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Abstract. In the following work the generation function relating water discharge to power output 

for a hydropower station is considered. The conventional approach to modelling the generation 

function has been to simplify it as a concave function. In the future it is expected that the stations 

will operate at more varied power outputs, motivating the need for a more detailed modelling of 

the generation function. Therefore, an investigation on how the nonconcave generation function 

may be simplified, without having to lose the function’s inherent geometric shape, is performed. 

A greedy algorithm and a Minimum Least Square Error (MLSE) approach is used. It was found 

that the function can be reduced until a point where the changes become too prominent. A 

benchmark test against the conventional modelling approach found that it is important with a 

detailed modelling of the generation function when environmental constraints, such as minimum 

discharge, are included.  

1. Introduction 

The following work is founded on recent advancements in hydropower scheduling methods that enables 

a higher level of modelling details. There has been a fundamental change in the electricity sector with 

large shares of renewables entering the market and increased cross-border exchange. It is expected that 

this will lead to increased demand of flexible power plants that can provide ancillary services [1]. Given 

a market environment where these services can be traded across the European countries it is estimated 

that there is a income potential for Norwegian hydropower producers [2]. Due to the flexibility storable 

hydropower possesses they have an opportunity to provide many of the ancillary services at a 

competitive cost. However, in order for them to adapt to this changing market environment and provide 

these services it is evident that adequate decision support tools are needed to optimally allocate 

generation between different markets. Earlier studies have shown that conventional scheduling 

algorithms based on linear programming (LP) tend to overestimate the amount of capacity reserves that 

the hydropower producer can deliver [3]. There is also a tendency to increase the environmental 

restrictions on new concessions for hydropower systems in Norway, leading to more complex 

constraints in the optimization problem. Developing more advance methods should there be of priority 

to include these constraints and capture the added income potential by participating in multiple-markets. 

2. Hydropower Scheduling 

Due to the uncertainty of inflow, energy prices and the possibility of storing water over longer time 

periods, the hydropower scheduling problem is generally handled as multistage stochastic programming 

problem. An important element of hydropower scheduling is the water value; even though inflow to the 

reservoirs are free, there is an opportunity cost associated with the water stored in the reservoirs. The 

producer can choose to use the water for selling energy today and earn an immediate income or store it 

http://creativecommons.org/licenses/by/3.0
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for future use with a potential higher profit. In terms of hydropower scheduling, this opportunity cost is 

referred to as the water value. 

  

Given the complex nature of the hydropower scheduling problem, it can be divided into three problems 

with different time horizon and modelling details [4]. The Long-Term Hydropower Scheduling (LTHS) 

problem aims at solving a fundamental market problem that provides energy price forecasts and 

aggregated water values [5] [6]. The Medium-Term Hydropower Scheduling (MTHS) problem can then 

use the aggregated water values as end statement and price forecasts to provide individual water values 

for each reservoir in a local hydropower system [7]. Further, these individual water values can be used 

as an end statement for the Short-Term Hydropower Scheduling (STHS) problem that has high 

modelling details, e.g. modelling of individual generators and water courses. The time resolution is fine, 

typically hourly for a period of one or two weeks. For liberalized electricity markets this problem aims 

at first generating bids to the power market and after the market clearing perform a re-optimization that 

incorporates any commitments that occurred in the clearing [8]. 

2.1. Multistage Stochastic Optimization 

This paper depicts an application that will be used in further studies on the MTHS problem. A time 

horizon of 1-2 years is typical for this problem type, using weekly decision stages as the inflow is highly 

correlated on a weekly basis. The problem is cast as a Stochastic Dynamic Programming (SDP) problem, 

with weekly decision stages. To circumvent the “curse of dimensionality” associated with conventional 

(S)DP problems, a method called Stochastic Dual Dynamic Programming (SDDP) is widely used [9]. 

The method approximates the expected profit function (EPF), also referred to as cost-to-go function for 

minimization problems. One of the drawbacks with the method is that it requires the decision stages to 

be modelled as LP problems, ruling out the possibility of modelling nonlinearities without 

simplifications. A recent extension of the method has been proposed called the Stochastic Dual Dynamic 

integer Programming (SDDiP) method [10]. The method can solve nonlinear problems with finite 

convergence. However, it comes at a cost of added computation time and some adjustments on the 

structure of the problem, i.e. it requires all the state variables to be binary. Previous work has tested the 

method on a MTHS problem with promising results, compared to the SDDP method [11]. With this in 

mind, the following work investigates how the generation function of a hydropower plant can be 

modelled in the SDDiP framework and how it can be simplified to reduce the computational burden.  

2.2. Contributions 

The following paper applies a greedy algorithm and a Minimum Least Square Error (MLSE) approach 

to simplify the generation function of a hydropower station. The greedy algorithm is based on the idea 

of reducing the number of points on a bid curve in [12]. The approach is tested on two real power station 

equivalents and the importance of detailed modelling of the generation function is shown. The following 

section outlines the hydropower scheduling problem, followed by case studies and results.  

 

3. Medium-Term Hydropower Scheduling 

The problem aims at allocating resources simultaneously in an energy market and a capacity market. 

For the sake of simplification, only uncertainty of inflow is considered. The weekly decision problem 

can be written on dense form as  

 

max
(𝑥𝑡,𝑦𝑡)

   𝑓𝑡(𝑥𝑡, 𝑦𝑡) + 𝛼𝑡(𝑥𝑡) (1) 

s.t. 𝑊𝑥𝑡 + 𝐺𝑦𝑡 = ℎ𝑡(𝜉𝑡) − 𝐻𝑥𝑡−1 (2) 

 𝐵𝑦𝑡 = 0 (3) 

 𝐶𝑦𝑡 −𝐷𝑥𝑡 ≥ 0 (4) 

 𝐶𝑦𝑡 +𝐷𝑥𝑡 ≤ 𝐶𝑦max  (5) 

 𝑥𝑡 , 𝑦𝑡 ∈ 𝑌𝑡 (6) 

 𝑥𝑡 ∈ ℝ𝑘1 ∙ ℤ𝑘2 , 𝑦𝑡 ∈ ℝ𝑙1 ∙ ℤ𝑙2, (7) 
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where the objective function (1) consists of a present profit function, 𝑓𝑡(𝑥𝑡, 𝑦𝑡), and the expected future 

profit function, 𝛼𝑡(𝑥𝑡). 𝑥𝑡 and 𝑦𝑡 are respectively the state and stage variables. State variables carry 

information between stages, e.g. reservoir levels, whereas the stage variables only represent variables 

within the stages. The inflow is given by the function ℎ𝑡(𝜉𝑡), where 𝜉𝑡 is the normalized inflow. The 

matrices 𝑊,𝐺,𝐻, 𝐵, 𝐶, 𝐷 are of suitable dimensions, representing the given hydropower system. The 

time-linking constraint (2) includes all reservoir balances and generator state time-couplings. The energy 

balance is given by (3) and the constraints describing the system’s ability to provide capacity reserves 

is given in (4) and (5). The generation function and other miscellaneous constraints, such as bypass 

limits, spillage limits and other system dependent constraints are included in (6).  

 

3.1. Generation function 

The generation function describes how the hydropower station’s discharge relates to the output power, 

usually modelled as a piecewise linear function. The function is typically computed when the 

hydropower station is built. This function provides data input to the scheduling models and as a control 

that the station meets the efficiency as promised by the contractors. As the efficiency may deteriorate 

over time, the more recent the measurements, the better. Advantageously, a system with continuous 

measurement could give the best result in terms of describing the generation function most accurately. 

The methods proposed in this work will work irrespective of the measurement approach, it would just 

require some prepossessing of the data. 

 

 
Figure 1: Illustration showing the mathematical notation of the generation function. 

 

The line between two points in the generation function is referred to as a segment. Extending on the 

notation from previous section, the generation function is modelled as follows 

 
 0 ≤ 𝑞𝑖(𝑄𝑖

Max − 𝑄𝑖
Min)𝑥𝑖 ∀ 𝑖 ∈ 𝑆 (8) 

 𝑝𝑖 = 𝑃𝑖
min𝑥𝑖 + 𝜂𝑖𝑞𝑖 ∀ 𝑖 ∈ 𝑆 (9) 

 ∑𝑥𝑖
𝑖∈𝑆

≤ 1 
 (10) 

 

 𝑝 = ∑ 𝑝𝑖𝑖∈𝑆 ,  (11) 

 

where 𝑞𝑖 is the discharge (in 𝑀𝑚3) for segment 𝑖, 𝑄𝑖
Min and 𝑄𝑖

Max are the minimum and maximum 

discharge for each segment, 𝑝𝒊 is the generation (in MW) for each segment, 𝑃𝑖
Min is the minimum 

generation for each segment, 𝑥i is a binary variable indicating whether the segment 𝑖 is active or not, 𝑝 

and 𝑝𝑖 is, respectively, the overall generation and generation for the individual segments in the set 𝑆 of 

segments. An illustration of the generation function is given in Figure 1. Observe that even though the 

illustration depicts a concave function the method also applies to the nonconcave case, which is an 

important aspect in this paper. A concave generation function would imply that the first segment has the 

best efficiency, i.e. best power output for a given discharge, while the other segments are decreasingly 
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worse. This case would need no binary variables to ensure that the efficiency of each segment is used 

correctly, since the model will always use the segment with the best efficiency first and the rest 

followingly. 

 

3.1.1. Area removal algorithm 

The following section describes the greedy algorithm used to reduce the number of segments in the 

generation function. The idea is taken from [12], where the authors apply the method on bid curves for 

a hydropower producer. The underlying idea is that you should remove points in the function that alter 

its geometric shape as little as possible. Illustration given in Figure 2. 

 

das  
Figure 2: The figure shows a part of the generation function and how the area (A) is computed between 

three adjacent points.  

 

The algorithm computes the area between two adjacent point for all the points on the curve.  The point 

that has the lowest computed area is removed. This procedure is repeated until a desired amount of 

points are removed.  

 

 

 

 

 
 

Figure 3: Illustration of the generation function. Right axis indicates the area of the 

triangle computed with the two adjacent points. Note that we are illustrating the energy 

equivalent [𝐤𝐖𝐡/𝐦𝟑]. This is done to get a better visualization of the curve. Left: The 

original generation function. Right: The generation function after eight points have 

been removed by the area removal technique. 

 

  

Figure 3 shows the generation function and the area between the adjacent points for the original function 

and for the function when eight points have been removed. As expected the geometric shape of the 

function is very much kept, even though half of the points on the curve has been removed. Below, in 

Figure 4, the accumulated area that is removed from the function is plotted. It is evident that there are 

many points on the curve that can be removed with almost no impact. After a certain threshold the 

accumulated area increases significantly, giving an initial indication for how much the function can be 

reduced. 
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Figure 4: Bar graph of the accumulated area between adjacent points in the generation function that are 

removed. As illustrated, there are many points that can be removed with little impact on the shape of the curve, 

followingly the more points removed, the more significant this impact becomes.  

3.1.2. Segmented regression method 

Segmented regression is applied to reduce the number of points in the generation function. This is done 

with the R library segmented [13]. It is an iterative approach where the user suggests starting 

breakpoints. Being a statistical approach, it would be beneficial with a lot of data to fit the curve. In such 

sense, the approach would be well suited for a system that does continuous measurements. Nonetheless, 

the approach provides results well fitted to the original data, as seen in Figure 5. 

 

 
Figure 5: The generation function is given by the filled dots. The line going through the circles are the results 

from the segmented regression. Observe that there are two generators in the power station, each fitted 

individually. 

4. Case Study 

Two power stations are investigated in the study. The first, Station A, consists of a single generator unit 

with 45 MW installed capacity. The second, Station B, consists of two generator units, each with 210 

MW installed capacity. Both stations only have Francis turbines installed.   

 

The two systems are solved with a time horizon of two years with weekly uncertainty of inflow. For 

simplicity, the energy prices and capacity reserve prices are modelled as deterministic. The week is then 

separated into 21 time periods, three for each day indicating morning, mid-day and evening.  

 

The SDDiP approach is applied, described in [10] [11], to solve the hydropower scheduling problem. 

The problem is solved with the original generation function and an EFP function is obtained, which in 

turn is used to simulate with the different reductions of the generation function. For each simulation 100 

different scenarios are generated that are used to evaluate the expected results, for all simulations. To 

compare the results to what is normal approach for this problem type in operative models today, a case 
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where the generation function is concave is performed. Lastly, some tests are performed on how Station 

A would be operated given that there is a time period in the summer months that requires a minimum 

discharge, due to environmental constraints. 

 

5. Results and Discussion 

The following section outlines some results from the case studies and discusses its implications. 

 

Table 1 and Table 2 shows some of the results obtained from the different simulations. The area removal 

algorithm (A. Rem.), segmented regression method (Seg. Reg.) and Concave case (Conc.) was run. The 

tables depict the computation time of each simulation, the expected objective value, deviation in shape 

of the duration curve and total generation from the original problem, given by the first column. The 

second row of the table indicates how many points on the curve has been removed from an original total 

amount of 18 and 11 in System A and B, respectively.  

 
Table 1: Results from System A. Simulation time is given in seconds, whereas the other values are given as a 

percentage. Val. represents the expected objective value, Dur. indicates the percentage deviation of the duration 

curve compared to the original problem. Gen. is the expected generation for the two years. 

 A. Rem  Seg. Reg.  Conc. 

 0 2 4 6 8 10  8 9A 9B 10   

Time 920 895 763 668 614 523  555 522 521 475  59 

Val. 0.00  0.00 0.01 0.00 0.00 -0.03  -0.01 -0.02 -0.01 -0.01  2.22 

Dur. 0.00  0.67 0.69 0.67 1.33 2.62  3.10 4.39 4.77 4.28  13.02 

Gen. 0.00  -0.01 0.02 -0.01 -0.30 -0.15  -0.14 0.46 -0.24 -0.11  0.34 

 

As expected the computation time drops significantly with the number of points being removed. This is 

especially evident for the concave case where there are less constraints and binary variables in the 

problem. Moreover, one can observe that the expected objective is not changed much between the cases. 

This is due to the fact that points on the generation curve are being removed regardless whether it results 

in an increase or decrease in overall efficiency. The changes in shape of the duration function increases 

the more points are removed from the generation function. This is especially clear for the segmented 

regression case, but not unexpected as seen from Figure 5, where the best operating points shift slightly. 

Lastly, another expected result occurs where there is a positive change in generation for the concave 

case.  

 
Table 2: Results from System B. Simulation time is given in seconds, whereas the other values are given as a 

percentage. Val. represents the expected objective value, Dur. Indicates the percentage deviation of the duration 

curve compared to the original problem. Gen. is the expected generation for the two years. 

 A. Rem.  Seg. Reg.  Conc. 

 0 2 4 6 8  6 7   

Time 335 284 238 218 180  197 178  77 

Val. 0.00 -0.03 -0.01 -0.05 -0.58  0.01 0.09  2.05 

Dur. 0.00 0.16 0.50 0.52 9.99  1.04 2.95  15.09 

Gen. 0.00 0.00 -0.04 0.06 -0.76  0.09 0.01  1.02 

 

The duration curve for selected simulations are shown in Figure 6 illustrates some duration curves for 

System A. The degree of regulation, i.e. the system’s ability to store water for usage at a later stage, is 

very high for the system. Thus, the model will shift as much of the generation as possible to the hours 

in the winter where the prices are highest. Also, considering that the efficiency of the station is low at 

low power outputs the model will tend to avoid such operation. The best efficiency of the station is 

obtained around 180 MW, where a large portion of the generation comes from. Note that the concave 
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generation function is not able to represent the low efficiency at low power outputs, some generation is 

therefore observed around 60 MW for this simulation. The yellow line shows the duration curve for the 

simulations with the segmented regression method applied. As expected the generation points are 

somewhat shifted from the original problem. This illustrates the importance of the generation function 

modelling on the operation of the power station. This method would, as above-mentioned, get a much 

more robust representation of the generation function had there been more measurements to fit. 

 

 

 

 
Figure 6: Duration curve for a selection of the 

results from System A. A. Rem. refers to the Area 

removal method and how many points are remove. 

Seg Reg 8 is for the segmented regression and the 

grey line is for the concave generation function.  

 Figure 7: Duration curve for a selection of the 

results from System B. Minimum discharge limit 

during summer months.  

 

Figure 7 shows the duration curve when Station B ran with a minimum generation requirement during 

the summer months. This would result in much less flexibility in terms of storing the water for the hours 

of the year with highest prices. The simulations were performed as a test to investigate how the system 

reacts to generation on lower power outputs. The minimum power output for the station is 15 MW, as 

seen in the figure where most of the power station operation is performed. The tests were performed 

with the original generation function and the concave one. It can be seen that the shape of the duration 

curves is very much similar, but with much less generation for the original, nonconcave, problem. This 

shows a significant drawback with the concave generation function, it overestimates the efficiency of 

the station and therefore assume that it can generate more electricity than what is possible. For the given 

case the simulation with concave generation function had an expected generation of 14.1% more than 

the original one, indicating how much the generation can be overestimated for simplifications of the 

generation function. For the other simulations this number was lower (1.02% and 0.34%), showing that 

how the station is operated has an impact on how much detail should be included in the generation 

function. Since it is expected that the market for ancillary services will grow and increased 

environmental constraints will occur, more operation of power stations at low power output can be more 

common in the future. 

 

6. Conclusion and Further Work 

In the given paper a segmented regression approach and a greedy algorithm have been proposed and 

tested to simplify the piecewise linear generation function used to model hydropower stations. Impacts 

from environmental constraints and how they alter the operation has been examined, demonstrating the 

importance of a more detailed modelling of the generation function.  

 

The assumption that the generation function is only dependent on discharge is reasonable for stations 

with high head and less regulation of the reservoirs. On the contrary, if this is not the case further work 

will investigate methods that can include the head dimension in the generation function.  
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