

The Scrum of Scrums was held in the three development

subprojects with scrum masters and subproject managers from

three to six development teams. Project managers sometimes

participated in these meetings. One subproject had daily Scrum

of Scrum meetings in the beginning, but reduced the frequency

to three times per week. A topic discussed here were resources:

“Now we have two people who are ill in the team, and we have

given away a person to the environment team, how shall we

Dingsøyr et al. 69

manage to deliver our stories in the iteration?” (subproject

manager). In addition, retrospectives were sometimes held

across teams in the subprojects, but overall this was an activity

within each team.

The main project’s architecture, business, and test had

meetings with their own staff and people with related roles in

the development teams. In the business project, much of the work

concentrated on managing dependencies: “There were depen-

dencies throughout the program” (technical architect). One of

the participants in meetings in the business project said, “When

we talked to the product owner, the product owner said, ‘We need

you to do this,’ but then we had to explain that to achieve that, we

first need to do these tasks” (functional architect). The meetings

in the project architecture focused on establishing architectural

guidelines, but also focused on coordinating work among the

development teams to reduce the number of teams working on

the same part of the codebase: “This was to reduce the possibility

of making trouble for each other—which we did.” The codebase

was organized to reduce these challenges. In the meetings, the

teams declared: “This is our central area of work during this

period, so please limit work in that area” (technical architect).

Experience sharing across teams was the focus of several

scheduled meetings at the subproject level, for example: expe-

rience forum, lunch seminars, and technical corner. One topic

discussed at the experience forum was how to liven up the

retrospectives. This was then a topic discussed among all par-

ticipants in the development teams in one project. Participation

in these meetings was voluntary.

Unscheduled meetings were easy to organize because of the

open workspace. Unplanned meetings frequently occurred

around the boards that were available for each team. These

were used to “discuss solutions as well as draw and make

sketches” (subproject manager). These discussions spanned

development teams and roles. The project management was

placed on tables so that people in management roles could see

most of the boards and thus quickly get an overview of the

status of the teams. If the project managers noticed discussions,

then they could inquire about the issue and say: “I know this

problem was addressed by another team two iterations ago; let

us get Ola over here and see if he can help” (subproject man-

ager). A scrum master and developer stated that they learned

“very much” in the program during these discussions around

Table 2. Coordination Mechanisms After Coordination Mode

Coordination Mode Coordination Mechanism Description

Group mode of personal
coordination

Architecture project meeting
Board discussions
Business project meeting
Demo

Experience forum

Lunch seminars

Metascrum
Open space technology
Open work area
Retrospectives

Scrum of Scrums

Technical corner

Test project meeting

Meeting with lead architect and technical architects from teams
Around a physical board showing team tasks
Meeting with product owners and functional architects from teams
Meeting where developers show solution to customer and

stakeholders
Meeting in one subproject to share experience between teams on

technical topics
Meeting in one subproject to share experience between teams on self-

selected topics
Formal meeting on project level on project progress
Informal meetings on topics raised by participants across all teams
Teams located around tables on one floor
Meeting at the end of an iteration to discuss changes in development

process
Meeting between representatives from teams in subprojects on

progress
Meeting on one subproject to share experience between teams on

technical topics
Meeting with lead tester and test responsible from teams

Individual mode of personal
coordination

Rotation of team members
Customer on-site

Direct communication in open
work area

Rotation of members between teams within subprojects
Customer representatives available in open office space for

consultation
Easy access to people in other teams in the open work area

Impersonal mode of coordination Instant messaging

Masterplan
Architectural guidelines

Team routines
Cross-team routines
Solution descriptions in wiki

Tool that facilitated asynchronous communication among all project
participants

Plan for the main functions to be included in the solution (epics)
Description of main technical design decisions and standards for

development
Descriptions in a wiki on expectations for teams
Descriptions in a wiki on expectations for work across teams
Description of what was to be implemented, including detailed user

stories

70 Project Management Journal 49(6)

the boards, but it was important to have sufficient coordination

arenas so that people realize that “we need to talk.” The pro-

gram also started to use a group chatting tool (Jabber) to ease

informal coordination. This is a type of unscheduled virtual

meeting. This tool was introduced during the program, and it

enabled team members to ask several people for help without

interrupting them. This channel was used for a number of pur-

poses—from asking technical questions to informing people

about the next wine lottery.

Informants emphasized the importance of the unscheduled

meetings. One said: “I think the combination of scheduled and

unscheduled coordination that just appeared was very

important” (scrum master and developer).

Individual Mode of Personal Coordination

The program was characterized by direct informal coordination

among members of different teams using both horizontal and

vertical channels.

The development program used a number of different arenas

to coordinate work and share knowledge between teams. Dur-

ing the build-up phase, new team members were often enrolled.

This was facilitated by the occasional splitting of existing

teams and even the distribution of new team members. Changes

in team members helped alleviate problems in personal chem-

istry. The frequency of both types of changes to teams was

considerably lower in later phases. Team changes were an

important and consciously used mechanism for distributing

knowledge and facilitating coordination, both horizontal and

vertical. Over time, resistance to the team changes markedly

increased with strengthening team feeling: “There was a lim-

ited number of people who were candidates for such change

due to competence, so I had to do some pep talks and get people

to think positively” (subproject manager). In order to enable

self-managed teams, the development program sought to limit

the authority of scrum masters compared to normal practice. A

key motivation was to inspire the team members to take respon-

sibility and coordinate internally and between teams. Scrum

masters were, however, key to effective changes in team com-

position. They helped gather information by talking to all the

team members to share the status of the work.

In terms of horizontal coordination, many people have

emphasized the importance of informal coordination facili-

tated by the open work area. Team members asked for advice

across the team and organizations: “We are here to succeed

and no one can succeed alone” (subproject manager). Team

members experienced personal coordination as crucial to sol-

ving interdependencies between tasks and keeping the sched-

ule. This can be described as a direct contact between

experts. As the program progressed, pragmatism in the allo-

cation of tasks between suppliers became extensive. Eventu-

ally, one could just ask: “Can you help me with this?” and

receive an “Okay. We’ll help you with this now if you help

us with something else in the future” (subproject manager).

The management also sought to rotate the team members in

such a way that some of the team members from the devel-

opment team would also participate in the solution descrip-

tion. In addition, extensive personal coordination was

possible because all contractors were working toward the

same goals. Social arenas such as lunches, coffee breaks, and

other events were described as important coordination

mechanisms during the project.

One of the mechanisms for vertical coordination was man-

agement by walking around. It was used to get status from the

team, help the teams, and spread important information such as

solutions to common problems. A culture developed where

decisions were discussed informally among relevant stake-

holders; these decisions were subsequently formalized.

Impersonal Mode of Coordination

The main impersonal coordination mechanisms were the pro-

gram plan, guidelines, and checklists.

The program plan included all work to be done and was

described as epics. All epics and tasks were initially documen-

ted in an electronic spreadsheet. However, this spreadsheet was

replaced because of two problems related to coordination:

First, it was difficult to get a good overview of the entire plan

by using spreadsheet technology because of the size of the

program. Second, it was difficult to locate the latest version

of the spreadsheet because multiple versions were created and

distributed using various channels.

About a year into the program, an issue tracker (Jira) replaced

the spreadsheet. This new tool for coordination was introduced

together with a major revision of the plan. The new plan

included 300 epics and 22 work packages. The 300 epics were

later decomposed to 2,500 user stories with subtasks. Every team

could follow the program progress in the tool. Although the issue

tracker was mandatory, used by all teams, and regularly updated,

all teams duplicated their tasks on stickers on a board close to the

table where they were located. Each team had its own board with

an overview of tasks that the team had committed to solve during

the next iteration. A task was written on a sticker and moved

when the status of the task changed.

Though the issue tracker was essential for coordination of

tasks on the program and project level, the physical board

remained important for coordination on the team level. In addi-

tion, management could easily see the status of the work going

on in a team just by looking at the board. As a subproject

manager said, “It takes two seconds to get an overview of status

[in a team], and from my location [in the open work area], I

could see almost all the boards, and then I would know what

had happened at the end of yesterday [in each team].” Another

explained: “This was an important ceremony to move one

sticker one the board. Changing the status in the issue tracker

does not bring an applause” (subproject manager).

The issue tracker was used together with a tool for facilitat-

ing code reviews to coordinate work. When the review work

was registered in the tool, there was a minimal need for verbal

communication among the users.

Dingsøyr et al. 71

All process description documents, guidelines, and check-

lists were available in a wiki (a website that provides colla-

borative modification of content and structure directly from the

web browser). The wiki was available for everyone and man-

datory to use. Examples of routines were team routines and

routines describing cross-team collaboration such as the daily

meeting and Scrum of Scrum meetings. Examples of guidelines

for designers and programmers in the wiki were guidelines for

graphical user interface design, how to use the programming

language Java, and how to perform specific programming

tasks. The guidelines included tips and experiences written

by other people in the program. The content was regularly

updated. An outcome from a sprint retrospective could initiate

a change in a guideline.

Although most guidelines and checklists were defined

before they were used, many were created on request. One

example was a team that saw a need for new architectural

guidelines during an iteration. This led the architects to come

together to establish a new guideline so that the next team could

use it. As one architect said: “It is better to define guidelines

when someone needs them instead of us trying to identify all

needed guidelines up front.”

The use of guidelines and plans was evaluated in the

post-project review. Some were defined too late and caused

problems with, for example, error handling. Not everyone

followed the guidelines because they perceived that it made

them inflexible. Another explanation for lack of use was

related to the number of guidelines, rules, and processes.

The size of the program made it hard to get a full over-

view—especially for newcomers.

Coordination Over Time

At the team level, the main mechanisms for coordination

remained constant during the program; however, on an

interteam level, a number of changes happened over time

(see Table 3).

For group mode coordination, several meetings and fora

were established early in the program, as shown in Table

2. An architect said: “There were arenas that emerged, and

arenas that disappeared”; “we saw there were information

needs we had not covered.” These fora and meetings built

knowledge regarding who knows what. When people started

to get an overview of whom to talk to, informants stated

that they did not need the meetings anymore. One said: “We

stopped doing some meetings because we could replace

them with shorter meetings or because we got to know each

other, then we could just talk to each other” (technical

architect). So, instead of coordinating in scheduled meet-

ings, people started approaching others directly, discussed

issues by the coffee machine or by the boards, or arranged

unscheduled meetings. One informant described the later

part of the program as having “daily continuous commu-

nication” (subproject manager).

For impersonal mode coordination, the main transition was

the change in tools. The product backlog—the project plan—

was moved from a spreadsheet to an issue tracker. The spread-

sheet separated functional and technical tasks and also did not

contain the whole plan but referred to other documents, such as

presentation slides. The plan was now integrated and described

as epics and user stories. A functional architect said, “[The

issue tracker] was a very useful tool to break down tasks.”

From 2009, all written internal status reporting was removed;

this was shown in the issue tracker.

Informants report that this change led to improvements in

using the plan to coordinate, as there were no longer several

versions circulating and project management and team mem-

bers now had easy access to information they could trust. The

new plan also contained more details. A test responsible stated:

“There was a functionally responsible person listed in one of

the fields in the [issue tracker] and then you knew very well

who to invite to a demonstration.” In addition to containing the

plan, the issue tracker was used for external progress reporting,

keeping track of bugs in the product, and listing risk mitigation

efforts by the program management.

Discussion

We structure the discussion of our findings after our two

research questions. First, we ask how coordination practices

are used in large-scale agile development programs.

The results show that all three modes of coordination were

used in the Perform program. The program was characterized

by high uncertainty regarding the tasks, a high degree of task

interdependencies, and a large unit size. Prior studies suggest

that this situation would call for more coordination. Indeed, we

identified a number of coordination mechanisms in use across

all three modes of coordination. Our study did not measure the

extent of use—we could only state that certain mechanisms

were used in the program.

An increase in task uncertainty was found to lead to a sub-

stitution of impersonal coordination with horizontal coordina-

tion mechanisms and group meetings (Van de Ven et al., 1976).

Intrateam horizontal coordination has been identified as a char-

acteristic in agile projects (Xu, 2009), and a study on multiteam

systems describes extensive face-to-face coordination (Marks

& Luvison, 2012). In Perform, we found a high presence of

horizontal coordination across teams, as well as a number of

scheduled meetings. High interdependence among people leads

Table 3. Characteristics of Coordination Mechanisms Over Time

Coordination Mode Early in Program Late in Program

Group mode of
personal coordination

Many scheduled
meetings

Many unscheduled
meetings

Individual mode of
personal coordination

More horizontal
coordination

Impersonal mode of
coordination

Plan in spreadsheet Plan in issue tracker

72 Project Management Journal 49(6)

to an increase in personal modes of coordination. We identified

many mechanisms that were widely used within these modes.

In addition, unit size is associated with greater use of the

impersonal mode and hierarchy. We found many impersonal

mechanisms in use, but most informants focused on the group

mode when describing coordination practices. However, the

organization of the program, with separate projects for archi-

tecture, business, and test, emphasized the establishment of

guidelines and rules across the program. Plans were made visi-

ble at both the team and program levels by showing the status

of tasks on boards for the teams and in the issue tracker for

aggregation and overall status.

In contrast to Dietrich et al. (2013), most of the mechan-

isms identified in our study relate to the group mode; Dietrich

et al. found that most mechanisms relate to the individual

mode of personal coordination. This could be because of the

focus on practices for coordination in our data collection—we

did not use a targeted data collection scheme for all three

coordination modes.

Comparing our findings to prior work on coordination in

agile development, we see that all four artifacts emphasized

for coordination by Pries-Heje and Pries-Heje (2011) were used

in Perform: the product backlog, the sprint backlog, the Scrum

board, and daily meetings. Following the model of Strode et al.

(2012), we see that synchronization was ensured via a number

of practices, such as setting the iteration length to three weeks

and following the Scrum approach on the team level. The open

work area and full-time engagement of program members con-

tributed to the structure. The matrix organization provided

program-internal boundary spanners. If we compare the work

in our program to work in a single agile team, we find a number

of additional traditional practices focusing both on forward

planning through the business and architecture projects as well

as on documentation that represented the test project and cri-

teria for accepting a developed user story. We also found a

number of additional roles on different levels, such as the func-

tional and technical architects at the team level as well as

project managers and other administrative roles at the project

and subproject levels.

Second, we ask how coordination practices change

over time.

Changes over time are particularly interesting in temporal

organizations such as programs, which will experience changes

in task uncertainty, task interdependencies, and the size of

work units over time, and will also be under the influence of

time pressure (van Berkel et al., 2016), which can limit coor-

dination and knowledge exchange.

An interesting finding in our material is the gradual transi-

tion to unscheduled meetings in the group mode. Informants

saw the scheduled meetings as a prerequisite for this transition.

It is likely that many meetings scheduled early in the program

established relations and knowledge of other people’s skills.

This echoes prior findings (Hoegl & Weinkauf, 2005) that

managing teams’ interfaces is particularly important in the

initial stage of a multiteam program.

Furthermore, the matrix organization of the program—with

team members taking part in all four major projects—involved

a number of scheduled meetings with subsequent development

of relationships and knowledge. The combination of arenas

prescribed in agile development such as the Scrum of Scrums,

demonstrations, and retrospectives gave room for bottom-up

coordination. The scheduled meetings in the project architec-

ture, business, and test areas gave management control.

In line with Jarzabkowski et al. (2012), our findings suggest

that coordination mechanisms are not static, but dynamic struc-

tures that change over time. Though our explorative material

does not allow us to show detailed traces of changes over time,

our material shows a number of scheduled meetings that

existed for a while and then disappeared, such as the experience

forum and the technical corner. Informants state that informal

communication in the open work area increased over time as

people got to know one another. In addition, new mechanisms,

such as open space technology and instant messaging,

appeared. There were changes in rules and plans, from making

use of traditional spreadsheets and documents in the initial

phase of the program to establishing a new Masterplan in an

issue tracker with details and rules of work procedures

described in a wiki. We speculate that there were two main

drivers of changes over time: First, the domain of the program

was unknown to most external consultants working on devel-

opment. This required much learning about the domain itself

and about whom in the customer organization could answer

questions. Second, the program was split into teams as it scaled.

This was done to meet the strict deadline of the program and

led to a renewed focus on learning later in the program.

There were changes over time regarding the use of agile

approaches. The frequency of Scrum of Scrum meetings chan-

ged during the program. In one subproject, this changed from

daily to three times a week. Also, the retrospectives were

mainly conducted at the team level, but sometimes were also

held at the subproject level. Informants stated that because

most decisions were discussed informally toward the end of

the program, these decisions were recorded in daily meetings,

the Scrum of Scrums, or in the Metascrum.

This revelatory case study has several limitations: First, we

have not been able to follow the program over time, but col-

lected data after the program was finished. Second, as an

exploratory study in a new area, the data collection was broad.

We asked about coordination practices but did not ask expli-

citly about the impersonal mode of coordination. Thus, our

material on coordination mechanisms might not provide a

complete overview of the mechanisms used in the program.

We have also mainly focused on interteam coordination; this

is influenced by coordination at the intrateam level (Firth

et al., 2015).

Conclusion

We described how coordination mechanisms are used in a

large-scale agile development program and how these

Dingsøyr et al. 73

mechanisms change over time. Our case program was charac-

terized by high task uncertainty, a high degree of interdepen-

dence for tasks, and a large number of people.

Our research developed three main insights that we think are

relevant to the project management community when adopting

practices from agile development.

First, there was an increase in task uncertainty that led to

a substitution of impersonal coordination with horizontal

coordination mechanisms and group meetings. We estab-

lished a high presence of personal communication, both in

the group mode and in the individual mode. Informants

emphasized the importance of the open work landscape for

horizontal personal coordination. This made vertical per-

sonal coordination easier as project managers could be

quickly informed of the teams’ status when having one-to-

one discussions. Also, establishing a mixture of agile and

traditional scheduled meetings was important for building

knowledge and relations early in the program. There were

many scheduled meetings at first, but over time there was a

gradual transition to unscheduled meetings. Meetings

related to the agile approach Scrum were kept throughout

the program, and the iteration length remained three weeks.

The frequency of scheduled meetings is very important

when balancing the risk of developing unwanted function-

ality and costs of ceremony in the form of time spent on

planning and review. Our study supports the finding that

personal coordination is central to achieving interteam coor-

dination in large programs.

Second, there were many coordination mechanisms in use

spanning all three modes of coordination. Table 2 lists the 22

mechanisms identified in the program. In contrast, traditional

large-scale agile development only explicitly focuses on the

Scrum of Scrums as a mechanism for interteam coordination.

One mechanism was also duplicated: The plan existed on the

program level in an issue tracker, while each team kept a ver-

sion of the plan on its board. This duplication helped serve the

needs for the plans at different levels. This suggests that one

coordination mechanism is not sufficient; efficient coordina-

tion can depend on a variety of mechanisms.

Third, there were frequent changes in how coordination took

place. Scheduled meetings were extensively used in the intro-

ductory phase of the program, but were later replaced by

unscheduled meetings. New mechanisms were used as needs

changed during the program execution. Coordination practices

change over time.

Future work should develop further understanding

regarding coordination modes and mechanisms in large

development programs. One particularly interesting topic

would be to investigate how coordination mechanisms are

tailored to the specific context of a program as well as to

further understand how coordination needs change over time

(Jarzabkowski et al., 2012). Also, the relationship between

intrateam and interteam coordination (Firth et al., 2015)

should be further explored to provide research-based advice

on coordination for multiteam programs.

This study highlights the number of mechanisms in use in a

successful program and offers rich descriptions of such

mechanisms. This provides a number of suggestions in addition

to what is described in the agile development literature. Sec-

ond, we emphasize the role that an open working space had in

this case. It was an efficient enabler of coordination. Finally,

we would like to underline the change in coordination needs

over time, which emphasizes the importance of practices to

reflect on and change the development approach as a program

progresses, such as the common practice in agile development

of conducting retrospectives.

Appendix: Interview Guide

� How was the work organized in your part of the program?

� What kinds of dependencies were there between the teams in

your part of the project? (Examples?)

� How were dependencies managed? (Examples?)

� What was managed in established fora and what was

managed outside of the fora? (Examples?)

� Who were involved in managing dependencies between

teams? (Examples?)

� Did you encounter challenges with managing dependencies?

(Examples?)

� Did you change the way you managed dependencies during

the project? (Examples?)

� What practices do you think were most important in order to

manage dependencies between teams? (Examples?)

� Are there any practices you think had little importance for

managing dependencies?

� How did the division of the project into three main parts

influence the coordination among teams?

� Were there differences in interteam coordination across the

subprojects?

� What was the frequency of meetings? How many people

were involved? How long did the meetings last?

Acknowledgments

We are very grateful to all participants in the group interviews, and in

particular, contact persons Mette Gjertsen at the Norwegian Public

Service Pension Fund, Tor-Erik Mathiesen at Accenture, and Kjetil

Røe at Sopra Steria. Further, we would like to thank our colleague

Tore Dybå for taking part in data collection and analysis of interteam

coordination, Tor-Erlend Fægri and Svein Hallsteinsen for data col-

lection on architecture, and all three for discussions of the case.

Thanks to master’s student Anniken Østdahl at the Norwegian Uni-

versity of Science and Technology for conducting an independent

analysis on parts of the material used in this article. We also thank

members of the research factory at the Department of Computer Sci-

ence at the Norwegian University of Science and Technology for

feedback on an early version of this article. In addition, we are very

grateful to the anonymous reviewers and the special section editor

who especially provided important pointers to related literature.

74 Project Management Journal 49(6)

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author(s) received financial support for the research, authorship,

and/or publication of this article: This work was supported by strategic

internal projects at SINTEF on large-scale agile development and the

project Agile 2.0 supported by the Research Council of Norway

through grant 236759 and by the companies DNV GL, Equinor, Kan-

tega, Kongsberg Defence & Aerospace, Sopra Steria and Sticos.

References

Abrahamsson, P., Oza, N., & Siponen, M. T. (2010). Agile software

development methods: A comparative review. In T. Dingsøyr, T.

Dybå, & N. B. Moe (Eds.), Agile software development: Current

research and future directions (pp. 31–59). Berlin/Heidelberg,

Germany: Springer Verlag.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile

software development methods—Review and analysis (VTT Elec-

tronics ed., Vol. 478). Oulu, Finland: VTT Publications.

Beck, K., & Andres, C. (2004). Extreme programming explained:

Embrace change (2nd ed.). Boston, MA: Addison-Wesley.

Begel, A., Nagappan, N., Poile, C., & Layman, L. (2009). Coordina-

tion in large-scale software teams. Paper presented at the Proceed-

ings of the 2009 ICSE Workshop on Cooperative and Human

Aspects on Software Engineering, Vancouver, Canada.

Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl, A. (2018).

Coordination challenges in large-scale software development: A

case study of planning misalignment in hybrid settings. IEEE

Transactions on Software Engineering, 44(10), 932–950.

Bryant, A. (2000, June 4–11). It’s engineering Jim . . . but not as we

know it: Software engineering—solution to the software crisis, or

part of the problem? (pp. 78–87). Proceedings of the 22nd Inter-

national Conference on Software Engineering, Limerick, Ireland.

Cannon-Bowers, J. A., & Salas, E. (2001). Reflections on shared

cognition. Journal of Organizational Behavior, 22(2), 195–202.

doi:http://dx.doi.org/10.1002/job.82

Chua, C. E. H., & Yeow, A. Y. K. (2010). Artifacts, actors, and

interactions in the cross-project coordination practices of open-

source communities. Journal of the Association for Information

Systems, 11(12), 838.

Conboy, K. (2009). Agility from first principles: Reconstructing the

concept of agility in information systems development. Informa-

tion Systems Research, 20(3), 329–354.

Conforto, E. C., Salum, F., Amaral, D. C., da Silva, S. L., & de

Almeida, L. F. M. (2014). Can agile project management be

adopted by industries other than software development? Project

Management Journal, 45(3), 21–34.

Crowston, K. (1997). A coordination theory approach to organiza-

tional process design. Organization Science, 8(2), 157–175.

Crowston, K., & Kammerer, E. E. (1998). Coordination and collective

mind in software requirements development. IBM Systems Jour-

nal, 37(2), 227–245.

Dietrich, P., Kujala, J., & Artto, K. (2013). Inter-team coordination

patterns and outcomes in multi-team projects. Project Manage-

ment Journal, 44(6), 6–19.

Dingsøyr, T., Dybå, T., & Moe, N. B. (2010). Agile software devel-

opment: An introduction and overview. In T. Dingsøyr, T. Dybå, &

N. B. Moe (Eds.), Agile software development: Current research

and future directions (pp. 1–13). Berlin Heidelberg: Springer

Verlag.

Dingsøyr, T., Fægri, T., & Itkonen, J. (2014). What is large in large-

scale? A taxonomy of scale for agile software development. In A.

Jedlitschka, P. Kuvaja, M. Kuhrmann, T. Männistö, J. Münch, &

M. Raatikainen (Eds.), Product-focused software process improve-

ment (Vol. 8892, pp. 273–276). Cham, Switzerland: Springer Inter-

national Publishing.

Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2017). Explor-

ing software development at the very large-scale: A revelatory case

study and research agenda for agile method adaptation. Empirical

Software Engineering, 23, 490–520.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A

decade of agile methodologies: Towards explaining agile software

development. Journal of Systems and Software, 85(6), 1213–1221.

doi:http://dx.doi.org/10.1016/j.jss.2012.02.033

Fagan, M. H. (2004). The influence of creative style and climate on

software development team creativity: An exploratory study. Jour-

nal of Computer Information Systems, 44(3), 73–80.

Faraj, S., & Sproull, L. (2000). Coordinating expertise in software

development teams. Management Science, 46(12), 1554–1568.

Firth, B. M., Hollenbeck, J. R., Miles, J. E., Ilgen, D. R., & Barnes, C.

M. (2015). Same page, different books: Extending representational

gaps theory to enhance performance in multiteam systems. Acad-

emy of Management Journal, 58(3), 813–835.

Floricel, S., Michela, J. L., & Piperca, S. (2016). Complexity,

uncertainty-reduction strategies, and project performance. Interna-

tional Journal of Project Management, 34(7), 1360–1383. doi:

http://dx.doi.org/10.1016/j.ijproman.2015.11.007

Flyvbjerg, B. (2014). What you should know about megaprojects and

why: An overview. Project Management Journal, 45(2), 6–19. doi:

http://dx.doi.org/10.1002/pmj.21409

Flyvbjerg, B., & Budzier, A. (2011). Why your IT project may be

riskier than you think. Harvard Business Review, 89(9),

23–25.

Harrison, D. A., Mohammed, S., McGrath, J. E., Florey, A. T., &

Vanderstoep, S. W. (2003). Time matters in team performance:

Effects of member familiarity, entrainment, and task discontinuity

on speed and quality. Personnel Psychology, 56(3), 633–669.

Hobbs, B., & Petit, Y. (2017). Agile methods on large projects in large

organizations. Project Management Journal, 48(3), 3–19.

Hoda, R., Noble, J., & Marshall, S. (2012). Developing a grounded

theory to explain the practices of self-organizing agile teams.

Empirical Software Engineering, 17(6), 609–639.

Hoegl, M., & Weinkauf, K. (2005). Managing task interdependencies

in multi-team projects: A longitudinal study. Journal of Manage-

ment Studies, 42(6), 1287–1308.

Hoegl, M., Weinkauf, K., & Gemuenden, H. G. (2004). Interteam

coordination, project commitment, and teamwork in multiteam

Dingsøyr et al. 75

http://dx.doi.org/10.1002/job.82
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.ijproman.2015.11.007
http://dx.doi.org/10.1002/pmj.21409

R&D projects: A longitudinal study. Organization Science, 15(1),

38–55.

Hutchins, E. (1991). Organizing work by adaption. Organization

Science, 2(1), 14–39.

Janicik, G. A., & Bartel, C. A. (2003). Talking about time: Effects of

temporal planning and time awareness norms on group coordina-

tion and performance. Group Dynamics: Theory, Research, and

Practice, 7(2), 122.

Jarzabkowski, P. A., Le, J. K., & Feldman, M. S. (2012). Toward a

theory of coordinating: Creating coordinating mechanisms in prac-

tice. Organization Science, 23(4), 907–927. doi:http://dx.doi.org/

10.1287/orsc.1110.0693

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software devel-

opment. Communications of the ACM, 38(3), 69–81.

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of

coordination. ACM Computing Surveys (CSUR), 26(1), 87–119.

Manifesto for Agile Software Development. (2001). Retrieved from

http://agilemanifesto.org/

Marks, M. A., DeChurch, L. A., Mathieu, J. E., Panzer, F. J., &

Alonso, A. (2005). Teamwork in multiteam systems. Journal of

Applied Psychology, 90(5), 964.

Marks, M. A., & Luvison, D. (2012). Product launch and strategic

alliance MTSs. In S. J. Zaccaro, M. A. Marks, & L. A. DeChurch

(Eds.), Multiteam systems (pp. 33–52). New York, NY: Routledge.

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally

based framework and taxonomy of team processes. Academy of

management review, 26(3), 356–376.

Mathieu, J. E., Marks, M. A., & Zaccaro, S. J. (2001). Multi-team

systems. In N. Anderson, D. S. Ones, H. K. Sinangil, & C. Vis-

wesvaran (Eds.), International handbook of work and organiza-

tional psychology (Vol. 2, pp. 289–313). London, England;

Thousand Oaks, CA and New Delhi, India: Sage Publications.

Melo, C. D. O., Cruzes, D. S., Kon, F., & Conradi, R. (2013). Inter-

pretative case studies on agile team productivity and management.

Information and Software Technology, 55(2), 412–427.

Mintzberg, H. (1989). Mintzberg on management: Inside our strange

world of organizations. New York, NY: Simon & Schuster.

Moe, N. B., Dingsøyr, T., & Dybå, T. (2010). A teamwork model for

understanding an agile team: A case study of a Scrum project.

Information and Software Technology, 52, 480–491. doi:http://

dx.doi.org/10.1016/j.infsof.2009.11.004

Okhuysen, G. A., & Bechky, B. A. (2009). Coordination in organiza-

tions: An integrative perspective. The Academy of Management

Annals, 3(1), 463–502.

Paasivaara, M., & Lassenius, C. (2014). Communities of practice in a

large distributed agile software development organization—Case

Ericsson. Information and Software Technology, 56(12),

1556–1577. doi:http://dx.doi.org/10.1016/j.infsof.2014.06.008

Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012). Inter-team

coordination in large-scale globally distributed Scrum: Do

Scrum-of-Scrums really work? In P. Runeson, M. Höst, A.

Andrews, E. Mendes, & R. Harrison (Eds.). Proceedings of the

ACM-IEEE international symposium on empirical software

engineering and measurement (pp. 235–238). New York, NY:

IEEE.

Pries-Heje, L., & Pries-Heje, J. (2011). Why Scrum works: A case

study from an agile distributed project in Denmark and India Agile

Conference (AGILE) (pp. 20–28). Los Alamitos, CA: IEEE.

QSR International. (2017). NVivo for Mac (Version 11.4.2). http://

www.qsrinternational.com/nvivo/nvivo-products/nvivo-for-mac

Ramesh, B., Pries-Heje, J., & Baskerville, R. (2002). Internet software

engineering: A different class of processes. Annals of Software

Engineering, 14(1–4), 169–195.

Rising, L., & Janoff, N. S. (2000). The Scrum software development

process for small teams. IEEE Software, 17(4), 26–32.

Rolland, K. H., Fitzgerald, B., Dingsøyr, T., & Stol, K.-J. (2016).

Problematizing agile in the large: Alternative assumptions for

large-scale agile development. Paper presented at the International

Conference on Information Systems, Dublin, Ireland.

Sabherwal, R. (2003). The evolution of coordination in outsourced

software development projects: A comparison of client and

vendor perspectives. Information and Organization, 13(3),

153–202.

Scheerer, A., Hildenbrand, T., & Kude, T. (2014). Coordination in

large-scale agile software development: A multiteam systems per-

spective. In R. H. Sprague (Ed.), 2014 47th Hawaii international

conference on system sciences (pp. 4780–4788). New York, NY:

IEEE.

Scheerer, A., & Kude, T. (2014). Exploring coordination in large-

scale agile software development: A multiteam systems perspec-

tive. Paper presented at the Thirty Fifth International Conference

on Information Systems, Auckland, New Zealand.

Schwaber, K., & Beedle, M. (2001). Agile software development with

Scrum. Upper Saddle River, NJ: Prentice Hall.

Serrador, P., & Pinto, J. K. (2015). Does agile work?—A quantitative

analysis of agile project success. International Journal of Project

Management, 33(5), 1040–1051.

Shepperd, M. (2014). Cost prediction and software project manage-

ment. In G. Ruhe & C. Wohlin (Eds.), Software project manage-

ment in a changing world (pp. 51–71). Cham, Switzerland:

Springer International Publishing.

Strode, D. E., Huff, S. L., Hope, B. G., & Link, S. (2012). Coordina-

tion in co-located agile software development projects. Journal of

Systems and Software, 85(6), 1222–1238.

van Berkel, F., Ferguson, J. E., & Groenewegen, P. (2016). Speedy

delivery versus long-term objectives: How time pressure affects

coordination between temporary projects and permanent organiza-

tions. Long Range Planning, 49(6), 661–673. doi:http://dx.doi.org/

10.1016/j.lrp.2016.04.001

Van de Ven, A. H., Delbecq, A. L., & Koenig, R. (1976). Determi-

nants of coordination modes within organizations. American

Sociological Review, 41(2), 322–338.

Vidgen, R., & Wang, X. (2009). Coevolving systems and the organi-

zation of agile software development. Information Systems

Research, 20(3), 355–376. doi:http://dx.doi.org/10.1287/isre.

1090.0237

Vlietland, J., & van Vliet, H. (2015). Towards a governance frame-

work for chains of Scrum teams. Information and Software Tech-

nology, 57, 52–65. doi:http://dx.doi.org/10.1016/j.infsof.2014.08.

008

76 Project Management Journal 49(6)

http://dx.doi.org/10.1287/orsc.1110.0693
http://dx.doi.org/10.1287/orsc.1110.0693
http://agilemanifesto.org/
http://dx.doi.org/10.1016/j.infsof.2009.11.004
http://dx.doi.org/10.1016/j.infsof.2009.11.004
http://dx.doi.org/10.1016/j.infsof.2014.06.008
http://www.qsrinternational.com/nvivo/nvivo-products/nvivo-for-mac
http://www.qsrinternational.com/nvivo/nvivo-products/nvivo-for-mac
http://dx
http://dx.doi.org/10.1287/isre.1090.0237
http://dx.doi.org/10.1287/isre.1090.0237
http://dx.doi.org/10.1016/j.infsof.2014.08.008
http://dx.doi.org/10.1016/j.infsof.2014.08.008

Wegner, D. M. (1986). Transactive memory: A contemporary analysis

of the group mind. In B. Mullen & G. R. Goethals (Eds.), Theories

of group behavior (pp. 185–208). New York, NY: Springer Verlag.

Weick, K. E. (1995). Sensemaking in organizations. Thousand Oaks,

CA: Sage Publications.

Weick, K. E., Sutcliffe, K. M., & Obstfeld, D. (1999). Organizing for

high reliability: Processes of collective mindfulness. In R. S. Sut-

ton & B. M. Staw (Eds.), Research in organizational behavior

(Vol. 21, pp. 81–123). Stamford, CT: Jai Press.

Winter, M., Smith, C., Morris, P., & Cicmil, S. (2006). Directions for

future research in project management: The main findings of a UK

government-funded research network. International Journal of

Project Management, 24(8), 638–649.

Xu, P. (2009). Coordination in large agile projects. The Review of

Business Information Systems, 13(4), 29.

Zaccaro, S. J., Marks, M. A., & DeChurch, L. (2012). Multiteam

systems: An organization form for dynamic and complex environ-

ments. New York, NY: Routledge.

Author Biographies

Torgeir Dingsøyr focuses on software process improvement

and knowledge management as chief scientist at the SINTEF

research foundation in Trondheim, Norway. In particular, he

has studied agile software development through a number of

case studies, coauthored the systematic review of empirical

studies, coedited the book Agile Software Development: Cur-

rent Research and Future Directions, and coedited the special

issue on agile methods in the Journal of Systems and Software.

Torgeir wrote his doctoral thesis on Knowledge Management in

Medium-Sized Software Consulting Companies at the Depart-

ment of Computer and Information Science, Norwegian Uni-

versity of Science and Technology, Trondheim, Norway,

where he is an adjunct professor. He can be contacted at

torgeir.dingsoyr@sintef.no

Nils Brede Moe works with software process improvement,

intellectual capital, and agile and global software develop-

ment as a senior scientist at SINTEF in Trondheim, Norway.

His research interests are related to organizational, socio-

technical, and global/distributed aspects. His publications

include several longitudinal studies on self-management,

decision making, innovation, and teamwork. He has coe-

dited the books Agile Software Development: Current

Research and Future Directions and Agility Across Time

and Space: Implementing Agile Methods in Global Software

Projects. His thesis was called From Improving Processes

to Improving Practice—Software Process Improvement in

Transition from Plan-Driven to Change-Driven Develop-

ment. He holds an adjunct position at the Blekinge Institute

of Technology in Blekinge, Sweden. He can be contacted at

nils.b.moe@sintef.no

Eva Amdahl Seim works with organizational and knowl-

edge process improvement, agile software development, and

ICT-based process and decision support as a senior scientist

at the SINTEF research foundation in Trondheim, Norway.

Her research is related to socio-technical, organizational,

and project/portfolio aspects in ICT-related industries and

traditional industries in general. Her publications include

studies on project management, lean construction, and

operational integration. She has participated in projects on

creating real-time transparency and situation awareness in

operational processes. She has a PhD in project management

and has coedited two books on interdisciplinarity in the

knowledge of economics. She can be contacted at eva.

amdahl.seim@sintef.no

Dingsøyr et al. 77

mailto:�torgeir.dingsoyr@sintef.no
mailto:nils.b.moe@sintef.no
mailto:eva.amdahl.seim@sintef.no
mailto:eva.amdahl.seim@sintef.no

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

