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Abstract

We present a novel mixed-dimensional method for gen-

erating unstructured polyhedral grids that conform to

prescribed geometric objects in arbitrary dimensions.

Two types of conformity are introduced: (i) control-

point alignment of cell centroids to accurately represent

horizontal and multilateral wells or create volumetric

representations of fracture networks, and (ii) bound-

ary alignment of cell faces to accurately preserve lower-

dimensional geological objects such as layers, fractures,

faults, and/or pinchouts. The prescribed objects are in

this case assumed to be lower-dimensional, and we cre-

ate a grid hierarchy in which each lower-dimensional

object is associated with a lower-dimensional grid. Fur-

ther, the intersection of two objects is associated with

a grid one dimension lower than the objects. Each grid

is generated as a clipped Voronoi diagram, also called

a perpendicular bisector (PEBI) grid, for a carefully

chosen set of generating points. Moreover, each grid

is generated in such a way that the cell faces of a

higher-dimensional grid conform to the cells of all lower-

dimensional grids. We also introduce a sufficient and

necessary condition which makes it easy to check if the

sites for a given perpendicular bisector grid will con-

form to the set of prescribed geometric objects.
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1 Introduction

The basic geometric description of a petroleum reser-

voir consists of a collection of surfaces representing strati-

graphic layering and fault surfaces and horizons repre-

senting the structural architecture. These surfaces de-

lineate the major compartments of the reservoir and of-

ten provide first-order control on in-place fluid volumes

and fluid movement during production [3]. To correctly

split the reservoir volume into sub-volumes, build flow

units with similar or correlated petrophysical proper-

ties, and resolve flow patterns, it is important that a

volumetric simulation grid conforms as closely as possi-

ble to these surfaces. Early simulation grids were either

simple Cartesian boxes or block-centered grids used for

dipping bedding, in which each rectangular cell could

be compactly represented by four numbers (top depth

and extent in each axial direction). These grid types are

simple to construct, but cannot represent stratigraphy

and structural architecture very well.

To better model sloping horizons, fault planes, and

erosion surfaces, corner-point grids were introduced by

Ponting [33]. These grids consist of hexahedral cells de-

fined in terms of their eight corner points. The corner

points are defined as pairwise depth values along four

lines. Each line is defined by its end points, which are

ordered lexicographically so that they form a quadri-

lateral areal mesh. These quadrilaterals will each have

an associated vertical stack of cells forming a pillar that

extends downward. In the simplest form, the coordinate

lines are straight vertical lines distributed on a rectilin-

ear areal mesh, giving rectangular pillars in which each

hexahedral cell is delimited by six planar surfaces. More

generally, the coordinate lines are sloping or curved

lines defined over a curvilinear areal mesh, giving hex-

ahedral cells delimited by bilinear planes. Depth values
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within each pillar are typically set so that the cell faces

adapt to the stratigraphic layers of the reservoir. Each

pair of depth values can collapse to a single point, so

that cells can model erosion and even collapse to a sur-

face of zero volume. The corner points of neighboring

pillars are defined independently, and faults can thus

be modelled by adapting the coordinate lines so that

they follow major fault surfaces. The corner-point for-

mat has also been extended to include patches with

local grid refinement to improve resolution e.g., in the

near-well zone.

By construction, corner-point grids have an inherent

Cartesian topology, which is advantageous for simula-

tion. Unless the reservoir is heavily faulted or has ex-

tensive erosion, which both introduce non-neighboring

connections, most cells will have six neighbors, which

in turn leads to discretization matrices with reasonably

regular sparsity patterns. On the other hand, corner-

point grids are time-consuming to generate, require spe-

cialized software, have many subtle geometrical chal-

lenges caused by collapsing points and bilinear cell faces,

and can easily give significant grid-orientation and grid-

deviation effects [40] unless care is taken. The format is

also inflexible and unable to accurately represent more

complex features like y-shaped faults, thrust faults, and

other overturned structures.

Wells have traditionally been described by the use

of relatively simple semi-analytical models (inflow per-

formance relationships) to capture the large pressure

drop that takes place inside perforated grid blocks [31].

While such models may be sufficient for vertical or in-

clined well paths, they are often less suitable for direc-

tional wells, which may be highly deviated and consist

of multiple branches and/or long and horizontal sec-

tions. Modern wells can also have (intelligent) inflow

devices to control the fluid flow from the reservoir to

the wellbore. Various techniques are also used to mod-

ify the near-well region to increase injectivity. Accurate

and flexible description of well paths and increased grid

resolution in the near-well region is crucial to evaluate

and choose drilling, completion, and production strate-

gies of advanced wells. Unfortunately, it is difficult to

introduce new horizontal or deviated wells with suit-

able local grid adaption in a corner-point grid with-

out changing the grid in large parts of the reservoir.

Many have therefore started looking into more flexible

unstructured grids to better capture complex fault or

fracture systems and highly deviated well paths. Un-

structured grids adapting to lower-dimensional objects

are particularly important for so-called discrete fracture

matrix (DFM) models of naturally fractured reservoirs

[11, 18], in which the porous matrix is represented as

a volumetric grid cell and the fractures are represented

as lower-dimensional objects (surfaces or lines).

Unstructured grids were introduced in reservoir sim-

ulation in the late 1980s and early 1990s [9, 14, 15, 30].

The earliest techniques would embed refinements in a

structured background grid in areas of interest. The

perpendicular bisector (PEBI) grid is a popular choice

for creating Voronoi type grids. The properties of PEBI-

grids used for reservoir simulations are discussed by

Verma and Aziz [39], whereas Courrioux et al. [5] were

among the first to create a PEBI representation of a

full-scale reservoir. The main drawback of these early

gridding methods is their inability to represent complex

structures, such as pinchouts and intersections of mul-

tiple faults. Later, Branets et al. [2] proposed a method

that handles intersection of multiple faults and faults

intersecting at sharp angles. A similar method is also

presented by Manzoor et al. [24], Toor et al. [38]. Both

methods create a protection layer around faults by use

of constrained Delaunay triangulation and are thereby

able to recover the faults exactly. Pinchouts and inter-

secting faults/fractures planes are treated by mirroring

PEBI-sites (seed points for cell centers used in the grid

generation) around the tracked features. A disadvan-

tage with these methods is that they tend to give to

congested PEBI-sites around these features.

In an attempt to countermand these problems, Ding

and Fung [6] introduced a conflict-point removal scheme.

The method starts by creating a structured background

grid and placing a set of PEBI-sites equidistant around

each fault/fracture plane to be tracked. Each PEBI-site

is given a priority, and when two sites are too close, the

site with lowest priority is removed. The generated grid

conforms to the tracked planes and has fairly uniform

cells. Recently, we extended the method to also gener-

ate conforming cells at intersections [20], thereby giv-

ing a robust method for generating Voronoi grids with

control-point alignment of cell centroids and boundary

alignment of cell faces in 2D. In 3D, the method only

guarantees full alignment away from intersections. A

different approach is taken by Merland et al. [26, 27],

who suggest to place the PEBI-sites by an optimiza-

tion method that minimizes the volume of cells cut

in two by a fracture. This method is promising, even

though one often needs to treat the grid manually af-

ter the optimization. Especially cells at fracture in-

tersections can have undesirable geometries, and frac-

ture planes are not reproduced exactly like in [20]. An-

other optimization method was proposed by Sun and

Schechter [36] for discrete fracture-network models to

reduce highly skewed cells and ensure good grid quality

around fracture tips and intersections and in regions of

high fracture density. See also Filippov et al. [8] for a

dynamic gridding method in which the Voronoi grid is

rearranged locally to account for opening/shutting of

wells and fracture growth.
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(a) Delaunay triangulation. (b) Delaunay triangulation and
Voronoi diagram

(c) Voronoi Diagram.

Fig. 1: Construction of a Voronoi grid from a point set by use of Delaunay triangulation. We start by specifying a

set of generating points (blue dots), and then compute the corresponding Delaunay triangulation, defined so that

no generating point falls inside the circumcircle of the triangles in the triangulation. The circumcenter (purple

dots) of each triangle lies at the point where the three perpendicular bisectors of the triangle intersect. The Voronoi

diagram is obtained by connecting the circumcenters along the perpendicular bisectors; hence the name PEBI. By

construction, the Voronoi diagram extends to infinity and must therefore be clipped against the domain boundary

to define a finite grid (here shown as dashed lines).

Many authors have also studied triangular grids adapt-

ing to faults and fractures. A complete review is out

of our current scope, but we mention Brewer et al. [4],

who present a method for exactly representing fractures

by a triangulation. Methods for approximating faults

and fractures by triangles have also been investigated

[16, 19, 28]. Another method that has gained popularity

in the latest years is the cut-cell method [12, 13, 23].

This method generates a grid by creating a mapping

from a Cartesian grid to the physical domain, and then

creates general polyhedral cells by cutting the Carte-

sian cells by crossing fractures.

In this paper, we present a novel method for gener-

ating unstructured Voronoi-grids in arbitrary dimen-

sions conforming to fractures, faults, well paths and

other types of lower-dimensional objects. All objects

are assumed to be piecewise affine, and for some of the

algorithms affine. We will look at two different confor-

mity requirements: (i) structures that should be traced

by faces of the grid, and (ii) structures that should be

traced by cell centroids. Typically, wells or volumet-

ric representations of fractures should be traced by cell

centroids, whereas lower-dimensional objects such as

fractures (in discrete-fracture matrix models), faults,

horizons, and erosion surfaces as well as other types

of internal boundaries should be traced by cell faces.

The special feature of our method is that the grid is

built dimension-by-dimension, starting with endpoints

and intersections between constraining lines (and sur-

faces) in 0D, which deliminate 1D discretizations along

line constraints, which in turn deliminate 2D discretiza-

tions of constraining surfaces. By building the grid this

way, we ensure that it preserves intersections between

lower-dimensional constraints and that the cells from

a (d− 1)-dimensional constraint will be faces in the d-

dimensional grid. Our new method and its predecessors

described in [20] have been implemented as a separate

module called upr in the Matlab Reservoir Simulation

Toolbox (MRST), which is an open-source community

code designed for rapid prototyping and validation of

new models and computational methods for simulating

flow in porous media [21].

2 PEBI-grids

One popular approach to generate Voronoi grids is to

construct them by first creating a Delaunay triangula-

tion of a set of generating points and then construct the

Voronoi grid by intersecting the perpendicular bisec-

tor lines/planes of the Delaunay triangulation, clipped

against the domain boundary. Figure 1 illustrates this

procedure. By careful placement of the points gener-

ating the Delaunay triangulation, we can control the

perpendicular bisectors and hence how the Voronoi grid

adapts to lower-dimensional constraints. In the petroleum

literature, such grids are usually referred to as perpen-

dicular bisector (PEBI) grids, whereas the term Voronoi

is most common in other fields of science. In the follow-

ing, we will use the two terms interchangeably.

This section explains the process of generating PEBI-

grids conforming to control points and to internal bound-
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aries. To simplify the discussion, we introduce some

more terminology. Let Sd = {si}i=1...n be a set of gen-

erating points (or sites for brevity) in Rd. The subscript

on Sd is dropped if it is obvious from the context which

dimension we are referring to. In all algorithms, we work

with three different sets of sites: well sites, fracture sites,

and reservoir sites. Well and fracture sites are created

to make the grid conform to control points and internal

boundaries, respectively. Reservoir sites are all other

sites that generate the background grid.

To define the PEBI/Voronoi grid, we say that a

point x belongs to a Voronoi cell Ωi if it is at least

as close to si as any other sites in S; that is, Ωi =

{x : x ∈ Rd, |x − si| ≤ |x − sj |, j = 1, . . . , n}. The

PEBI-grid is then defined as the set of all Voronoi cells.

This grid is the dual of the Delaunay triangulation of

the set of well, fracture, and reservoir sites, as proven

in Appendix B. In the following, we only consider so-

called clipped Voronoi diagrams, for which the infinite

Voronoi diagram is restricted to a bounded set Ω ⊂ Rd
by clipping the outmost cells so that Ωclipped

i = Ωi∩Ω;

see Berge [1] or Yan et al. [41] for more details. Figure 1

shows the most important duality properties between

PEBI-grids and Delaunay triangulations. A thorough

description of PEBI-grids and Delaunay triangulations

is out of the scope of this paper. Instead, we refer to

the textbook by Shewchuk et al. [35].

In the rest of the section, we first introduce our

control-point conformity, which ensures that certain cell

centers in the grid conform to curvilinear paths. The

primary example would be a deviated well path. Next,

we present our novel approach to generate grids where

the faces conforms to (d − 1) dimensional objects, as

well as to the (d − i) dimensional intersection of these

objects for i ≤ d. The primary examples here would be

intersections of fault surfaces or fractures. For brevity,

the two types of conformity are henceforth referred to

as wells and fractures for simplicity, even though the

same techniques can be used to adapt to other lower-

dimensional objects like faults or horizons. Once the

two types of conformity have been introduced, we step

back and present an improved algorithm that works for

2D grid and 3D grids with triangulated face constraints,

before we discuss how to optimize this algorithm to im-

prove the cells around fracture–fracture, fracture–well,

and well–well intersections. Finally, we discuss various

methods for generating reservoir sites.

2.1 Well sites.

In reservoir simulation, the diameter of the wellbore will

typically be much smaller than the size of the grid cell.

To account for the significant pressure variation from

Fig. 2: The well condition is satisfied if the

interior of each circle does not contain any

sites.

Fig. 3: A grid adapting to the path of a single

well. The blue line is the well path, and the

blue points the well cell centroids.

the sandface to the wellbore, which for most field and

sector models takes place on a subscale inside each per-

forated cell, it is common to use an analytical or semi-

analytical inflow performance relationship of Peaceman

type [31]. These models are most accurate when the

wellbore passes through the centroid of each perforated

cell. To maximize accuracy, a good grid should there-

fore trace wells using cell centroids. In a high quality

PEBI-grid, the cell-centroids coincide with their respec-

tive sites [7]. We therefore place a set of well sites along

each well trajectory with the distance between consec-

utive sites given by a user-defined function. Because

PEBI-grids are created as the dual of a Delaunay tri-

angulation, we therefore require that consecutive well

sites belonging to the same well segment should be con-

nected by edges in the Delaunay triangulations of the

sites. Consecutive well sites will then be neighbors in

the dual PEBI-grid.

Definition 1 (Well condition) If s1 and s2 are two

consecutive well sites, the well condition is satisfied if

the circle centered at the midpoint of the two sites and

intersecting both of them does not contain any other

sites from S.

Circles defining the well condition are shown in Fig-

ure 2. When the well condition is satisfied, the line seg-

ment between s1 and s2 is so called strong Delaunay

and will be an edge in the associated Delaunay trian-

gulation [35]. Further, from the duality of PEBI-grids

and Delaunay triangulations, the neighbor edge in the

PEBI-grid will contain the midpoint of the edge [1].

Figure 3 shows a grid adapted to a single curved well

trajectory, in which the distance between well sites in-
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δ

(a)

δ

(b) (c)

Fig. 4: Illustration of a trajectory with a protection layer. Black points are well sites, while orange points are

protection sites. The distance δ from a well site and its protection sites also equals the diameter of the corresponding

well cell. In (c) we have postprocessed the grid and removed any short edges. Unlike the unprocessed grid in (b),

the processed grid in (c) is not strictly PEBI locally around the well.

creases slightly along the well path. Because the well

condition is satisfied, neighbor edges between two con-

secutive well sites always intersect the well trajectory.

To better capture the symmetric flow in/out of wells,

Fung et al. [10] suggested to add a protection layer

around the well trajectories to make well cells with more

regular shapes. Sun and Schechter [36] showed that one

can create cells that explicitly represent the radius of a

well by adding protection sites around the well sites. To

add a layer of protection sites in 2D, we trace each well

trajectory and place the protection sites normal to the

resulting curve. Each well site will have two protection

sites, one on each side. Figure 4 shows one well with a

protection layer. The distance δ the protection sites are

placed from the curve also equals the diameter of the

corresponding well cell. We allow the distance δ to vary

along the curve. This is also practical if we for example

wish to create explicit volumetric representation of frac-

tures with varying width [36]. In the figure, the distance

function is perturbed slightly for each set of protection

sites for illustration purposes. As noted by Klemetsdal

et al. [20], this may introduce very short faces and these

should preferably be eliminated as shown in Figure 4c,

to make the grid more suitable for discretization of flow

equations.

2.2 Fracture sites.

The final goal in this section is to obtain a PEBI-grid

in which the faces of the cells conform to fractures.

However, before we start describing the steps in our

gridding algorithm, it is useful to understand its moti-

vation. The faces conforming to a fracture will define a

lower-dimensional grid of the restriction of the domain

to the fracture. For a reservoir in 3D, the conforming

faces will define a 2D grid of the fracture. Equivalently,

for a 2D reservoir, the conforming faces will define a

1D grid. In this way, we can create a hierarchy of grids.

If the reservoir is of dimension d, each fracture can be

described by a grid of dimension d − 1, whereas the

intersection of two fractures can be associated with a

grid of dimension d− 2. In general, the non-degenerate

intersection of n fractures can be associated with a grid

of dimension d − n. This structure gives us a natural

way of building the d-dimensional grid from bottom up:

First, the zero-dimensional grids are built. From this,

we build one-dimensional grids, then two-dimensional

grids, and finally the three-dimensional grids. We note

that the task of creating a conforming d-dimensional

grid is reduced to the following problem: Given a grid

Gd−1 of dimension d− 1 defined by the sites Sd−1, how
can we create a PEBI-grid Gd of dimension d so that

the faces of Gd conform to the cells of Gd−1?

To answer this question, we will first give a nec-

essary and sufficient condition on the sites Sd of Gd.

We will later see that an algorithm for generating con-

forming grids in 2D follows naturally from this condi-

tion. Repeating the same construction in 3D is not that

straight forward, but the condition will give us a way

to prove that a simpler algorithm works. We can also

easily check whether our grid will conform to a frac-

ture or not, even before we have created the grid. Let

fp be a facet of dimension p from the grid Gd−1. This

means that fp is a cell of Gd−1 for p = d − 1, a face

(or edge) for p = d − 2, and a vertex for p = 0. See

Figure 5 for an illustration. The facet fp is also a facet

in Gd if there exists a set of at least d−p+ 1 sites from

Sd such that for any point on fp, we can draw a ball

centered at this point, intersecting all sites of the set,

and the interior of the ball does not contain any sites
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f1
S2

(a)

S2 f0

(b)

Fig. 5: The p-dimensional facet fp of grid Gd−1 exists

in grid Gd if for at least d− p+ 1 sites in Sd, any ball

centered in fp, intersecting the sites, does not contain

any sites from Sd. In (a), f1 is a cell of the purple 1D

grid. Any circle centered in f1, intersecting the neigh-

bour sites, does not contain any other sites in S2 (blue

dots), thus f1 is a face in the 2D grid. In (b), f1 is a

vertex of the purple 1D grid. The circle intersect four

sites from S2, but contains none in its interior, thus f0
is also a vertex in the 2D grid.

from Sd. This condition can easily be deduced from the

definition of a PEBI-grid. Further, if Gd conforms to

Gd−1, this condition must be satisfied for all facets in

Gd−1. To check this condition for all facets is quite cum-

bersome, especially for the higher dimensional facets.

Luckily, under two assumptions, we can simplify the

condition and only consider the vertices of Gd−1 (i.e.,

f0). For each cell in Gd−1, we associate the two sites in

Sd that have fd−1 as the face between them. The first

assumption we make is that the union of the balls cen-

tered at the vertices of fd−1 and intersecting these two

sites contains any other ball intersecting the sites and

centered anywhere in fd−1. The second assumption is

that a vertex in Gd−1 should be connected to at least

d cells in Gd−1. Note that both of these assumptions

hold true if Gd−1 is a PEBI-grid, but is also valid for

other grids, e.g., triangle grids. It is then necessary and

sufficient to only check these balls around each vertex:

Definition 2 (Fracture condition) Let s1 and s2 be

two sites in Sd associated with a cell cd−1 from Gd−1.

For each of the vertices of cd−1, we draw a ball centered

at it which intersects s1 and s2. The fracture condi-

tion is satisfied if the interior of all of these balls does

not contain any site from Sd.

If the fracture condition is satisfied for all cells in Gd−1,

the grid Gd is guaranteed to conform to the lower di-

mensional grid. It is worth noticing that there should

be one unique ball around each vertex. This means that

if v is a vertex and Cvd−1 is the set of all cells from Sd−1
which are connected to v, the fracture condition must

be satisfied with the same radius for all cells in Cvd−1.

S0 S0

S1

κ1

S0

S1

κ1

S2
γ2

Fig. 6: Sites around an intersection. Black point is the

0D site, red points the 1D sites, and blue points the 2D

sites.

At the boundary of Gd−1 the second assumption

above is not necessarily valid for a PEBI-grid anymore.

A vertex at the boundary may be connected to d or

fewer cells, e.g., see the vertices on the dashed boundary

of Figure 5 which are connected to one or two cells. We

therefore need to add more sites around each vertex on

the lower-dimensional boundary. There are two require-

ments on the position of these vertices: They should lie

on the ball from the fracture condition, and they should

not violate the fracture condition for any other balls.

We will discuss this in more detail in the 2D gridding

below.

2.3 Algorithm for fracture sites in arbitrary

dimensions.

As mentioned above, we build the grids in order of di-

mension, from the 0-dimensional grids through the d-

dimensional grid. In the above discussion we did not re-

quire that the lower dimensional grid Gd−1 to be PEBI,

and below we will discuss the special case when it is a

triangular grid. However, in this section we will present

an algorithm where the grids in each dimension will be

PEBI and built in such a way that the faces of the grid

of dimension d correspond to the cells of the grid of

dimension d− 1. For d = 3, this means that the cells of

the 0D grids will be faces of 1D grids, the cells of the 1D

grids will be faces of the 2D grids, and the cells of the

2D grid will be faces of the 3D grid. Equivalently, 0D,

1D, and 2D cells will be vertices, edges, and faces, re-

spectively, in the 3D-grid. In this section we will assume

the fractures are planar.

Assume we are given the sites Sd−1 of a lower-

dimensional PEBI-grid Gd−1. The steps in the follow-

ing algorithm are demonstrated in Figure 6. For each

site in Sd−1, we make two duplicates and move them

a step-length γd in the positive and negative normal

direction of the corresponding cell. Using the fracture

condition above, it is easy to show that the cells of

Gd−1 will now be faces in Gd: Since Gd−1 is a PEBI-

grid, the distance from a vertex to the sites associated

to it, will have the same distance, κd−1. This can be
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(a)

3D

2D

1D

0D

(b)

Fig. 7: Intersections of three surfaces in 3D are shown in (a). (b) shows, in descending order, the corresponding

0D, 1D, 2D and 3D grids. The 3D grid is opened along the disk-surface.
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seen in Figure 1b where the dashed circle has radius

κ2. The distance from all associated sites in Sd to the

vertex will then be κd =
√
κ2d−1 + γ2d . The fracture

condition then says that as long as all the interior of

these balls around the vertices of Gd−1 are empty, all

the facets of Gd−1 will be contained in Gd. To create

a conforming grid we see that there are two things we

have to be careful about. We are given some restric-

tions on where we can place the reservoir and well sites

as to not violate the fracture condition. Also, we need

to choose γd small enough so that the sites from one

fracture does not interfere with the fracture condition

on other fractures. It is also worth noting that κd−1 will

in general be different for each vertex, but γd should be

chosen the same for all grids of dimension d connected

by an intersection. If it was chosen to be different for

two grids that share a vertex, the fracture condition

would be violated for this vertex. We will see later that

we easily can relax this requirement for the special case

of 2D and certain cases in 3D, but in general, changing

radius of one ball would require us to solve a non-linear

problem to find the radii of all other balls.

In the implementation, we start with the 0-

dimensional grids G0, which represent intersections

of at least d fractures. S0 is just a point and trivial

to grid. By using the above approach we can grid

the 1D grids; for each of the 0D grids, we find the

corresponding 1D lines that created this 0D point. We

place a set of sites a distance ±γ1 from the intersection

point, while the rest can be placed however we like, as

long as the fracture and well condition is not violated.

To generate the S2 sites we take the S1 sites and place

them a distance ±γ2 from the 1D lines. Last, we take

the S2 sites and place two duplicates on each side of

the fractures with a distance γ3. Notice that we never

used information about the vertices, edges, or faces of

the lower-dimensional grids. The only information we

need is the location of the Sd−1 sites and the normal

vector of the plane. We can therefore avoid creating

any of the lower-dimensional PEBI-grids to save some

computational time. The cost of this is that we are

not able to check if the spheres around each vertex

have empty interior. A simple case of three intersecting

fractures is shown in Figure 7.

2.4 Algorithm for fracture sites conforming to

simplices.

If we are in the special case that all cells of the lower-

dimensional grid Gd−1 have exactly d vertices (i.e., they

are simplices), we are in luck as we now much easier can

manipulate the radii of the fracture condition spheres.

v2 v1

v3

f3

f4

f1

f2

Fig. 8: The creation of fracture sites f1, f2, f3, and

f4, from the 1D vertices v1, v2, and v3. The fracture

condition is satisfied if the interior of the three circles

does not contain any sites.

Fig. 9: Treatment of boundary vertices. For the bound-

ary vertex of the 1D grid we need to add an extra tip

site shown as a green point. This should be placed on

the circle of the boundary vertex.

This is especially relevant for 2D gridding, as a 1D cell

has exactly two vertices. It can also be relevant for 3D

gridding if the fractures are given by a triangulation.

For this section we assume that the fractures are piece-

wise planar over each simplex.

Let us first restrict ourselves to the 2D case (d = 2),

and see how the fracture condition gives us a straight-

forward algorithm to find the sites S2. In this case, a

fracture is described by a line. The line is divided up in

line segments, which defines 1D cells. We let V = {vi}
be the vertices of the 1D grid ordered such that cell

ci has vertices vi and vi+1. We draw a circle around

each vertex, and require the two circles of a 1D cell to

intersect, which gives us an upper and lower bound on

the radii of the circles:

|R(vi)−R(vi+1)| ≤ di ≤ R(vi) +R(vi+1). (1)

Here, di is the distance between the two vertices vi and

vi+1. The fracture sites {f j} are placed where two cir-

cles intersect. If Ri is small, the fracture sites will be

placed close to the fracture curve, and if Ri is large, the

fracture sites will be placed far from the fracture curve.

In Figure 8 we see a single fracture where the radii has

been chosen randomly for each vertex. By construction,



Unstructured Voronoi grids conforming to lower-dimensional objects 9

the site pairs f1f2 and f3f4 satisfy the fracture condi-

tion as long as we do not place any well or reservoir

sites inside the generating circles.

For the boundary vertices of the 1D grid this proce-

dure only adds two sites, but to define a vertex in a 2D

grid we need at least three sites. Thus, a third site has

to be added for each boundary vertex. As mentioned in

the section about the fracture condition there are two

requirements for the position of the site; it should be

placed on the circle drawn around the vertex, and it

should not lie inside any of the other circles. We have

chosen to place the site on the intersection of the cir-

cle and the tangential line of the 1D grid as shown in

Figure 9.

We will discuss 2D gridding in more detail below,

in particular how the flexibility of being able to freely

choose the radii enables us to obtain high-quality cells

around fracture intersections. However, first we note

that we can generalize this algorithm for fractures de-

fined by simplices in higher dimensions. In this paper

we do not discuss how to generate a simplex grid of a

d− 1 object, but assume it is given. We start by draw-

ing a sphere around each vertex of the simplex grid and

place the sites at the intersection of these spheres. Since

each lower-dimensional cell has exactly d vertices, the

intersection of the corresponding d spheres gives us ex-

actly two points. If we place the fracture sites of Sd at

these intersections, the fracture condition is satisfied.

We can then freely choose the radii of the spheres, but

of course bounded by the requirement that the spheres

should intersect. It is crucial that the lower-dimensional

grid only consist of simplices; if a cell has d+ 1 or more

vertices we can not choose the radii of each sphere inde-

pendently, as the intersection of d+ 1 or more spheres

creates degeneracies. Figure 10 shows an example of a

3D grid with two fractures that are represented by a

triangulation.

2.5 Improving intersections in 2D.

The algorithms introduced above for generating well

and fracture sites are sufficient to give good grids as

long as the individual well trajectories and/or fracture

lines do not cross each other at sharp intersections.

At such sharp intersections, additional care should be

taken to ensure that the grid conforms in a feasible

manner. There are three types of intersections a robust

grid generator should handle: well–well, well–fracture,

and fracture–fracture intersections. Our grid generator

handles all these cases automatically, as well as harder

cases such as the intersection of multiple fractures.

Fig. 10: Reservoir consisting of three blocks separated

by fractures. Well cells are colored blue, while the lower

dimensional grids of the fractures are shown as red sur-

faces.

(a) The well trajectories and
well sites.

(b) A grid created using a
Cartesian background-grid.

Fig. 11: Intersection of two well trajectories (black

lines). Blue points are well sites for the diagonal well,

red points are well sites for the vertical well, and the

yellow point is a shared well site.

2.5.1 Well–well intersections.

When two well trajectories cross, we have to be careful

when placing the well sites. If we place the sites of each

well independently, consecutive sites will in general not

be connected by Delaunay edges over the intersection.

We may also create small and badly shaped cells. To

treat these cases, all well paths are divided into seg-

ments by the well intersections. A well segment does

not intersect any other well segments, except possibly

at the end-points. When we place the well sites, we first

place a well site at each intersection. A well site at an

intersection is shared by all well segments starting or

ending in this intersection. The remaining well sites are

placed along the well segments as normal. Figure 11

shows the intersection of two wells. The yellow site is

shared by both wells, and the other sites are in this case

placed equidistant along the well curves. This method

ensures a consistent size of the well cells, even at inter-

sections of multiple wells.
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(a) (b) (c)

Fig. 12: Three hard cases to grid. (a) Fractures inter-

secting at sharp angles. (b) Multiple fractures intersect-

ing. (b) Fractures that are barely intersecting.

(a) Original sites. (b) Merged sites. (c) PEBI-grid

Fig. 13: Merging two conflict sites in a pinch-out. The

orange lines are two intersecting fractures and red

points the fracture sites.

2.5.2 Fracture–fracture intersections.

In a reservoir, it is common to have multiple fractures.

Creating the fracture sites can then be much harder,

as the fractures may intersect. The following algorithm

handles the hard cases shown in Figure 12, which are

common in a reservoir.

If we place the fracture sites for each fracture inde-

pendently, we will in general not be able to represent

the fractures exactly. At the intersection of two frac-

tures, fracture sites from either fracture may interfere

with each other and violate the fracture condition.

At each intersection, which corresponds to a 0D

grid, we place a circle that is shared by all fractures

ending in that intersection. The other circles are placed

as normal along the fracture segments. We color all in-

tersection circles blue, and all neighbor circles of blue

circles are colored red. On each red circle, one of three

actions is performed: (i) Nothing is modified, (ii) the

radius is changed, (iii) the circle is merged with another

red circle. If the interior of a circle does not contain any

sites, it is not modified. If the interior of a circle contains

a fracture site f i, we locate the red circle that gener-

ated f i. These two circles are tagged as conflict circles.

The radii of the conflict circles are shrunk as shown in

Figure 13. The new radii are chosen such that the blue

circle and the two red circles intersect at the midpoint

of the two fractures. When multiple fractures intersect,

a circle might have multiple conflict pairs. We then cal-

culate the new circle radius for each conflict pair and

choose the smallest of them. If the radius of a red circle

(a) (b) (c)

Fig. 14: The procedure of merging circles. (a) The circle

at the intersection is colored blue, and its neighbors are

colored red. The radii of the red circles are shrunk until

they intersect the blue circle at the same point. The

red circles now does not intersect with their neighbors

and are therefore merged. (b) The merged circles are

colored blue, and their neighbors are colored red. The

green circle is already processed and is therefore not col-

ored red. The procedure from (a) is repeated until the

fracture condition is satisfied. (c) An associated grid.

(a) (b)

Fig. 15: An alternative to the merging procedure in

Figure 14. (a) Here two new 1D cells have been in-

serted for each fracture. The green circles are equal to

those seen in Figure 14a. The refinement towards the

fracture intersection is enough to avoid the problems

of non-intersection circles. If the intersection had been

sharper a larger refinement would have been needed.

(b) An associated grid.

is shrunk too much, it might violate the radius condi-

tion of (1). For those cases, we locate the other red con-

flict circle sharing a fracture site with this circle. These

two circles are merged to one circle centered at the mid-

point of them. The merged circle is colored blue, and

we repeat the procedure above. Figure 14 shows one it-

eration of the merging. In this case two sets of conflict

circles are merged, one on each side of the intersection.

This is enough to satisfy the fracture condition. If the
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(a) Well and fracture
sites.

(b) PEBI-grid.

Fig. 16: Intersection of a fracture (red) and a well

(blue). The fracture sites are placed as close as pos-

sible to the well trajectory. The fracture sites at the

intersection are labeled as well sites.

intersection had been sharper, more than two pairs of

circles might have been merged recursively.

An alternative to the merging of circles is to insert

a new 1D cell between the two circles that do not inter-

sect as shown in Figure 15. This is equivalent to a grid

refinement of the 1D cells. This approach represent the

fractures exactly at the cost of adding more cells.

Our method of splitting fractures into fracture seg-

ments and placing circle centers along these segments

makes it easy to handle barely intersecting fractures. If

a fracture segment is shorter than a specified length,

we do not place any circles along it. In our implemen-

tation we have set this minimum length to be 80% of

the desired length between circle centers.

2.5.3 Well–fracture intersections.

The last type of intersection we need to consider is well–

fracture intersections. As for the two other cases, all

fractures and wells are split at the intersections. Fig-

ure 16 shows the intersection of a well and a fracture.

The first circle center of a fracture segment starting in

a well–fracture intersection is placed half a step length

from the start. Equivalently, the last circle center of

a fracture segment ending in a well–fracture intersec-

tion is placed half a step length from the end. The two

fracture sites created from the circle before and after

the well–fracture intersection are labeled as well sites.

These two sites are the first and last well site for the

well segments starting and ending in the intersection,

respectively.

In the case that well paths have higher priority than

representing fractures, the construction can be modified

so that the well sites are placed exactly on the well path,

which will introduce a local deviation in the represen-

tation of the fracture surface.

2.6 Generating reservoir sites.

The reservoir sites can be placed any way that may fit

the current problem as long as they do not violate the

well and fracture conditions. The most obvious choice is

to create a structured grid by placing sites equidistant

in each direction or on a rectilinear mesh. We can then

make use of the simplicity of the Cartesian topology

away from the wells and fractures. When placing the

reservoir sites, we ignore all fractures and wells. After

the reservoir sites are created, we remove any sites vio-

lating the fracture or well condition. The resulting grid

is then guaranteed to conform to fractures and wells.

Some cells might still be small or badly shaped even if

the fracture and well conditions are satisfied. We there-

fore also remove sites that are too close to each other.

A grid size is defined for each well and fracture site.

For well sites, the grid size is the distance between two

consecutive well sites. For fracture sites, the grid size

is set to the distance between the two sites that are

generated by the same two circles. If a reservoir site is

closer to a well or fracture site than that site’s grid size,

the reservoir site is removed. This ensures that the well-

and fracture-cells have a consistent size.

There are many different methods to choose from to

create a fully unstructured grid. Herein, we have cho-

sen to place the reservoir sites using the force-based

method proposed by Persson and Strang [32]. One rea-

son is that this method is available as a free open-source

implementation in MATLAB. The method associates

the edges in the Delaunay triangulation with springs,

whereas vertices are associated with joints connecting

the springs. An initial triangulation is given, and the al-

gorithm then finds an equilibrium position for the ver-

tices. When solving for equilibrium, the well and frac-

ture sites that have been created using the algorithms

explained above are set as fixed points; that is, they are

not allowed to move during the optimization procedure.

For a detailed description of this method we refer the

reader to Persson and Strang [32] or Appendix A.

As an alternative to the force-based method, we can

use a similar algorithm to optimize the PEBI-grid di-

rectly instead of optimizing the dual Delaunay trian-

gulation. We define the Centroidal PEBI-grid (CPG)

energy function as [7, 17]

F (s) =

n∑
i=1

∫
Ωi∩Ω

|y − xi|2dy.

The variable s = [s>1 , . . . , s
>
n ]> is a vector of the PEBI-

sites. The variable xi is the mass centroid for PEBI-

cell Ωi. A necessary condition for F to be minimized is

si = xi, that is, the PEBI-sites coincide with the mass



12 Berge et al.

centroids [7]. The gradient of F is

∂F

∂si
= 2Ai(si − xi),

where Ai is the area of the associated PEBI-cell. It

was long thought that the energy function at most was

continuous because of changes in topology when sites

are moved. However, Liu et al. [22] proved that the

energy function is two times differentiable for convex

domains and almost always two times differentiable for

non-convex domains. The exact Hessian is given explic-

itly [17, 22], and we can therefore use Newton’s method

to find the minimizer of the energy function. The com-

putation of the Hessian is nonetheless expensive, and

Liu et al. [22] showed the advantages of using quasi-

Newton methods. Specifically, they show that the L-

BFGS algorithm [29] performs better than both New-

ton’s method and fixed-point iterations.

To be able to use the CPG formulation on a grid

with fracture and well sites, we propose a small change

to the gradient. The fracture and well sites are treated

as fixed points, that is, we do not move them during

the optimization procedure. We incorporate this into

the L-BFGS algorithm by setting the derivatives ∂F
∂si

with respect to fixed points to zero. By doing so, the

L-BFGS algorithm does not move the fixed points, and

the resulting grid will conform to fractures and wells.

A comparison of the three methods for placing reser-

voir sites is shown in Figure 17. The two optimization

methods have more uniform cells than the Cartesian

background grid. Also, the cell centroids for the opti-

mization methods are very close to the well trajectory.

Figure 18 summarizes the overall algorithm for gen-

erating a grid with control-point and boundary align-

ment for an optimal Delaunay background grid.

3 2.5D grids

It is not uncommon for an oil reservoir to have very

large aspect ratios. An oil reservoir can stretch kilome-

ters in the lateral directions, but only tens to hundred

meters in the vertical direction. Reservoirs also have a

natural and inherent layering since the rock is formed

by a sedimentation process that creates horizontal or

slightly inclined layers of deposits that are highly im-

portant to represent accurately in the grid. So-called

2.5D grids take advantage of the flexibility of 2D grid-

ding to create unstructured tessellations in lateral di-

rection, while retaining the simplicity of a Cartesian

topology in the vertical direction. Such grids offer a

relatively simple means of introducing local adaption

with increased resolution laterally and have become

Fig. 19: The creation of a 2.5D grid. First, a 2D layer is

gridded (red layer) and a set of pillars is placed through

all vertices. Then, the grid is extruded along the pillars.

Figures from Lie [21].

very popular in parts of the industry [2], e.g., to accu-

rately represent hydraulic fracturing around horizontal

wells [37].

A 2.5D grid is created by generating a 2D areal tes-

sellation and then projecting or extruding this to three-

dimensions in the vertical direction, see e.g., [25] for a

more extensive discussion. To this end, one starts by

constructing a set of grid lines that each passes through

a vertex in the areal grid. The grid is extruded along

these lines, as shown in Figure 19, so that each cell in

the lateral tessellation gives rise to a pillar of volumet-

ric cells. By default, the pillars are vertical, but can also

be set to follow major faults or other vertically inclined

surfaces that need to be represented accurately. The

hard part of creating a 2.5D grid is the choice of grid

lines in the z-direction and the length each cell is ex-

truded along these lines, as well as extruding vertically

between multiple sets of areal tessellations.

4 Examples

In the following, we present a few examples to illus-

trate the capabilities of our gridding framework and

the many types of adapted grids that can be generated.

Example 1 (Fracture networks) We start by two exam-

ples of areal grids that adapt to fracture networks. In-

spired by hydraulic fracturing, we first create a grid of

a reservoir with natural fractures and hydraulic frac-

tures extending from a horizontal well, depicted in Fig-

ure 20a. The fracture and well sites are placed using the

2D algorithm, while the reservoir sites are placed by

optimizing the dual Delaunay triangulation. The cor-

responding grid is shown in Figure 20b and includes

refinement towards the fractures to obtain a higher res-

olution in these areas.

As a second illustration, we consider a statistical

fracture network previously discussed by Shah et al. [34]

(The data set is publicly available in the hfm module

of MRST). The fracture system consists of 51 fracture
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(a) (b)

Fig. 20: Reservoir with hydraulic fractures. Natural

fractures are shown in red, hydraulic fractures in green,

and the blue line is a well. The right figure shows the

corresponding grid for this reservoir, where the well

cells have been colored blue.

Fig. 21: Fractures generated from stochastic variables.

Left figure shows the full reservoir, while the right figure

shows a zoom-in of the green dashed square.

lines that have been generated by sampling stochas-

tic variables defining the orientation, length and po-

sition for each fracture. Altogether, the lines form 31

disconnected fracture networks as shown in Figure 21.

Stochastically generated fracture networks can be chal-

lenging to grid due to the common occurrence of small

angles, fractures barely intersecting, and fractures ar-

bitrary close, but not intersecting.

Both these examples show how our algorithm can

create high quality grids of complex geometries with

minimal effort, due to the automatic handling of inter-

sections and local grid refinement.

Fig. 22: A 2.5D grid of a fractured reservoir. The frac-

ture faces and well cells in red and blue, respectively.

Example 2 (2.5D PEBI-grid) An important reason for

having a robust 2D gridding algorithm is to be able to

extrude the grids to form 2.5D volumetric grids. The

grid shown in Figure 22 is generated by our 2D algo-

rithm and then extruded to 3D along vertical lines. We

have refined the cell size towards the wells, and this grid

refinement is also respected by the 1D grids. In our im-

plementation we set the radius of the circles around

each vertex in the 1D grids as a function of the 1D cell-

size, so that we in this way can automatically handle the

local grid refinement also for cells along the fractures.

Example 3 (3D Voronoi grid with multilateral well) In

the next example we show how our gridding algorithm

can make a 3D Voronoi grid that conforms to a com-

plex multilateral well. The well path depicted in Fig-

ure 23 curves horizontally in the domain and splits into

multiple branches. The grid was made by first placing

the well sites using our conforming algorithm. Reser-

voir sites were then subsequently optimized by use of

the CPG algorithm.
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Fig. 23: A 3D grid with polyhedral Voronoi cells con-

forming to a well path.

Example 4 (3D fracture network) Figure 24 shows an

example of a Voronoi grid conforming to a 3D frac-
ture network. The fracture network consist of six frac-

tures (2D constraints), 11 fracture intersections (1D

constraints), and four intersections of intersections (0D

constraints). The grid is generated by the general algo-

rithm described in Section 2.2. The reservoir sites of the

1D grids are placed equidistant along the intersection

lines. The reservoir sites of the 2D grids are place using

the optimal Delaunay triangulation, while the reservoir

sites of the 3D grid are placed using the CPG-gridding.

Building each grid separately enables us to choose

the appropriate algorithm for creating the background

grid, not only between dimensions, but also between

two different grids of the same dimension. When gener-

ating the 2D grids, we are not able to use the improved

techniques described in Section 2.4, because if we were

to change the radius of a circle around a 1D vertex when

creating a 2D grid, this radius has to be changed for all

other 2D grids connected to this 1D vertex. As a result,

some of the cells around 1D intersections are of lower

quality. Implementing the required connection between

2D grids is out of the scope of this paper, and will be

left for further work. In 2D, boundary vertices of the 1D

intersections are captured exactly by adding an extra

site. This has not yet been implemented in 3D. Faces

representing fracture boundary cells thus are slightly

larger than the prescribed fracture planes. Elsewhere,

the faces, edges and vertices of the grid conform exactly

to the lower-dimensional grids.

In some cases, one may want to consider the rock

matrix as impermeable, and only run the fluid simula-

tions on the fracture network. This is easily incorpo-

rated in our gridding algorithm by only constructing

grids for the lower-dimensional constraints and not the

3D matrix volume.

5 Closing remarks

We have presented a method for generating PEBI-grids

that conform to different geometric structures in sub-
surface reservoirs. Our method successfully creates both

control-point aligned grids and boundary aligned grids

in arbitrary dimensions. Our fracture condition gives

a natural algorithm for creating boundary conforming

grids in 2D and 3D. For the simpler case of 2D, we

presented a more flexible algorithm with the following

key advantages: (i) user-specified grid refinements al-

lows for higher resolution in areas of interest; (ii) more

robust handling of intersections; and (iii) high-quality

cells even in constricted areas.

Through several examples, we have illustrated the

flexibility and given indication of the robustness of our

methods for generating 2D, 2.5D, and 3D grids. These

examples show some of the possibilities of the algo-

rithms presented in adapting to lower-dimensional con-

straints. Especially, the ability to create PEBI-grids

that conform exactly to fractures in 3D is, to the best

of our knowledge, a novel contribution to the literature.

Our hierarchical method for generating adapted 3D

Voronoi grids is, in the way it has been presented herein,

limited by the fact that constraints are only communi-

cated upward from a lower-dimensional grid to a higher

dimensional grid. A resulting issue is that there is gen-

erally no guarantee that sites of one fracture do not in-

terfere with the fracture condition of another. This can

happen if two fractures intersect at very sharp intersec-

tions, or lie close to each other, but do not intersect.

We can resolve this issue to a large extent by refin-

ing the grid and our methods support the use of local

grid refinement to avoid excessive number of cells. The

algorithm can be improved by allowing for communica-

tion between different constraints of the same dimen-

sion so that the gridding of lower dimensional grids can

be optimized with respect to each other. Herein, we
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have only presented this possibility in 2D, for the case

of representing sharp fault or fracture intersection. In

our experience, such a scheme improves grid quality

significantly. We believe a similar approach is possible

also in 3D, but have not yet implemented and tested it

properly.

To what extent the methods presented above can

be applied to efficiently mesh very large models is

an open question. We believe that the algorithms

presented herein should be relatively easy to include in

existing PEBI meshing generators. By using a Carte-

sian background grid, you are only limited by how

fast you can generate a PEBI-grid. In our MATLAB

prototype implementation, the computational cost of

creating fracture and well sites is low compared to

the cost of generating the PEBI-grid. Likewise, the

CPG algorithm is slow compared with the Delaunay

triangulation optimization, since the latter utilizes

fast libraries in MATLAB and only generates the

PEBI-grid after the optimization has finished whereas

the CPG algorithm has to create the grid at each

iteration. Normally, both optimization algorithms

give good grids in 20 to 50 iterations. One potential

approach to reduce the associated computational cost

could be to use a domain decomposition technique, but

we have not yet researched this.

Another limiting factor is the ability to compute

fracture intersections and intersections of intersections

in an efficient and robust manner. Dense fracture net-

works often contain a large number of intricate and

challenging special cases. The UPR module is still lack-

ing somewhat in this respect.

The fracture condition from Definition 2 is suffi-
cient and necessary for boundary conformity and en-

ables us to check for conformity even before the grid is

generated. The condition can also be used to locate (po-

tential) areas of conflict between individual constraints

such as sharp intersections before the actual grid is con-

structed, so that the user can adjust or prioritize the

constrains or increase the local resolution to remedy po-

tential gridding artifacts. The condition is quite simple

and we believe it is an important tool, not only for the

specific algorithms presented herein, but also for anyone

who wishes to improve them or develop their own.
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A Optimal Delaunay triangulation

To create a fully unstructured grid, we can place the reser-
voir sites using the force-based method proposed by Persson
and Strang [32]. For completeness, we will briefly review this
method. The key idea is to associate edges in the Delaunay
triangulation with springs, whereas vertices are associated
with joints connecting the springs. The forces on each joint
will depend on the difference between the actual length of the
springs and their uncompressed length.

The uncompressed length l0 of a spring is based on an
element size function h. We evaluate the spring at its mid-
point. For the domain [0, 1]× [0, 1] and element size function
h(x, y) = 1 + x, the uncompressed length of the springs will
be about twice as big in the right side of the domain as the
left side.

We let the forces from the springs follow Hooke’s law;
that is, the force is proportional to the difference of its actual
length l and its uncompressed length l0. However, we assume
that the springs only have repulsive forces, and no attractive
forces. The force f from a spring is:

f(l, l0) =

{
k(l0 − l), l < l0,

0, l ≥ l0.

Here, k is a constant of value one that is needed to obtain the
correct units.

http://doi.acm.org/10.1145/1559755.1559758
http://doi.acm.org/10.1145/1559755.1559758
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F(pi)

(a)

F(pi)

R

(b)

Fig. 25: Forces acting on a joint pi. Blue forces are the repul-
sive forces from each edge. The red force F(pi) is the sum of
all repulsive forces. The lengths of the force vectors are not
proportional to their magnitude. (a) An internal joint. (b)
A joint on the boundary. An external force R is acting per-
pendicular to the boundary. The external force balance the
internal forces so the joint will not move across the boundary.

(a) Initial Delaunay
triangulation.

(b) Triangulation
after convergence.

(c) Dual Voronoi
diagram.

Fig. 26: Optimization of a triangulation using the force-based
algorithm. The size of the elements is proportional to the
distance from the origin squared h(x, y) ∼ x2 + y2.

Let P be the coordinates of all joints. To find the force on
a joint pi, we find the force from all springs connected to pi.
The total force F(pi) is the sum of these forces. Figure 25a
shows seven springs connected to one joint. The repulsive
force from a spring acts in the longitudinal direction of the
spring. We do not want the joints to move outside the domain
we wish to triangulate. Figure 25b shows how an external
force is added to the boundary joints. The external force is
perpendicular to the boundary and balances the repulsive
forces of the springs. Boundary joints can therefore only move
along the boundary. We also allow for fixed joints thought of
as glued to their initial position and not allowed to move, no
matter how large the forces acting on them are.

The optimization loop of the force-based algorithm is very
simple. We calculate the Delaunay triangulation of the joints
Pk. For each edge in the triangulation, we calculate the repul-
sive force f(l, l0). For joints on the boundary we also add an
external force to prevent it from passing over the boundary.
The total force on a joint is found by summing all repulsive
forces and external forces. The total force on a fixed joint is
set to zero. All joints are moved a step length ξ along the
direction of the total force acting on them:

pk+1
i = pk

i + ξF(pk
i ).

An example of an optimum triangulation and its dual
PEBI-grid is shown in Figure 26 for a case where initial reser-
voir sites were placed semi-randomly in the domain.

To achieve refinement towards wells, we create an element
size function that decreases towards wells. We let the element

size function decrease exponentially:

hr(p) = min

[
hmax, hmin exp

(
d(p,W )

ε

)]
. (2)

The desired grid size of the background grid far from and
close to the wells is hmax and hmin respectively. The distance
d(p,W ) is the closest distance from the point p to the set of
well sites W . The constant ε controls the transition region. If
ε is small, the refinement happens quickly around the wells.
If ε is large, the transition region is large. When we run the
force algorithm, all well and fracture sites are set as fixed
points.

B Duality of Delaunay triangulation and

PEBI-grids

There is a close relationship between the Delaunay triangula-
tion and PEBI-grids. They are often called dual of each other
in the sense that the topology of one is defined by the topol-
ogy of the other. The duality is defined by a bijection between
the faces of the Delaunay triangulation and the faces of the
PEBI-grid. Following the presentation in Berge [1], we first
define the k-face of a tessellation as a face of dimension k. In
2D a 2-face is a cell, a 1-face the edge between two cells and a
0-face a vertex. We then state the Voronoi-Delaunay duality
precisely in the following theorem [35].

Theorem 1 (Duality of Delaunay triangulation and
PEBI-grids)
Let P be a generic point set in Rd. Let V and T be the as-
sociated PEBI-grid and Delaunay triangulation, respectively.
Let S = {s1, . . . sj} ⊆ P be a subset of the sites in P . The
convex hull of S is a k-face of T if and only if vs1,...sj

is a
(d− k)-face of V.

Proof First, assume that the convex hull of S is a k-face of T .
Then there exists a closed ball B that intersects s1, . . . , sj ,
but does not contain any sites from P \ S. The center of this
ball is equidistant to all sites in S, hence, the intersection
vs1...sj

is not empty; i.e., it is a PEBI-face of P . Let Π be
the affine space that is orthogonal to the affine space of S
and contains the center of B. The space Π has dimension
(d − k) because the dimension of A(S) is k. All points in Π
are equidistant to all sites in S, and no points in Rd \Π are
equidistant to all sites in S, thus, vs1...sj

⊆ Π. Let 0 < ε =
minp∈P\S d(B,p) be the minimum distance from the ball
B to any sites in P \ S. Any points in Π that are closer to
the center of B than 1

2
ε are on the face vs1...sj

, hence, the
dimension of vs1...sj

is the same as Π, that is (d− k).
Now assume that vs1...sj

is a PEBI (d − k)-face. Since
P is generic, there is no sj+1 ∈ P \ S such that vs1...sj

=
vs1...sjsj+1

. In fact, the number of cells must equal j = k +
1 if vs1...sj

is to have dimension (d − k). We can therefore
find a closed ball centered at some point in vs1...sj

that has
s1, . . . , sj on its boundary and does not contain any sites
P \S. The convex hull of the k+1 sites in S is a k-simplex and
it is strongly Delaunay, hence, it is a k-face in the Delaunay
triangulation.

The main results of the duality theorem is for j = 2 and
j = d+ 1. For j = 2 the theorem says that PEBI-cell vs1

and
vs2

share a PEBI facet if and only if there is a Delaunay edge
between site s1 and s2. For j = d+ 1 the theorem says that
all PEBI-vertices are the center of a circumball of a Delaunay
(d+ 1)-simplex. Figure 1 shows the duality in 2D.
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(a) Cartesian reservoir sites. (b) Optimized Delaunay. (c) Minimized CVD energy.

Fig. 17: Three grids of a reservoir. The reservoir has two wells (blue lines) and two fractures (orange lines). The

well and fracture sites are the same for all three grids and are created using the methods described herein. The

reservoir sites are created by three different methods: a Cartesian grid, optimizing the dual Delaunay triangulation,

and minimizing the CVD energy function.

(a) Create well and fracture sites. (b) Create reservoir sites.

(c) Associated PEBI-grid.

Fig. 18: Illustration of the overall algorithm

used to generate grids with control-point

alignment to two blue curves and boundary

alignment to a red line. First, we generate well

sites along the blue curves (blue dots), frac-

ture sites (red dots) on opposite sides of the

red lines and tip sites (green dots). Next, we

distribute reservoir sites throughout the whole

domain with a refinement towards the two

well paths to generate a finer grid in the near-

well region. In the last step, we first compute a

Delaunay triangulation of the sites and then

construct the corresponding clipped Voronoi

diagram.
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Fig. 24: A fracture network consisting of six fractures. The left figure shows the 2D grids of the fracture network.

The right figure shows the 3D grid of the same network opened up along the plane of the large circular fracture

in the middle.
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