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Abstract

The study of very long-term ocean climate is of great interest in a num-
ber of different applications. In a climate change perspective, estimations
of return values of wind and wave parameters to a future climate are of
great importance for risk management and adaptation purposes. However,
there are various ways of estimating the required return values, which in-
troduce additional uncertainties in extreme weather and climate variables
pertaining to both current and future climates. The different approaches
that are considered in the present work include the annual maxima ap-
proach, the block maxima approach, and the MENU method which is based
on the calculation of return periods of various level values from nonsta-
tionary time series data. Furthermore, the effect of different modelling
choices within each of the approaches will be explored. Thus, a range of
different return value estimates for the different data sets is obtained for
a field of datapoints. Long-term datasets for an area in the North Atlantic
Ocean are used in the present study, derived for project ExWaCli, com-
prising of 30 years in the present (historic period) and two sets of 30 years
in the future (future projections). The comparison between the results of
the various approaches reveals a variability of the return period estimates,
and an assessment of this is given. Moreover, it seems that a slight shift
towards higher extremes in a future wave climate might be possible based
on the particular datasets that have been analysed.
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INTRODUCTION

Extreme value analysis of wave climate parameters is an important part of ocean
and coastal engineering where the extreme loads from extreme environmental
conditions need to be taken into account.

Several previous studies have discussed the bias and uncertainty of extreme
value prediction of metocean parameters, see e.g. [1–3]. Uncertainty of extreme
value prediction is divided into statistical uncertainty and modelling uncertainty
in [4], which also investigates the impact on structural reliabilities. The uncer-
tainty of design values from extreme value analyses is also addressed in [5] and
different methods of extreme value estimation of wind speeds are compared in
[6]. Some fundamental problems in extreme value analysis such as uncertain-
ties due to plotting position, the fitting method and due to the fact that the
asymptotic conditions are never fulfilled in practice are discussed in [7].

It is noted that there are several sources of uncertainties of future climate
projections that are not investigated in this paper. The climate scenario is
obviously important, and only two future scenarios are considered in this study.
However, studies have demonstrated that the choice of climate model might
contribute more to the overall uncertainty of the future wave climate than the
climate scenarios themselves [8–12]; see also [13]. Future projections of waves
are typically obtained by using wind output from climate models as input to
numerical wave models, and also the choice of wave model, the downscaling
method and the model resolution will have a big impact on the results. Hence,
the uncertainties associated with future wave climate extremes are not restricted
to the uncertainties due to the statistical extreme value analysis which is the
focus of this paper. Nevertheless, these uncertainties remain important and will
also be equally present in the estimation of extremes in historical, present and
future climates.

There are large uncertainties associated with extreme value analyses, and the
uncertainties generally increase for higher return periods. Ideally, long enough
time series should be available to reliably extract return values. In practice, how-
ever, return periods much longer than the length of recorded data are needed.
Therefore, there is a need to extrapolate in order to obtain estimates of the
tail behaviour of the underlying statistical distributions. Intuitively, the further
away from the data one has to extrapolate, the larger the uncertainties of the
resulting estimates will be. As a rule of thumb, for example, the ISO standard
ISO 19901-1 [14] recommends not to use return periods more than a factor of
four beyond the length of the data set when deriving return values for design
of offshore structures. Hence, for the datasets analysed in this paper, covering
a period of 30 years, the longest return periods that should be investigated are
120 years.

There is a number of different approaches to extreme value analysis and
return value estimation, which all rely on a set of assumptions. The initial
distribution approach fits a statistical model to all the data under the assump-
tion of independent and identically distributed (iid) observations and estimate
high return values by extrapolating the fitted distribution to high quantiles cor-

2



responding to the desired return periods. However, one fundamental problem
with this approach is that it often captures the area close to the mode of the
distribution quite well, but gives poor fit to the tail of the distribution.

Some of the classical approaches to extreme value analysis rely on assump-
tions on the asymptotic behaviour of the extremes as the number of observations
approaches infinity. These methods will typically assume that the data are iid,
i.e. that the observations are realizations from the same stationary process and
can be constructed as independent samples drawn from the same probability
distribution. Predicting return periods and the corresponding design values by
using data based on annual maxima, essentially overcomes difficulties concern-
ing the validity of iid assumption, as well as the fact that the distribution of the
initial population is unknown. In addition, a relatively small number of long-
term (say, thirty years) records of wave measurements are usually available,
which means that a relatively small population of annual maxima is available.

Two other commonly used approaches to extreme value analysis are the block
maxima (BM) approach and the Peaks Over Threshold (POT) approach. An
obvious drawback with these approaches is that they are wasteful and only ex-
ploits a small subset of all the data available. An introduction to these methods,
along with a general introduction to the theory behind extreme value analysis
can be found in [15]. Recent applications of the POT approach to analyse the
extremes of ocean waves are presented in e.g. [16, 17].

A more recent method for extreme value analysis that allows for the as-
sumptions of independence to be relaxed is proposed in [18], i.e. the Average
Conditional Exceedance Rate Method (ACER). A further generalization to the
bivariate case has also been presented in [19].

A full Bayesian approach to extreme value modelling is set forth in [20],
and a Bayesian hierarchical model is presented in [21] for estimating extremes
from climate model output. A review of Bayesian approaches to extreme value
methods are given in [22]. An alternative approach to estimate return values of
significant wave height, referred to as the (modified) Rice method is proposed
in [23].

A further step would be to take into account the dependence structure of the
time series by modelling it as, e.g., a stationary stochastic process and calculate
its extremes based on the theory of these processes [24]. However, existing
wave datasets (measurements) have shown that they can hardly be considered
stationary.

The last decades, advanced models for the representation of time series of
wind and wave parameters have been proposed; see, e.g. [25–28]. These more
sophisticated time series models aim to significantly improve stochastic predic-
tions of extreme values. According to these, except for the stochastic character
of the series, the dependence structure and the seasonality exhibited are ap-
propriately modelled. Then, the theory of periodically correlated stochastic
processes can be used for the extreme-value predictions.

The nonstationary modelling of wind and wave time series is further com-
bined with a non-Gaussian modelling of the second-order probability structure,
to calculate return periods from nonstationary time series. Return period as-
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sociated with the level value x∗ is calculated as the time period in which the
MEan Number of Upcrossings of the level x∗ becomes equal to unity (MENU
method) [29].

In the following, several of the aforementioned extreme-value analysis ap-
proaches are applied to wind and wave climatic data for a historical period and
for two future climate projections. First, the metocean data will be described
and then the various approaches implemented. Then, results from the differ-
ent extreme value methods will be presented, compared and discussed. Similar
analysis for a different wave dataset from other sources have been presented
in [30]. In the present paper, both wind and wave data for a large amount of
data points (one hundred) have been analysed allowing us: a) to investigate
the variability of the extreme estimates of annual maxima methods as well as
MENU method, and b) to have a first estimate of the spatial variability of the
extreme values for the specific area. The latter will be further investigated in a
future work and be compared with different methods such as regional frequency
analysis [31].

WIND AND WAVE DATA

For the purpose of this study, three particular datasets have been used. These
have been generated by Meteorological Institute of Norway within the ExWaCli
project by running the numerical wave model WAM [32] for an area in the
North Atlantic with forcings from six CMIP5 climate models listed in [33].
Altogether, the historical and future wave model integrations amount to about
1,000 simulated years, which were combined in one model ensemble, where each
model is given equal weight by first averaging the ensemble members for each
model. One can find more information about ExWaCli datasets in [33]. See also
[34].

The referred area is in the North-eastern Atlantic Ocean, west of British
Isles, and the grid, which consists of 10×10=100 datapoints, is shown in Fig. 1.
At each datapoint, three-hourly time series of significant wave height and wind
speed are available.

The three datasets correspond to a 30-year historical period (1970–1999)
and two future periods (2071–2100) consistent with the RCP 4.5 and RCP 8.5
scenarios, respectively. See also [35, 36].

Summary statistics have been derived from the datasets as well as quantiles
of the empirical distributions. The results are presented in Tables 1–2. For each
statistic, the mean value and the range within the various datapoints is given.
In addition, in Figs. 2–3, the same statistics are plotted for all datapoints for
the historical period.

An interesting observation is that the variation of the statistics is slightly
higher (larger range) in the historical period than in the two future scenarios.
Concerning the extremes, the quantiles above 90% are higher in both future
scenarios, with few exceptions. Also, in Figs. 2–3, it can be observed that the
empirical distributions of significant wave height seem to have a longer tail than
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Table 1: Basic statistics and quantiles for HS (m)

Historic RCP 4.5 RCP 8.5
Stats Range Mean Range Mean Range Mean
Mean [ 3.23 - 3.55 ] 3.44 [ 3.09 - 3.36 ] 3.29 [ 3.11 - 3.35 ] 3.29
St.Dev. [ 1.85 - 1.97 ] 1.91 [ 1.79 - 1.89 ] 1.85 [ 1.83 - 1.90 ] 1.88
Min [ 0.32 - 0.53 ] 0.43 [ 0.25 - 0.38 ] 0.31 [ 0.27 - 0.55 ] 0.41
Max [15.93-20.80] 18.90 [16.54-19.40] 18.07 [17.33-19.02] 18.32
10% [ 1.31 - 1.50 ] 1.44 [ 1.27 - 1.43 ] 1.40 [ 1.24 - 1.39 ] 1.36
25% [ 1.85 - 2.09 ] 2.01 [ 1.78 - 1.99 ] 1.94 [ 1.77 - 1.96 ] 1.92
50% [ 2.80 - 3.11 ] 3.01 [ 2.69 - 2.93 ] 2.88 [ 2.68 - 2.94 ] 2.87
75% [ 4.16 - 4.54 ] 4.40 [ 3.96 - 4.27 ] 4.19 [ 3.99 - 4.27 ] 4.20
90% [ 5.73 - 6.20 ] 6.01 [ 5.41 - 5.82 ] 5.69 [ 5.55 - 5.85 ] 5.76
99% [ 9.13 - 9.95 ] 9.60 [ 9.16 - 9.74 ] 9.45 [ 9.20 - 9.73 ] 9.56
99.9% [12.06-13.35] 12.83 [12.75-13.89] 13.31 [12.17-13.39] 13.12
99.99% [14.65-17.72] 15.88 [15.83-17.24] 16.64 [15.18-17.30] 16.47

Table 2: Basic statistics and quantiles for WS (m/s)

Historic RCP 4.5 RCP 8.5
Stats Range Mean Range Mean Range Mean
Mean [ 9.53 -10.13] 9.76 [ 9.37 - 9.86 ] 9.53 [ 9.40 - 9.90 ] 9.57
St.Dev. [ 4.36 - 4.56 ] 4.44 [ 4.27 - 4.46 ] 4.34 [ 4.32 - 4.44 ] 4.36
Min [ 0.00 - 0.10 ] 0.04 [ 0.00 - 0.10 ] 0.04 [ 0.01 - 0.11 ] 0.04
Max [27.00-32.33] 29.15 [27.35-33.61] 29.50 [28.02-32.15] 29.93
10% [ 4.02 - 4.39 ] 4.15 [ 3.90 - 4.32 ] 4.09 [ 3.94 - 4.35 ] 4.12
25% [ 6.27 - 6.75 ] 6.47 [ 6.16 - 6.59 ] 6.32 [ 6.20 - 6.65 ] 6.38
50% [ 9.19 - 9.82 ] 9.43 [ 9.03 - 9.50 ] 9.20 [ 9.03 - 9.55 ] 9.22
75% [12.45-13.17] 12.74 [12.17-12.76] 12.38 [12.20-12.81] 12.41
90% [15.55-16.36] 15.85 [15.18-15.94] 15.44 [15.32-15.92] 15.51
99% [20.20-21.30] 20.68 [20.11-21.27] 20.53 [20.48-21.23] 20.74
99.9% [23.57-24.76] 24.10 [23.65-25.17] 24.36 [23.95-25.28] 24.55
99.99% [25.74-28.25] 26.79 [26.25-28.39] 27.30 [26.99-29.04] 27.89

in wind speed. This fact will help us later to choose appropriate probability
distribution for the wind and wave parameters.

EXTREME VALUE ANALYSIS OF WIND AND
WAVE PARAMETERS

In the following, the datasets for significant wave height presented above will be
subject to different extreme value analysis methods and it will be investigated
how sensitive the results are to the choice of method and different choices within
each method. Obviously, the actual results are conditioned on this dataset, but
it is believed that it will still give a good indication of the uncertainties in
extreme value analysis. The approaches that have been applied are different
variations of the annual maxima approach, the GEV approach, and the MENU
method.

The annual maxima approach

Let us now assume that, we have a sequence of successive maximum values of
wind and wave parameters corresponding to fixed time intervals (e.g., months,
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Figure 1: Grid of ExWaCli datapoints.

years, etc). Predicting return periods and the corresponding design values by
using data based on annual maxima essentially overcomes all difficulties con-
cerning the initial distribution mentioned above. For, now the distribution of
the population of maxima, denoted by G(x), is known as n→∞ [37], and it is
the Generalized Extreme Value (GEV) distribution

G(x;λ, δ, k) =


exp

{
−
[
1− k x− λ

δ

]1/k}
, k 6= 0,

exp

{
− exp

[
−x− λ

δ

]}
, k = 0,

(1)

where λ, δ > 0, and −∞ < k < +∞.
The estimation of return periods for high levels x∗ is

TR(x∗) =
∆τ

1−G(x∗)
, (2)

where the extreme population distribution G(x) is used instead of the initial
population distribution F (x).

The use of G(x) instead of F (x) in equation (2), is justified by the fact that
the two distributions G(x) and F (x) are right-tailed equivalent; see, e.g., [37].
The selection of the type of G(x) should be based on the behaviour of Gemp(x)
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Figure 2: Basic statistics and quantiles for HS (m)

Figure 3: Basic statistics and quantiles for WS (m/s)
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(empirical distribution) at the right tail only. Usually, annual maxima are well
modelled by means of the Gumbel distribution, which is a special case of GEV.

There are numerous different approaches for the estimation of the parameters
of Gumbel distribution; see, e.g., [37, and references cited therein]. The following
four have been selected for the present study:

(i) The probability paper method.
In this method, a straight line y = ax + b is fitted by the least-squares
method to the data appropriately plotted on Gumbel probability paper.
For this, the classical plotting positions πn=n/(N + 1) are used. The
parameters of the distribution are given by

δ =
1

a
, λ = − b

a
, (3)

where a and b are the parameters of the straight line.

(ii) The probability paper method with different plotting position.
The method is exactly the same with (i), except that it uses as plotting
positions πn=(n− 0.44)/(N + 1).

(iii) The L-moments method.
Hosking proposed the concept of L-moments of a random variable [38, 39].
Using L-moments, the parameters of Gumbel distribution are given as
follows:

δ =
L2

ln 2
, λ = L1 − 0.5772

L2

ln 2
, (4)

where L1, L2 are the first two L-moments defined by

L1 =
1

N

N∑
i=1

X(i), L2 =
2

N

N∑
i=1

i− 1

N − 1
X(i) − L1. (5)

(iv) The method of moments.
The parameters of the Gumbel distribution are estimated by means of the
mean value and the standard deviation of the data, as follows:

δ = sx

√
6

π
, λ = mx + γ δ, (6)

where mx and sx are the sample mean value and the standard deviation,
respectively, and γ is the Euler’s constant.

In principle, Gumbel’s approach forms a sound methodology for predict-
ing long-term extreme values and the corresponding return periods. The most
serious problem with this approach is the lack of sufficiently large extreme pop-
ulation data samples that would permit the type of distribution to be safely
selected and its parameters to be reliably estimated.
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The GEV approach

As it is mentioned in the previous subsection, one can decide to fit instead of
Gumbel the general form of GEV model to block of maxima [15]. Block sizes
of one year is typical, but different block sizes can be investigated. Further-
more, it is implicitly assumed that the maxima are independent and identically
distributed (iid). Within a climate change perspective, this approach needs to
assume that the extremes can be considered stationary within each of the time
intervals, i.e. that the extremes are stationary during the 30-year reference pe-
riod and the 30-year projection period. If the effect of any long term trend is
small compared to the other variability, this might not be a very unrealistic
approximation; see, e.g., [40].

Thus, different GEV-models can be fitted with block sizes corresponding
say to six months, one or two years etc. The different block sizes give different
subsets of the data for fitting; small block sizes give a larger sample to fit to
the model, but the iid assumption becomes less obvious. For example, using
the semiannual maxima over the 30 year periods gives 60 samples and assumes
that the distributions of wave heights are the same for the first six months of
the year as for the last six months. Using the biennial maxima, on the other
hand reduces the sample size to 15.

In the present study, annual blocks have been chosen and return periods for
them have been calculated by fitting both a GEV and a Gumbel model to the
annual maxima.

The MENU approach

The MENU method is based on the MEan Number of Upcrossings of a level
value x∗, given by

M(x∗; t1, t2) =
1

2

∫ t2

t1

∫ +∞

−∞
|ẋ| fXẊτ,τ (x∗, ẋ)dẋ. (7)

The return period TR(x∗, t) associated with the level x∗ and the starting time
t is calculated as the unique value T for which

M(x∗; t, t+ T ) = 1. (8)

For a detailed description of MENU method; see e.g. [29].
It should be noted that, Eq. (7) is totally independent from the specific

modelling adopted for the joint pdf fXẊτ,τ (s1, s2).
In the present work, this pdf is obtained by exploiting the following nonsta-

tionary time series modelling [25, 28]. Assume that, a stochastic process X(τ)
admits of the representation:

X(τ) = G(τ) + σ(τ)W (τ), (9)

where G(τ) and σ(τ) are deterministic time-dependent periodic functions and
W (τ) is a zero-mean stationary stochastic process, which will be called hereafter
the residual stochastic process.

9



Especially, the function G(τ) is defined as

G(τ) = Xmean + µ(τ), (10)

where Xmean is the overall mean value of the process X(τ), and µ(τ) is the
seasonal mean value and σ(τ) is the seasonal standard deviation of the process.

By differentiating Eq. (9), the representation of the derivative Ẋ(τ) is ob-
tained:

Ẋ(τ) = Ġ(τ) + σ̇(τ)W (τ) + σ(τ)Ẇ (τ). (11)

The functions Ġ(τ) and σ̇(τ) are the derivatives of G(τ) and σ(τ) with respect to
τ . According to their definition, all these functions Ġ(τ) and σ̇(τ) are periodic.

Eqs (9) and (11) are considered as a linear system (time-dependent trans-
formation) defining X(τ) and Ẋ(τ) by means of W (τ) and Ẇ (τ).

Thus, the calculation of pdf fXẊτ,τ (s1, s2) is reduced to the evaluation of the

time-invariant bivariate pdf fWẆ
τ,τ (v1, v2), which, in turn, is obtained on the

basis of pdf fWW
τ,τ+∆τ (u1, u2). For the modelling of fWW

τ,τ+∆τ (u1, u2), the bivariate
Plackett model with given marginals is used. In our study, two different uni-
variate pdfs have been used for the estimation of the univariate pdf of W (τ):
Weibull for the wind speed and Lognormal for the significant wave height.

Concluding, for the application of MENU method, two components are re-
quired:

1. Estimations of the seasonal mean value and seasonal standard deviation
and their derivatives, and

2. Estimations of the parameters of the joint probability density function of
W (t) and W (t+ τ).

NUMERICAL RESULTS

In the sequel, the methods for predicting extreme values presented above have
been applied to the datasets of significant wave height and wind speed (100
datapoints) for the three climatic scenarios (one historic and two future).

The first four are variants of the Annual maxima approach using the Gumbel
distribution. The fifth applies the GEV distribution again to annual maxima
blocks, and the sixth applies the MENU method.

The periods are marked in the tables and figures as “Hst” for Historic, “R45”
for RCP 4.5, and “R85” for RCP 8.5.

It should be noted that, the following results are conditioned on the partic-
ular dataset analysed and the particular area in the North Atlantic Ocean, and
further studies might be needed in order to confirm the findings.

Significant wave height

In Figs. 4–7, the results for the four variants of the Gumbel approach are de-
picted. In Fig. 8 the results for the GEV distribution and in Fig. 9 the results
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for MENU. These figures are based on the data of the Historic period. Similar
figures were also obtained for the two future scenarios and are omitted due to
space limitation.

By inspecting these figures, one can notice the great spatial variability in all
methods, which can partially be justified by the fact that each line represents
a different geographical location and not exactly the same point. Especially, in
the four first methods (Gumbel) the variability of the estimates is very high.

Also, it seems that the variability is increased as we go to higher return
periods.

In Table 3, basic statistics (mean value, standard deviation, min and max
value) are summarized for one low (20-year) and one high (100-year) return
period for the three climatic scenarios. The mean value shows the average
behaviour of the 100 points, while the min and max values show the span where
the estimates range. This reflects the spatial variability across the geographical
area.

According to the results, it seems that the GEV distribution gives on the
average the lowest estimates than the other methods,and the Gumbel approach
(iv) the highest. In addition, MENU seems to have a more homogeneous spatial
behaviour with lower standard deviation and narrower span between the min
and the max value.

Another important feature is that the estimates for the future scenarios are
a bit higher than the historic one. In addition, the estimates have a narrower
range in the future scenarios, showing a more homogeneous spatial behaviour.

Furthermore, in order to examine the spatial variability of the return periods,
field plots have been produced for various methods and various return periods.
In this way, one can compare the spatial variability of the estimates based on
different methods of estimation.

For example, in Figs 10–11, such kind of fields are plotted for the estimates of
100-year return period for the Gumbel approach (i) and the MENU method for
the historic (Hst) scenario. There one can observe that the Gumbel estimates are
increased in the south-north direction, while the MENU estimates are increased
in a southwest-northeast direction. Comparing the two fields, one can infer that
greater differences are found in the south than in the north.

Similar figures were also obtained for the two future scenarios and are omit-
ted due to space limitation.

Wind speed

In Figs. 12–15, the results for the four variants of the Gumbel approach are
depicted. In Fig. 16 the results for the GEV distribution and in Fig. 17 the
results for MENU are shown. These figures are based on the data of the Historic
period. Similar figures were also obtained for the two future scenarios and are
omitted due to space limitation.

Here the spatial variability is even greater than in wave height. Especially
for the future scenarios, it seems that it has been doubled. Again it should be
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Figure 4: Gumbel (i)

Figure 5: Gumbel (ii)
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Figure 6: Gumbel (iii)

Figure 7: Gumbel (iv)
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Figure 8: GEV

Figure 9: MENU
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Figure 10: Gumbel field (100 years)

Figure 11: MENU field (100 years)
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Table 3: Statistics for HS−return values. [(1)–(4): Gumbel, (5): GEV, (6):
MENU]

Statistic (1) (2) (3) (4) (5) (6)
Hst 20-mean 17.90 17.47 17.34 18.98 17.17 17.50
Hst 20-std 1.10 1.01 0.95 1.29 1.02 0.61
Hst 20-min 16.19 15.90 15.93 17.02 15.43 16.38
Hst 20-max 19.92 19.35 19.08 21.40 19.13 18.99
Hst 100-mean 20.87 20.20 19.99 21.53 19.36 20.56
Hst 100-std 1.65 1.52 1.41 1.76 1.66 0.72
Hst 100-min 18.41 17.95 18.00 18.93 16.61 19.25
Hst 100-max 24.02 23.12 22.67 24.90 23.24 22.30
R45 20-mean 18.49 18.05 18.04 19.70 17.11 17.69
R45 20-std 0.34 0.33 0.31 0.37 0.28 0.57
R45 20-min 17.40 17.02 17.02 18.45 16.01 16.79
R45 20-max 19.07 18.63 18.62 20.34 17.69 18.86
R45 100-mean 21.82 21.13 21.12 22.54 19.00 20.74
R45 100-std 0.44 0.42 0.39 0.46 0.47 0.64
R45 100-min 20.33 19.74 19.76 20.95 18.07 19.75
R45 100-max 22.55 21.83 21.85 23.30 20.43 22.08
R85 20-mean 18.06 17.62 17.53 19.21 17.28 18.68
R85 20-std 0.41 0.40 0.42 0.45 0.35 0.28
R85 20-min 16.55 16.14 16.01 17.62 16.03 18.14
R85 20-max 18.77 18.30 18.22 20.05 17.91 19.26
R85 100-mean 21.20 20.51 20.38 21.89 18.94 21.99
R85 100-std 0.52 0.51 0.54 0.54 0.53 0.33
R85 100-min 19.41 18.75 18.55 20.07 17.30 21.28
R85 100-max 22.23 21.48 21.37 23.01 20.01 22.69

noted that each line represents a different geographical location and not exactly
the same point, which partially justifies this.

In Table 4, the same basic statistics (mean value, standard deviation, min
and max value) are summarized for the two return periods (20- and 100-years)
for the three climatic scenarios.

According to the results, it seems that GEV distribution gives again on the
average the lowest estimates than the other methods,and the Gumbel approach
(iv) the highest. In addition, MENU seems to have a significantly more homo-
geneous spatial behaviour with very low standard deviation and narrow span
between the min and the max value, especially for the higher return periods.

Furthermore, the estimates for the future scenarios are again a bit higher
than the historic one. However, the estimates do not have a narrower range in
the future scenarios, but exhibit similar high variability in all three scenarios.

Concerning the spatial variability of the return periods, field plots for the
various methods/return periods have been generated. An example is shown
in Figs 10–11, where such kind of fields are plotted for the estimates of 100-
year return period for the Gumbel approach (i) and the MENU method for the
historic (Hst) scenario. There one can observe that the Gumbel estimates have
a similar behaviour as in the wave height results, whereas the MENU estimates
are increased in a west-east direction (rather than the SW-NE direction in the
wave height results). Again, greater differences are found in the south than in
the north.

Similar figures were also obtained for the two future scenarios and are omit-
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Table 4: Statistics for WS−return values. [(1)–(4): Gumbel, (5): GEV, (6):
MENU]

Statistic (1) (2) (3) (4) (5) (6)
Hst 20-mean 28.82 28.47 28.38 29.73 27.99 29.36
Hst 20-std 0.77 0.71 0.67 0.92 0.82 0.41
Hst 20-min 27.72 27.47 27.36 28.37 26.64 28.63
Hst 20-max 31.03 30.53 30.36 32.32 30.11 30.17
Hst 100-mean 31.36 30.80 30.66 31.88 29.52 31.20
Hst 100-std 1.15 1.04 0.97 1.25 1.59 0.44
Hst 100-min 29.69 29.29 29.14 30.03 27.08 30.36
Hst 100-max 34.51 33.72 33.45 35.30 33.35 32.05
R45 20-mean 29.29 28.93 28.87 30.25 28.99 28.93
R45 20-std 0.90 0.84 0.82 1.05 0.67 0.29
R45 20-min 27.71 27.46 27.44 28.40 27.50 28.31
R45 20-max 31.81 31.28 31.09 33.16 30.43 29.70
R45 100-mean 31.94 31.37 31.28 32.51 30.37 30.75
R45 100-std 1.32 1.22 1.18 1.42 0.92 0.31
R45 100-min 29.60 29.20 29.18 30.01 28.60 30.08
R45 100-max 35.46 34.61 34.32 36.29 32.60 31.54
R85 20-mean 30.19 29.77 29.73 31.32 28.46 29.14
R85 20-std 0.79 0.75 0.73 0.88 0.81 0.28
R85 20-min 28.32 27.99 27.94 29.23 27.02 28.58
R85 20-max 31.75 31.29 31.28 33.11 30.92 29.64
R85 100-mean 33.35 32.68 32.62 34.00 30.05 30.97
R85 100-std 1.09 1.03 1.00 1.13 1.35 0.32
R85 100-min 30.83 30.30 30.28 31.37 27.73 30.28
R85 100-max 35.54 34.72 34.60 36.39 33.85 31.52

ted due to space limitation.

CONCLUDING REMARKS

This paper has revealed that there are large uncertainties associated with the
estimation of return values for high return periods in weather and climate data.
It seems that GEV approach and MENU method give better results than the
Gumbel approach, although it is difficult to single out one method or approach
that is best overall. In any case, this is out of scope for the current study, and
it should be further investigated by means of longer data records before a final
conclusion has to be drawn.

In spite of the large variability of the different return value estimates, there
seems to be evidence in the data for a slight increase in the extreme wave
heights for both of the future scenarios that have been considered compared to
the historical period. Hence, these data indicate that there might be a general
trend towards more extreme wave events in a future climate. Obviously, this
result is conditioned on the particular dataset analysed and the particular area
in the North Atlantic Ocean. Further studies are needed in order to confirm or
refute these trends.

Finally, the spatial variability of the extreme values for the specific area have
been investigated. Fields of the extreme-value predictions have been produced,
revealing that part of the uncertainties discovered can be attributed to the
spatial variability of the specific dataset.
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Figure 12: Gumbel (i)

Figure 13: Gumbel (ii)
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Figure 14: Gumbel (iii)

Figure 15: Gumbel (iv)
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Figure 16: GEV

Figure 17: MENU

20



Figure 18: Gumbel field (100 years)

Figure 19: MENU field (100 years)
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