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Abstract
Efficient sampling of coastal ocean processes, especially mechanisms such as upwelling and inter-

nal waves and their influence on primary production, is critical for understanding our changing

oceans. Coupling robotic sampling with ocean models provides an effective approach to adap-

tively sample such features. We present methods that capitalize on information from oceanmod-

els and in situ measurements, using Gaussian process modeling and objective functions, allow-

ing sampling efforts to be concentrated to regions with high scientific interest. We demonstrate

how to combine and correlate marine data from autonomous underwater vehicles, model fore-

casts, remote sensing satellite, buoy, and ship-based measurements, as a means to cross-validate

and improve oceanmodel accuracy, in addition to resolving upperwater-column interactions. Our

work is focused on the west coast of Mid-Norway where significant influx of Atlantic Water pro-

duces a rich and complex physical–biological coupling, which is hard to measure and characterize

due to the harsh environmental conditions. Results from both simulation and full-scale sea trials

are presented.
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1 INTRODUCTION

The coastalwaters (CWs) ofMiddleNorway, and theFroan archipelago

is influenced by Atlantic Water (AW),∗ local water masses from the

Trondheim Fjord (FW), and CW transported by Norwegian coastal

current (NCC; Sætre, 2007). The elevated levels of mixing that occur

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

c© 2018 The Authors. Journal of Field Robotics published byWiley Periodicals, Inc.

∗ AW is defined by a salinity ≥35.0 and temperature >3 ◦C, CW has a salinity ≥34.7 and a wider temperature range (Sakshaug, Johnsen, & Kovacs, 2009), while FW is related to salinities below

34.7.

increase the nutrient transport necessary for primary production—the

main source of energy and basis for the marine food web. In addi-

tion to the influx of AW, complex coastal topography makes the region

exceptionally productive and important in terms ofmarine life and bio-

diversity, with a broader ecological, scientific, and social-economical

significance (Sætre, 2007). Despite this, little is known about the basic
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F IGURE 1 (a) The Middle-Norway coastal region and the Froan archipelago. The location of the survey area and its relation to the Norwegian
coastline (inset). (b) The physical driving forces in the Froan area, the coastal region of investigation. The convergence of different currents at the
Froan archipelago, where influx of Atlantic Water (AW) is predicted to provide nutrient rich deep water, which accentuates primary productivity.
In order to understand the region's significance it is essential to sample this influx, which is an “information hotspot”

driving mechanisms and their effect on the marine ecosystem (Asplin,

Salvanes, & Kristoffersen, 1999). The spatial and temporal scales of

ocean processes make it unrealistic to deploy vast resources to record

these dynamics in detail. Consequently, the use of ocean models to

represent the dynamics is critical for realizing sampling strategies

that return information with high scientific quality. Together with the

complex bio-geophysical interactions involved, this forms the motiva-

tion for the development of information-driven sampling strategies,

which is the focus of this paper.

With the increasing availability of high-end computational

resources accessible to oceanographers, multiresolution model-

ing of the upper water-column, for predictive or post hoc purposes,

has been a new and viable tool to understand complex interactions

between physical and biological features. However, modeling skill is

still at a level where physical, biological, and chemical features related

to ocean structure and circulation cannot be used to make accurate

predictions at scales sufficient for definite representation (Lermusi-

aux, 2006). To understand these upper water-column biogeochemical

processes, scientists have to resort to direct observations (Stewart,

2009), which are typically sparsely distributed in both time and space

leading to undersampling. Making intelligent and targeted observations

is therefore becoming exceedingly important for oceanography, which

is an expensive and demanding enterprise, restricted to static sensors

placed on buoys, or measurements taken by personnel on ships.

Recently, mobile robotic platforms, such as autonomous underwa-

ter vehicles (AUVs), have become more affordable, robust and viable

for scientific exploration, with greater functionality, increased scien-

tific payload, and in-water duration, providing an efficient platform for

autonomous collection of in situ oceanographic data.

Increasingly, ocean models and AUVs are being combined to

address this common problem of undersampling and uncertainty. We

describe one methodology involved in combining these resources

towarddeveloping samplingmethods that can capitalize on theexpres-

siveness of the model and in situ information. Having access to both

prior (model) and current (sensor) information, AUVs can operate on

an a posterior knowledge, allowing execution to be adjusted according

to the geographical context and the upper ocean feature(s) of interest.

This leads to a sampling strategy that canboth improvemodel accuracy

and exceed traditional approaches in locating and mapping oceano-

graphic phenomena. To support and verify such an approach, data

inputs from multiple sources, including remote sensing satellite data,

ship-based measurements, near real-time data from buoys, drifters,

and other robotic platforms are necessary. This in turn enables cross-

verification, assimilation, and adjustment of model parameters, as well

as analysis of AUV performance.

The unification of models, remote sensing resources, and differ-

ent robotic elements is essential in order to increase the predictive

power of models for effective autonomous ocean sampling. Our work

is motivated from campaigns such as the Autonomous Ocean Sam-

pling Network (AOSN-I/-II; Curtin, Bellingham, Catipovic, & Webb,

1993; Ramp et al., 2009), and the Controlled Agile andNovel Observa-

tion Network (CANON) field program (Das et al., 2010, 2012), both from

Monterey Bay, California. It brings together biological and physical

oceanography with autonomous robotic control while providing focus

on the Froan archipelago, located outside the CWs of Middle Norway,

see Figure 1. In addition to AUVs, data were collected from satellites,

buoys, surface autonomous platforms (WaveGlider†), and ship-based

surveys, primarily as ameans to ground truth in situ robotic data. Data

collection in the Froan area is particularly challenging due to inclement

weather, narrow straights, complex bathymetry, and its remote loca-

tion. An overview of the system setup for the campaign is shown in

Figure 2.

The paper is organized as follows. Section 2 provides the context

of this work in relation to other efforts. Section 3 provides defini-

tions and reviews background information on ocean sampling, model-

ing, methods, and data assimilation. Section 4 is the core of our paper

† The WaveGlider and payload storage was damaged upon recovery, and is therefore not

included in this work.
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F IGURE 2 System block diagram of the platforms used in the sampling campaign: Oceanmodel SINMOD, moored buoy (temperature, salinity, and
biological measurements), research vessel (biological and physical measurements), remote sensing (temperature and chlorophyll a), autonomous
surface vehicle (temperature, salinity, andweather data), and an AUV (biological and physical measurements)

and articulates the approach and the specific algorithmwe have devel-

oped. Section 5 provides an in-depth perspective on the field experi-

ments and the subsequent analysis from various data sources. Finally,

Sections 6 and 7 concludewith a summary discussion, conclusions, and

future work.

2 RELATED WORK

Our work is related to informative sampling strategies and

autonomous data collection in the ocean. There is a large body of

literature on maximizing information gain from in situ measurements

to characterize phenomena, or providing estimation of a scalar field.

Zhang and Sukhatme (2007) showed adaptive sampling schemes for

reconstructing a temperature field using a sensor network of both

static andmobile sensors, while Graham et al. (2012) discussed the use

of Gaussian processes (GPs) and the problems relating to environment

reconstruction in the ocean with different correlation kernels. Yilmaz,

Evangelinos, Lermusiaux, and Patrikalakis (2008) used a mixed integer

programming utility combining reduction of uncertainty and physical

constraints. Chekuri and Pal (2005) optimized informative paths using

a recursive greedy approach with mutual information in directed

graphs. Although adaptation is not the focus, the authors explore the

utility of sampling a dynamic field in space and time. This concept

is further studied for an application with multiple robots in Singh,

Krause, Guestrin, and Kaiser (2009). Minimizing estimation error of a

sampled field using optimal distribution of mobile sensors in the ocean

is presented in Leonard et al. (2007). Low et al. (2011) discussed effi-

cient information-theoretic path planning for sampling of GP-based

fields using a Markov policy based on entropy, with empirical results

on real-world temperature and plankton density field data. This is

expanded to include anisotropic fields in Cao, Low, and Dolan (2013).

Nonparametric optimization is explored in Zamuda, Hernandez Sosa,

and Adler (2016), where a self-adaptation path planning scheme for a

glider is developed for exploration of submesoscale eddies.

Ocean models are used to estimate the underlying current field

toward improving energy efficiency and navigation for AUVs and glid-

ers in Chang, Zhang, and Edwards (2015) and Rao andWilliams (2009).

Statistical estimation of surface currents using satellite data have also

been suggested as an effective aid for handling dynamics in Frolov,

Paduan, Cook, and Bellingham (2012). Online algorithms and deci-

sion strategies can also be trained and tuned using ocean models and

Markov decision processes, and have been applied to AUVs influenced

by spatial and temporal uncertainty in Ma, Liu and Sukhatme (2016).

In situ identification of features using GP regression and supervised

learning is presented inDas et al. (2015), with the aim to select optimal

sampling points, for an AUV with water sampling capabilities. Similar

approaches are also used in Bayesian optimization, where for instance

Marchant et al. (2014) formulate a Monte Carlo tree search for robot

path planning. Ling, Low, and Jaillet (2016) have developed an approx-

imate dynamic programming approach in a similar vein, where the

reward function includes the posterior mean and not only variance

terms (which do not depend on the data).

The work presented here is also associated with sensor place-

ment problems that have been explored for GPs in Guestrin, Krause,

and Singh (2005), Krause, Guestrin, Gupta, and Kleinberg (2006), and

Krause, Singh, and Guestrin (2008) who use a greedy algorithm for

maximizing mutual information. Coupling adaptation and modeling is

studied in Smith et al. (2010, 2011), Smith, Py, Cooksey, Sukhatme,

and Rajan (2016) employing prior information from ocean models and

adaptive approaches for the characterization of a frontal system and

sampling phytoplankton blooms. Binney, Krause, and Sukhatme (2010)

use the measure of mutual information and Gaussian approximation

techniques to relate the sampled and unsampled locations, optimizing

information gain along a 2D path for a glider. This is further elaborated

considering time variationwith a surface vehicle in Binney, Krause, and

Sukhatme (2013).

Ourwork presents an end-to-end, real-world implementation, of an

information-theoretic sampling system for environmental sensing of

the upper water-column that combines information from ocean mod-

els and in situ measurements, using a balance between variance and

gradient based measures. We show how integration and utilization

of ocean model data can be leveraged in GP modeling and used for
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directing sampling efforts to regions of high scientific interest. Specif-

ically, this involves modifying the probabilistic model using data to

develop a nonstationary correlation kernel and a bias correctingmean.

Finally, we present experimental validation and correlation with other

marine data.

3 BACKGROUND

3.1 The SINMOD oceanmodel

Ocean models describe the state of the ocean at a given time based

on a set of hydrodynamic and thermodynamic equations, commonly

called the primitive equations, that are solved using numerical tech-

niques. These equations provide information about currents, salinity,

temperature, density, and pressure. In implementations, the equations

are discretized in differentways, utilizing either structured or unstruc-

tured model grids horizontally, and using horizontal terrain-following

or hybrid discretization vertically. The spatial resolution of an ocean

model represents a trade-off between the geographical area to be sim-

ulated and the availability of computer hardware and time. Running

the model involves computation of a large number of equations, typ-

ically implemented with parallelization in order to utilize more CPUs

to reduce computing time. Because high-resolution modeling can only

be done for relatively small geographical areas, models are commonly

nested, that is, one simulates larger scale areas to produce boundary

conditions for higher resolution models covering smaller areas. This

process can be iterated several times, to achieve the desired detail.

Models apply forcing by tides, sea-level pressure, wind, heat exchange,

and freshwater runoff. Regional models additionally need prescribed

states and currents at the open boundaries. Errors in the forcing data

also impact the quality of the model output. This can typically be the

accuracy of wind fields in coastal areas with strong topographic steer-

ing of near-surface wind. The quality of bathymetric data, type of grid

used, and choice of numerical techniques are other factors that influ-

ence oceanmodel output.

Model performance can be evaluated using observations from dif-

ferent platforms such as AUVs, buoys, or ship-based sampling. Due

to the chaotic nature of the processes in the upper water-column,

the scale and accessibility of the ocean makes it difficult to obtain

sufficient measurements, both for validation purposes and for model

correction. In addition to hindcast model validation and correction,

information from in situ instrumentation can also improve the near-

real-time forecast using persistent data assimilation into the oceanic

model. Surface data are usually assimilated in operational models,

mostly from satellite imagery. With advancing technology, AUVs will

likely play an essential role in the process of data assimilation ofwater-

column properties in such models. AUV data could also be assimilated

into predictive models to reduce uncertainties, and in turn be used to

guide subsequent AUV missions, thus closing the loop from measure-

ments to modeling and back again (Howe et al., 2010). As shown by

validation studies, for example, Forristall (2011), ocean models gener-

ally performwell with regard to statistical properties and tidal dynam-

ics, while they show little skill in predicting currents from hour to hour

in areas not dominated by tidal forces. There is therefore a need to

develop enabling technology that performs efficient and targeted sam-

pling of the ocean. Robotic methods in sampling are therefore criti-

cal for assessingmodel accuracy and shortcomings, as well as reducing

environmental uncertainty and characterization.

SINMOD is a coupled 3D hydrodynamic and biological model sys-

tem (Slagstad & McClimans, 2005; Wassmann, Slagstad, Riser, &

Reigstad, 2006). Its hydrodynamic component is based on the primi-

tive equations that are solved using finite difference techniques using

a z-coordinate regular grid with square cells. The model has been

used for ocean circulation and ecosystem studies along the Norwe-

gian coast and in the Barents Sea (Wassmann, Slagstad, & Ellingsen,

2010; Ellingsen, Slagstad, & Sundfjord, 2009; Skarðhamar, Slagstad, &

Edvardsen, 2007), in ecosystem risk assessment studies (Broch et al.,

2013), kelp cultivation potential (Broch, Slagstad, & Smit, 2013) and in

climate change effect studies (Ellingsen, Dalpadado, Slagstad, & Loeng,

2008; Slagstad,Wassmann, & Ellingsen, 2015).

In addition to forecasts, SINMOD is capable of providing hindcast

and short-term predictions (nowcasts) up to 48 hr. The term hind-

cast is used to describe an after-the-fact analysis or resimulation,

where initial conditions, and other model inputs are taken from actual

observations. For the production of forecast and nowcast data for the

Frøya and Froan region, SINMOD has been set up in a 160-m resolu-

tion mode using boundary conditions computed from the operational

coastalmodel systemNorkyst800‡ run by theNorwegianMeteorolog-

ical Institute (MET).§ This is a configuration with the Regional Ocean

Model System ocean model (Shchepetkin &McWilliams, 2005) for the

Norwegian coast with a horizontal resolution of 800 m (Albretsen,

2011). Additionally, SINMOD uses atmospheric input from MEPS 2.5

(Müller et al., 2017) operational weather forecast, byMET (2.5 kmhor-

izontal resolution), as well as climatological data for freshwater runoff.

For our sampling area in the Froan archipelago, the boundary condi-

tionsmediate the tidal circulation and the regional features such as the

NCC. They determine the fluxes into and out of the model area, and

thereby have a strong influence on model values computed within the

area. A snapshot of evolving current speed is shown in Figure 3 as an

example of model output.

3.2 Ocean sampling

Sampling in the ocean is subjected to a broad range of spatial and tem-

poral (including episodic) variability.Often, it is not possible to examine

the entire environment in detail, and only a quasi-synoptic (i.e., a non-

holistic recording of an event) coverage is possible. This is the sampling

problem in oceanography and the lack of sufficient observations is the

largest source of error in our understanding (Stewart, 2009), making

when andwhere to sample the keyproblem for designing oceanographic

experiments.

Addressing thesequestions requires adetailedandholistic perspec-

tive of the ocean and the interacting processes within. Field exper-

iments, when augmented by ocean models, such as SINMOD, can be

‡ https://goo.gl/H4Rbw2.

§ https://www.met.no.

https://goo.gl/H4Rbw2
https://www.met.no
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F IGURE 3 Snapshots of typical ocean surface current speeds in the Frøya–Froan region from SINMOD forecasts (nowcasts) from the 5th to 6th of
May 2017

F IGURE 4 L2 products fromMODIS-Aqua (https://oceancolor.gsfc.nasa.gov/, 1 × 1 km2 resolution) for our operational area in the Frøya–Froan
region. (a) Sea surface temperature (SST) from Mid-Norway on May 5 at 02:55 a.m. SINMOD SST forecast at 03:00 a.m. The operational area in
satellite images is often affected by cloud cover, masking the true underlying ocean temperature

used to simulate, analyze, and plan sampling strategies prior to full-

scale deployment. By doing so, sampling resources can target the phe-

nomenon, or the area, of interest in sufficient detail with appropriate

sensors. However, numerical oceanmodels suffer from several sources

of errors: practical simplifications, inexact representations or param-

eterizations, numerical implementations (Lermusiaux, 2006), and the

inability to resolve subgrid features, that is, treatment of turbulent

dynamics (Troccoli, 2003). This prompts the need for in situ measure-

ments and direct characterization to augment and cross-validate pre-

dictions.

Sampling the ocean environment and the latent ecosystem is there-

fore ideally a joint effort between a range of sources, much as we do in

this work, as coincident information about physical (i.e., temperature,

salinity, and currents) and biological variables (i.e., light regime, fluo-

rescence, and plankton species) can spanmultiple temporal and spatial

scales. Remotely sensed satellite data canprovide repeated large-scale

surface observations, such as sea surface temperature (SST), as illus-

trated in Figure 4, and products of chlorophyll a concentration—which

represents a phytoplankton biomass indicator. SST satellite products

are measured by infrared radiometers over the surface skin layer of

the ocean (i.e., <1 mm thick). The temperature of this skin layer is

often cooler than the body of water below commonly measured by

in situ instruments due to heat flux, with the direction of flux typi-

cally from the ocean to the atmosphere. The gradients between these

layers are highly dependent on meterological conditions (Minnett &

Kaiser-Weiss, 2012). The spatial resolution is rarely below 1 × 1 km

in ocean-oriented remote sensing data such as from NASA's MODIS-

Aqua (Savtchenko et al., 2004) and about 300 × 300m in the Sentinel-

3 constellation mission as part of ESA's Copernicus program (Donlon

et al., 2012). Ocean color based products, such as chlorophyll a, are cal-

culated using an empirical relationship derived from in situ measure-

ments of chlorophyll concentration and remote sensing reflectances

in the blue-to-green region of the visible spectrum. The spatial res-

olution of the standard chlorophyll products has the same order of

magnitude as SST. However, it is possible to derive chlorophyll infor-

mation from new satellite terrestrial oriented missions as Landsat-8

(OLI sensor) and Sentinel-2 (MSI sensor), which provide data at more

relevant spatial scales of 10–60 m (Vanhellemont & Ruddick, 2016).

Ocean color satellite data do not cover the water column beyond the

first optical attenuation length as defined by Beer's Law, where 90%

of remotely sensed radiance originates from (Werdell & Bailey, 2005);

this can be too coarse for critical biophysical ocean processes (Moses,

Ackleson,Hair, Hostetler, &Miller, 2016). Further, optical remote sens-

ing observations are highly susceptible to cloud cover for certain

measurements.

Traditional techniques, like shipboard and moored measurements,

can be effective at large spatial (O(100 km)) and temporal (O(week to

months)) scales, but have proved difficult for submesoscale (smaller

https://oceancolor.gsfc.nasa.gov/
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than an internal Rossby radius of (O(10 km))) variability (Graham et al.,

2012). The importance of these dynamics for physical ocean processes

is significant (Barth, Hebert, Dale, & Ullman, 2004) and directly influ-

ences primary production (Lévy, 2003) and patch formation (Franks,

1992) of biological signatures.

The use of autonomous and adaptive capabilities allows for respon-

siveness to interactions as they occur, the opportunity to alter the sam-

pling strategy based on the data available, as well as the sampling res-

olution in regions of high interest. These factors coupled with the gaps

in observations, left by other marine data sources, have made marine

robotic platforms an integral part of ocean observation.

3.3 Spatial models and gaussian processes

A prerequisite for doing adaptation and to determine suitable future

actions is to have information about the spatial conditions in the area

of interest, especially in dynamic environments. Having a high-fidelity

numerical ocean model operating onboard a robotic platform is cur-

rently infeasible, as the required numerical resolution in both time

and space translates into high computational demands. To overcome

this problem, a stochastic surrogate model (also known as a proxy or

a reduced order model) based on GPs can be used. Apart from hav-

ing a smaller computational footprint, GPs are conventional tools for

dealing with statistical modeling of spatial data and have been widely

adopted in oceanographic applications (Binney et al., 2013).

AGP is in essence a collection of randomvariables that have amulti-

variate normal probability density function. When variables are allocated

to spatial locations, a GP is a model that allows spatial dependence

to be modeled using covariance functions. Due to its representational

flexibility, it is often a popular way to represent environmental pro-

cesses (see, e.g., Banerjee, Carlin, and Gelfand, 2014; Cressie &Wikle,

2011). Formally

Consider a real-valued stochastic process {X(s), s ∈ Ω},
where Ω is an index set where Ω ⊂ IR2. This stochastic pro-

cess is a GP if, for any finite choice of n distinct locations

s1 … , sn ∈ Ω, the random vector x = [x(s1),… , x(sn)] has a
multivariate normal probability density function:

p(x) = N(𝝁,𝚺) = 1

(2𝜋)
n
2 |𝚺| 12 e

− 1
2
(x−𝝁)T𝚺−1(x−𝝁), (1)

defined by themean vector𝝁 = E(x), and the symmetric pos-
itive definite covariance matrix𝚺 = cov(x, x).

The popularity of GPs is often attributed to two essential proper-

ties. First, as shown in Equation 1, they can be fully expressed using

only amean and a covariance function (also known as a kernel). This alle-

viates model fitting, as only the first- and second-order moments need

to be specified (Davis, 2014). Second, the procedure for prediction and

assimilation is inherent to the fundamental equations of the model,

making this step uncomplicated once the GP is formulated. Further-

more, as long as it is possible to estimate the covariance function, a GP

can be used on the basis of sparse prior data. In environmental applica-

tions, a GP typically characterizes random variation at points in space,

time, or both, discretized down to a grid mapwith a certain spatiotem-

poral resolution.

The focus of the statistical model applied in this work is to approxi-

mate the underlying distribution of ocean temperature, specified from

hindcast data from SINMOD. Using a GP tomodel temperature as a spa-

tial phenomenon has been studied before (e.g., Cressie &Wikle, 2011;

Graham et al., 2012). Based on the characteristics of our ocean model

data, theGP is a reasonablemodel to use for temperatures, as noheavy

tails or skewnesswas significant in the temperature data used formod-

eling. Furthermore, the GP we use here has a random bias parameter

that allows the entire temperature field to be corrected up or down to

account for errors in the priors, more details are given in Section 4.1.

Such hierarchical GPs (Banerjee et al., 2014) can be useful for adding

flexibility inmodeling, and therefore viable as a primary building block.

Themotivation for using temperature is related to a number of factors,

which are explained in detail next.

3.4 Temperature as an information utility

In addition to salinity (S), water temperature (T) plays an outsize role in

a variety of oceanographic processes. Together, they provide a strong

couplingbetweenphysical andbiological factors,whichareat theheart

of the marine life-cycle. In addition, T can be cross-validated using

remote sensing data. Physical phenomena such as upwelling, verti-

cal mixing, eddies, fronts, and currents can coincide with tempera-

ture variation and gradients (Sverdrup, Duxbury, & Duxbury, 2006), as

well as the distribution and accumulation of biological activity (Gor-

doa, Masó, & Voges, 2000). For example, high variability in T would be

visible in frontal zones, where having a T front gliding by a Lagrangian

point, would result in a greater gradient in T compared to a regionwith

more stable dynamic conditions. Consequently, T and S play a central

role in oceanmodels, and their broad influence as physical parameters

on these nonlinear processes makes them a useful tool for exploring

the model error (Holt, Allen, Proctor, & Gilbert, 2005). Using T and S

to guide robotic data collection is not new (see, e.g., Zhang, Sukhatme,

and Requicha, 2004; Smith, Py, Cooksey, Sukhatme, and Rajan, 2016).

Off the Froan archipelago, results from SINMOD show a combi-

nation of stratified and mixed waters, with periodic mixing and lift-

ing of warm and dense AW (Figure 5), creating underwater fronts

with higher T gradients, most prominent at 70–90 m depth. The sam-

pling strategy was therefore to concentrate on data collection from

this zone with the assumption that the temperature at these depths

would be fairly homogeneous, except in areas influenced by AW. Lift-

ing and mixing of AW is important not only for primary produc-

tivity, as the AW brings nutrient rich waters to the euphotic zone

(0–75m), but also for the structure and function of the ecosystem. The

local bathymetry in the area results in narrowing and strengthening of

the NCC outside the Froan archipelago (Sætre, 2007). In combination

with high internal wave activity modeled by SINMOD, this results in a

dynamic environment andwith high variability in S and T,making these

information hot spots for ocean scientists.

These complex dynamics make the area challenging to model and

thus highly relevant for assessing model accuracy. Further, strong

dynamics are usually hard to model, especially at smaller scales, and
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F IGURE 5 AtlanticWater 6.8 ◦C thermal contour (isotherm)motion
from SINMOD simulations, showing the interface shift at the Froan
archipelago, for a 24-hr period for May 5th. Note the isotherm shift
from 70 to 90m consistent with our assumptions for data assimilation
(see Section 4.2)

resolving sharp temperature gradients is challenging in ocean models

(Trenberth, 1992). Sampling the water structure and associated tem-

perature dynamics would, therefore, augment the model and in addi-

tion provide vital phenomenological context.

4 METHODS

Coupling sampling with model-derived information is necessary to

improve the capability to study and understand ocean processes that

involve physical and biological interactions. Our comprehension of

biogeochemical interactions in the upper ocean is, to a large extent,

dependent on how ocean models render related processes. Explor-

ing sampling from an ocean model perspective requires us to focus on

model shortcomings and inaccuracies, in addition to in situ measure-

ments. The method below is motivated by the characteristics for the

Froan archipelago, with temperature as the primary variable of focus

for the sampling strategy. However, the approach is general in nature,

with a pipeline that can be used to approach sampling, while leverag-

ing data from an ocean model. The following section articulates the

approach startingwith (a) thediscretizationand spatialmodelingof the

phenomena usingmodel data, (b) formulation of the objective function

toward a scientific context, and (c) algorithmic implementation. The

approach presented here is a greedy/best-first search, using a one-node

horizon, that is, the method is myopic. This is assumed to be sufficient

as the model data have substantial uncertainty that is inherited by the

sensing strategy. Moreover, due to control, actuation, and navigational

errors in part due to ocean currents, the position of the AUVwill devi-

ate fromany “optimal” route—amore detailed discussion aboutmyopic

versus nonmyopic approaches are given in Section 6.

4.1 Gaussian process specification

Referring to the definition given in Equation 1, the prior mean

𝝁 = [𝜇1,… ,𝜇n] is established by simply extracting the statistical mean

temperature for each location i = 1,… , n. In our case, the data used are

a 160-m resolution SINMOD hindcast data set fromMay 2016, taken at

the planned deployment time (∼10 a.m.) as

𝜇i(𝛽0) =
1
m

m∑
j=1

xij + 𝛽0 = x̄i + 𝛽0, (2)

where xij is the temperature at location i for the current day j,m is the

number of days evaluated from the model, and 𝛽0 is a bias correction

term, enabling the AUV to, in situ, correct the prior mean toward the

true underlying temperature field, based on the first measurements.

As the GP is specified in two dimensions, the mean values constitute

a 2D temperature surface. Correction of this surface, using a bias term,

allows the AUV to shift all temperatures in unison toward the true

mean ocean temperature. The covariancematrix𝚺 is given as

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

Σ11 Σ12 … Σ1n

Σ21 Σ22 … Σ2n

⋮ ⋮ ⋱ ⋮

Σn1 Σn2 … Σnn

⎤⎥⎥⎥⎥⎥⎦
,

whereΣij = 𝜎i𝜎j(i, j). Normally, the variance terms𝜎2
i
and𝜎2

j
are taken

to be the same for all locations and collected as 𝜎2, making the covari-

ance independent of location (i.e., stationary). Following Stein (2005),

these variances are augmented further to include a spatially varying

local variance to better suit the local variability—doing so makes mea-

surements at high variance locations have less influence on neighbor-

ing locations.We then define the spatially varying variance as

𝜎2i = 1
m

m∑
k=1

(xik − x̄i)2, (3)

where xik , is the temperature at location i for the current day k and x̄i is

the average temperature for location i. We used the same 160-m reso-

lution SINMOD hindcast temperature data fromMay 2016, to calculate

the local temperature variance for the survey area. The kernel function

is defined as

(i, j) = (1 + 𝜙hij)e−𝜙hij ,

where hij = |si − sj|, and 𝜙 is indicative of the correlation range

(Matérn, 2013). Capturing the correct spatial correlation distance is

particularly important. Formulating an accurate surrogate GP model

depends on getting this parameter as correct as possible. One could

also add anisotropy in this kernel, with correlations depending on

north–east directions between locations, and the methodology pre-

sented nextwould still work. However, based on the oceanmodel data,

there was no significant anisotropy in the current case.

A standard tool for estimating correlation range is the variogram.

Given spatially dependent data, the variogram can estimate the degree

of spatial correlation as a function of distance (Cressie &Wikle, 2011).

The same hindcast temperature data from SINMOD was used to find

𝜙 using this procedure, as shown in Figure 6. The derived variogram

is fitted from the residuals after the trend in the input data has been

subtracted, under the assumption of smooth, slow-changing, spatial

variance terms—this is necessary to obtain a correct evaluation of the
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F IGURE 6 The final variogram from analyzing SINMOD temperature
data

underlying variability. As the distances increase along the x-axis, the

spatial dependence decreases, increasing the variogram, until a limit is

reached (horizontal black line on y-axis in Figure 6). At this limit, the

points no longer yield any correlation based on data values, and it is

therefore possible to provide the lag distance/range for the correla-

tion at around 5–7 km. The parameter estimates could be improved

using maximum likelihood estimation based on the density function in

Equation 1 for the ocean model data, see e.g., Stein, Chi, and Welty

(2004).

The GP we use, therefore, has a nonstationary kernel function and

a bias correcting mean function, based on temperature data from

SINMOD. Exploratorydata analysis shows residual plots that are approx-

imatelyGaussian, justifying using aGP for temperature data in the cur-

rent setting. The process x is assumed to be relatively constant over

the data gathering period. To account forminor time variations, we add

process noise Qt , that is accumulated over the survey period, to cap-

ture minor variability from sea currents (current velocity is typically

0.2m/s on average (Figure 3), while vehicle speed over ground is about

1.5m/s), see Equation 5.

4.2 Data assimilation

Measurements are acquired sequentially for time steps 1,… , Tf , where

Tf is typically mission duration. Only measurements from a specific

depth layer (70–90 m) are used for assimilation, to focus on the

dynamics related to the characteristics of the Froan archipelago (see

Section 3.4 and Figure 5 for further details).

A sampling design is defined by d1,… , dTf , where dt is a survey loca-

tion at time t. The successive survey design until time t is denoted by

dt = (d1,… , dt). Themeasurementmodel for design dt at time t is given

by

yt,dt = Gt,dtx + vt, (4)

where yt,dt is amt,dt × 1 vector of observations along a survey line, and

the matrix Gt,dt of size mt,dt × n contains “1” entries only at the desig-

nated dt indices, and0otherwise. The error term vt ∼ N(0,Rt,dt ) ismea-

surement noise. The covariance matrix Rt,dt is typically set to a con-

stantmatrix with only diagonal elements (Wunsch&Heimbach, 2007),

and there is no dependence of measurement error terms over time.

F IGURE 7 The waypoint graph G used in experiments in the Froan
region, with the depth range 0–90 m. Because the AUV is undulating,
the graph takes 4 hr to survey, visiting five nodes

UnderGaussian linearmodeling assumptions, the sequential updat-

ing of data leads to the Gaussian distribution p(x|y1,d1 ,… , yt,dt ). The
common Gaussian equations for conditioning give the updated mean

mt,dt = E(x|y1,d1 ,… , yt,dt ) and variance Pt,dt = Var(x|y1,d1 ,… , yt,dt ) at
every stage. These equations are recursive over the data gathering

steps:

P̄t,dt = Pt−1,dt−1 + QtI(t = twp),

St,dt = Gt,dt P̄t,dtG
t
t,dt

+ Rt,dt ,

Kt,dt = P̄t,dtG
t
t,dt

S−1t,dt , (5)

mt,dt = mt−1,dt−1 + Kt,dt (yt,dt − Gt,dtmt−1,dt−1 ),

Pt,dt = P̄t,dt − Kt,dtGt,dt P̄t,dt .

The first equation above, contains the step where the accumulated

process noise Qt is added, when reaching the waypoint goal (finishing

a survey line) and activated by the indicator function I(t = twp), where
twp indicates the arrival time at a waypoint goal.

4.3 Waypoint graph

The different paths for an AUV are encapsulated in a way-

point graph G = (V, E, D) with four corner nodes v ∈ V,

v = {0,1,2,3} and edges between the nodes given as e ∈ E,

e = {(0,1), (0,2), (0,3), (1,0), (1,2),… , (3,2)}, represented as arrows,

as shown in Figure 7. Each edge ej, j = 1,… , ne, where ne is the number

of edges in e, is referred to as a survey line or graph edge. These lines

also contain a set of sample points (the dots on the lines in Figure 7)

collected for each survey line ej in the vector dj ∈ D, dj = {D | ej},
where D is the set containing all the sample points in the graph. As
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noted, variability in the water column tends to be greater along the

vertical dimension—to appropriately measure this variation, the AUV

undulates (with a fixed angle) up and down, in what is known as a

“yo-yo” pattern throughout the mission. The sample points (used

to evaluate the objective function) are spaced out according to the

depth, angle of the yoyo, and the distance of the survey line, having

twice the number of sampling points as the number of crossings of

the given depth layer. For the configuration used here, this results in a

sample point spacing of 416 m. Measuring the entire water column is

important (rather than only undulate between the 70 and 90 m depth

band), as both surface phenomena (i.e., SST, surface warming effects,

chlorophyll, etc.) and deeper processes (influx of AW) are of interest.

The AUV then traverses the graph going from one node to another: for

example, going from node 1 → node 2, along the survey line e5 = (1,2),
contains the sample points d5.

4.4 The objective function

The aim of an objective function is to evaluate and prioritize the dif-

ferent survey alternatives (graph edges), accounting for prior (model)

and in situ information. Focusing solely on reducing uncertainty in

the ocean model, one solution would be to bias locations yielding the

largest reduction in variance, or to use mutual information (Krause

et al., 2006), to determine the graph edge having the largest informa-

tion gain (highest entropy reduction). However, neither of these cri-

teria are capable of readily using incoming measurement data yt,dt ,

consequently making the strategy deterministic (Eidsvik, Mukerji, &

Bhattacharjya, 2015). Given the large uncertainty in oceanographic

sampling, the informative value of in situ measurements cannot be

overlooked. Still, the conundrum of exploration versus exploitation

continues to persist, and finding a functional balance is necessary.

The GP representation is well suited for this purpose because it

holds prior information about the temperature variance (uncertainty),

in addition to assimilating the incoming measurements into the mean

parameter.

For achieving effective adaptability, the upper ocean temperature

variability and trends derived from the GP are used to guide the data

collection process through variance and gradient measures. Tempera-

ture is a prominent factor in the Froan region, because measurements

associatedwithCWandFWare different fromAW(Sætre, 2007), with

a well-defined front between the cold and low-salinity NCC and the

warm and dense AW (Ikeda, Johannessen, Lygre, & Sandven, 1989).

These temperature-laden fronts are found all year; horizontal gradi-

ents of 0.5◦C/km can be observed, depending on the season (Sætre,

1999) and increased variability and levels of primary productivity is

expected in areas where these water masses meet. Faced with high

model uncertainty, variance is preferred over entropy as the metric

for uncertainty in our approach, because of its simpler form and wider

acceptance as a measure of spread in a numerical model (Baafi &

Schofield, 1997).

The objective function is formulated as a balance between gradi-

ent intensity and reduction of variance—the rationale being that in

cases with uniform temperature conditions, the strategy would prior-

itize navigating according to the variance. Or in the opposite case, if a

thermal gradient is discovered, using the gradient as a means to steer

toward locations indicativeof these changes, directing theAUVtoward

nonuniform conditions. The objective function is evaluated using the

surrogate GP model formulated in the preceding sections. The objec-

tive function is evaluated on the sample points kj related to each alter-

native survey line dj given as

f(dj) = argmindj

{𝜔p

n
trace(Pt,dj ) −

𝜔g

nk

nk∑
kj=1

∇gt,kj
}
. (6)

The first term expresses variability at all locations, with n being the

total number of locations. The second term provides theweighted gra-

dient summed over the sample points kj, where the number of points

along the line is nk . Both terms are normalized prior to subtraction, in

order to allow reconciliation between the variance and gradient term.

The influence between the variance and gradient can be adjusted using

the weights 𝜔p and 𝜔g . For simplicity, we have set the weights to 1;

depending on the application, these may be adjusted. The gradient is

calculated for the mean value at the survey points, weighted by their

uncertainty as

gt,kj =
mt,dj (kj)

Pt,dj (kj, kj)
,

where mt,dj and Pt,dj are terms from Equation 5. Before calculating

the scaled gradient, the term Pt,dj is normalized using the global min-

imum as follows (minkj [Pt,dt (kj, kj)]∕Pt,dj(kj ,kj)) and has a lower limit

to avoid over emphasis on already visited locations. The best node to

visit will be the node with the connecting survey line yielding the low-

est objective value. Explorative survey lineswould reducediagonal ele-

ments of Pt,dj more than the lines previously surveyed. And finally,∇ in

Equation 6 is the operator using second order central differences to

compute the actual gradient value.

Note that several other criteria are possible. Entropy measures

or average variance reduction are commonly used, but for GP these

will not depend on the data (Eidsvik et al., 2015). The criterion in

Equation 6, which includes the temperature gradients, allows adaptive

sampling where the survey paths can depend on the realized data. In

simulations we also ran tests with a criterion aiming to classify sig-

nificantly large temperature gradients in the main current direction,

that is, E[∇𝜃xt|⋅] −√
Var[∇𝜃xt|⋅], where the conditioning represents

currently available data, and 𝜃 is a predefined direction. One could

also go further to account for the uncertainty in future data along the

next sample line that entails an integral over the data (Bhattacharjya,

Eidsvik, & Mukerji, 2013; Eidsvik, Martinelli, & Bhattacharjya, 2018),

or even use the expectation over future lines, with additional compu-

tational complexity for nonmyopic approaches. But the simple weight-

ing in Equation 6 is a practical solution which gave reasonable results

for our field tests, and we leave more complex objective functions for

future work.

Because the path of the AUV only considers one node into the

future, the approach is a greedy/best-first search. Using such a myopic

approach, with a one node horizon, is assumed to be sufficient as the

ocean model skill is typically low, resulting in substantial uncertainty

when executing the sensing strategy. Additionally, due to control,
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actuation, and navigational errors in part due to ocean currents, the

position of the AUV will deviate from the optimal route—more details

are given in Section 6. Note that the information utility used here is a

single objective function with only one solution. Extension into mul-

tiobjective functions would be possible to account for other environ-

mental or operational parameters such as energy, safety zones, and

operation of other vehicles; or more decision analytic criteria related

to algal bloom treatment, fishing policies, and dynamic placement of

fish farms.

4.5 The GASA algorithm

The GP model, objective function, and the waypoint graph G are then

collected in an algorithm, which is to run onboard during execution.

Using the different survey alternatives the algorithm iterates through

possible survey lines and calculates their objective value, utilizing the

variance and mean estimates from the GP model. The details of these

steps are given in the greedy adaptive sampling algorithm (GASA) in

Algorithm 1.

ALGORITHM1 The GASA algorithm.

In an operational scenario, once the AUV is deployed, it will need to

travel to the starting point of the survey graph, before initiation of the

algorithm, having time to update the bias for the prior mean on its way.

To avoid overfitting, the bias correction will only occur if the observed

model discrepancy is above ±1 ◦C. Once the starting point is reached,

the algorithm activates and begins evaluating the alternative survey

lines available at its current location. Once the objective values have

been calculated, the best survey line and the corresponding node is set

as a waypoint goal for the AUV to visit.

4.6 Implementation

Prior to the deployment, the GASA algorithm was tested in a simu-

lated environment, identical to the embedded system in the AUV. The

setup consists of three essential components; a virtual ocean simula-

tor, an AUV vehicle simulator and an autonomous agent architecture

(Figure 8).

F IGURE 8 A block diagram layout comparing the embedded and
simulated systems used

An interface that directly couples the SINMOD model provides 3D

ocean data that are used to simulate sensor readings, reproducing

actual ocean conditions at a given time, depth, and location. The Uni-

fied Navigation Environment in DUNE (Pinto et al., 2012), handles the

AUV simulation, and is used for navigation, control, vehicle supervi-

sion, communication, and interaction with actuators—DUNE is running

onboard the AUV as well. On top of the hierarchy sits the autonomous

agent architecture T-REX (Teleo-Reactive EXecutive), which synthe-

sizes plans and uses an artificial intelligence based automated plan-

ning/execution temporal framework to execute tasks continuously, as

sensing and control data are fed to it. Details of T-REX are beyond

the scope of this work; readers are encouraged to refer to Py, Rajan,

and McGann (2010), Rajan and Py (2012), and Rajan, Py, and Berreiro

(2012). The communication between DUNE and T-REX is handled by

the LSTS toolchain (Pinto et al., 2013)¶, which provides the back-seat

driver API to DUNE allowing external controllers, such as T-REX, to pro-

vide desired poses for the platform while receiving progress updates

on their attainability.

¶ http://lsts.pt/toolchain.

http://lsts.pt/toolchain
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TABLE 1 Results from running 1,000mission simulations

Run
Mean criteria
scorea RMSEb

Random route +0.15 0.61

GASA: both variance and
gradient

−0.21 0.36

Only variance (gradient kept
constant−0.33)

−0.06 0.37

Only gradient (variance kept
constant+0.33)

−0.15 0.49

Note. RMSE= root mean square error.
aThemean score from the objective function for each chosen alternative.
bThe root mean square estimation error between the underlying tempera-
ture field and the estimated Gaussian process (GP) temperature field.

GASA and dependencies were implemented as reactors that are

internal control loops in the T-REX framework capable of producing

goals that the planner integrates in a series of actions (e.g., Goto,

Arrive_at …), which are finally collected to form a plan. This plan is

then distributed through the framework and checked for errors such

as operational limitations, before dispatch to DUNE, which handles

low level control and execution. The mission is hence continuously

monitored by T-REX, as it follows the Sense → Plan → Act control

methodology.

4.7 Simulation

We conducted an empirical study comparing the GASA algorithm and

preplanned randomly generated routes to assess performance, along

with simulations using SINMOD nowcast data to provide further insight

into the resulting behavior, using the same GP parameters, graph, and

objective function as in the at-sea experiments. The following proce-

dure was used for the empirical simulations:

1. Generate a randomGP temperature field.

2. Simulate 1,000 different missions visiting five nodes using GASA

with randomly chosen routes.

3. Collect the criteria score and the final root mean square error

(RMSE).

The drawn temperature fields had a variation 1.5◦C. If larger tem-

perature differences are expected, one should evaluate to reduce the

influence of the gradient term.

As shown in Table 1, the random route has a high criteria score and

a high RMSE; this was to be expected. Using only variance results in

a lower RMSE as it will seek to explore rather than exploit. In con-

trast, using only the gradientwill put emphasis on exploitation, yielding

higher RMSE results. When using both terms, the resulting behavior is

a balance.

In addition, various simulations were conducted using both hind-

cast, and forecast (nowcast) data from the Froan area. However, for

the sake of clarity, analysis of simulations using nowcast data fromMay

4, 2017 is presented, where the example illustrates the interplay and

influence of the variance and gradient components. To demonstrate

this, three simulations were carried out with the objective function

TABLE 2 Simulated routes using different terms in the objective
function

Run Route (nodes) Remarks Visual path

Simulation 1:
variance

2, 3, 0, 2, 1 Variance only

Simulation 2:
gradient

3, 2, 0, 1, 2 Gradient only

Simulation 3:
both

2, 3, 0, 2, 3 Variance and
gradient

considering: only variance, only gradient, and finally both (shown as

Simulations 1–3 in Table 2). The simulation considers a route of five

consecutive nodes to be visited in a prioritized fashion depending on

their objective value.

The underlying nowcast covers the sea state for May 4, 2017.

Because the algorithm only updates using measurements from the 70

to- 90 m depth interval, the temperature is expected to be relatively

homogeneous, except in areas with the influx of AW. Two clear trends

are visible in the prior variance (Figure 9a) and mean (Figure 9c). Both

variance and temperature gradients are higher toward the north, sug-

gesting that the AUV should start bymapping here first. The prior vari-

ance and mean, both derived fromMay 2016 hindcast data, were kept

constant, both during simulation and during field deployments.

Using only the variance (Simulation 1) for navigation, results in a

maximum reduction of the prior uncertainty and the nodes: 2, 3, 0,

2, 1, thus prioritizing the high-variance hot spots close to nodes 2

and 3. Using only the gradient (Simulation 2) leads to a route favor-

ing the survey lines with the greatest temperature change. The gra-

dient follows the outer edges of the graph, visiting the north region

first following the nodes: 3, 2, 0, 1, 2. Because the gradient depends

on the collected temperature measurements from the nowcast, the

gradient is using in situ information to change its path, in contrast

to the variance, having a predetermined track based only on prior

knowledge.

Combining both influence from variance and gradient in Simula-

tion 3 shows the interplay between the two information measures.

The executed path, visible as Simulation 3 in Table 2 and Figure 9b,

shows priority of exploring the north-south axis. As the gradients are

weighted by the prediction accuracy, the initial path choices are dom-

inated by variance because the gradients will have high uncertainty.

Then, asmeasurements reduce theuncertaintyof themeanestimation,

the gradient effect becomesmore influential. Still, because the temper-

ature distribution is relatively homogeneous for this example, the gra-

dients are approximately the same for each alternative, resulting in a

dominance of variance right until the end where the gradient changes

the choice to node 3. As the model only updates if measurements are

within 70 to- 90 m depth, the estimated fields in Figure 9b and d are

uneven, leaving only parts of the grid updated, because theAUV is trav-

eling in a yo-yo pattern. In addition, the covariance range is limited

and locally changing as a result of the covariancemodification in Equa-

tion 3, allowing the information to be “spread” nonuniformly, hence the

uneven spots in Figure 9b. Differences in paths for various mean, vari-

ance, and correlation models were also studied prior to deployment.
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F IGURE 9 Simulation prior to deployment using both terms in the objective functionwith nowcast data fromMay4th, 2017 at∼10 a.m. Temper-
ature variance for operational area at start. Note the location of the highest variance. (b) The final estimated variance and the traveled path at end.
Note the spots of low variance. (c) The estimated temperature at the survey area prior to deployment. (d) The final GP regression of the temperature
field at end

For a discussion on GP sensitivity to variance and correlation param-

eters for sequential sampling schemes, see Eidsvik et al. (2018). Note

that the dynamic nature of the processes studied here would be highly

nonlinear and non-Gaussian over a longer spatial and temporal range,

and in the future one can imagine havingmore complex spatiotemporal

proxymodels on-board the AUV itself.

5 FIELD EXPERIMENTS

The experiments at sea aimed to verify our algorithm's ability to adapt

mission execution based on in situ measurements, and demonstrate

its capability to spatially prioritize data collection, using ocean model

driven predictions encapsulated in a stochastic model. They were car-

ried out between the May 4 and 12, 2017, using the operational

area and waypoint graph shown in Figures 7 and 10 of the Froan

archipelago.

Inclement weather on the Norwegian west coast led to numerous

postponed deployments, but two full missions, referred to as Surveys 1

and 2, were conducted during this period. Both surveys used the same

prior data (variance and mean from Figure 9). Doing so was important

for demonstrating adaptability toward the environmental conditions

while keeping the initial conditions the same for both surveys.

F IGURE 10 The distribution of temperature variance across the
Froan coastal region with the operational area indicated; note the
80-m isobath

5.1 Experimental setup

Our scientific focus was the upper water-column and the effect of

physical forcings on phytoplankton dynamics of the Froan coastal

region,whichwe targetedusing temperature variability. Consequently,
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F IGURE 11 NTNU's light AUV platform (Harald) for upper water-
column exploration used in our work—the CTD is visible in the nose.
The AUV has an excess of 24 hr in-water operational capacity with a
range of sensors in addition to the CTD

before bringing the system to the field, an approach similar to Sakov

and Oke (2008) was used to identify an operational area where shifts

in temperature would be prominent and hence interesting from both

a model and oceanographic perspective. The input data to this anal-

ysis were hindcast realizations from SINMOD (May 2016), reflecting

the changing temperature distribution at 80-m depth using a planned

deployment time between 8:00 a.m. and 2:00 p.m., where the empir-

ical variance was estimated by applying Equation 3 and shown in

Figure 10.

The survey area was confined to the eastern region close to the

point of highest empirical variance, but also sufficiently near the shal-

lower waters in the event an emergency recovery of the AUV and/or

dealing with unfavorable weather conditions. To operate safely the

waypoint graph G (Figure 7) was limited within the operational area

3 × 3 km2 to 2.5 × 2.5 km2 (allowing a 500-m drift margin), permit-

ting a reduced search area and enabling the AUV to be monitored

using acoustics from a vessel stationed at the center of the survey pat-

tern. Although the experiments were constrained by this one graph for

thesepilot deployments, the framework is general and canbeextended

to a series of connected graphs of any shape. In addition, having a

greedy (one-step look ahead) planner as well as a simple waypoint

graph allowed us to work with a constant and reliable computational

load on the AUVs CPU, while maintaining communication to the vehi-

cle in the harsh conditions offshore.

Our robotic platform consisted of a light AUV (Sousa et al., 2012)

equipped with a 16 Hz Seabird “Fastcat 49” active conductivity, tem-

perature, and depth (CTD) sensor providing temperature and salin-

ity measurements, see Figure 11. The CTD is active as it continuously

pumpswater, ensuring that a fresh sample is observed. The accuracy of

the CTD instrument is±0.0003 S/m (conductivity),±0.002◦C (temper-

ature). TheAUVwas also equippedwith aWetlabs EcoPuck for chloro-

phyll a concentration, color dissolved organicmatter (cDOM) and total

suspended matter (TSM). The embedded system in Figure 8 hosting

the GASA frameworkwas operating on amulticoreGPUNVIDIA Jetson

TX1singleboard computer, specifically developed for autonomous sys-

tems.With a lithiumpolymer battery bank, theAUVhad anoperational

capacity in the water column exceeding 24 hr of continuous operation.

TABLE 3 Executed routes and deployment times, May 2017

Run Route (nodes) Deployment time

Survey 1—May 9 2, 3, 0, 1, 3 10:02 a.m.

Survey 2—May 12 2, 1, 3, 0, 2 10:15 a.m.

Each survey took 4 hr to complete, with five nodes to visit during this

period. Restricting the adaptation to only five choices, and within the

waypoint graph, was necessary to manage deployment and recovery

within limited weather windows. Because full coverage of the region

could be attainedwith theAUV,weemphasize that the results from the

fieldoperations shouldbe seenas applicable to cases inwhich intensive

sampling is not feasible.

The GP model used a grid resolution of 30 × 30 on a 2.5 × 2.5 km2

region (83 × 83 m2). The GP model was configured with a prior mean

and variance (seen in Figure 9) associated with the temperature distri-

bution at 70 to 90 m depth. Updating these priors was limited to mea-

surements collected from this depth. Limiting the information used

by the objective function to these depths was to specifically target

the temperature dynamics induced from warmer AW, as discussed in

Section 3.4.

5.2 Results and evaluation

This section first presents the AUV data and the details related to the

GASA algorithm, followed by a comparison to SINMOD model forecasts

(nowcasts) and data from remote sensing, buoy, and ship-based mea-

surements.

Figure 12 shows recorded temperature versus depth taken along

the transect for the two surveys, along with the maps of the executed

survey path superimposed on the SINMOD model predictions for both

deployment days. The survey paths from the maps are collected and

shown in Table 3, along with the deployment time and date. The objec-

tive values used to differentiate the route choices is presented in Fig-

ure 13.

We observe that two different strategies have been executed,

underpinned by the GP priors and the assimilated temperature mea-

surements. As the GP priors are the same, the observed difference

between the paths are provided by separate temperature conditions.

This is apparent inFigure12aandc,with Survey2clearly having amore

shallow prominence of warmer AW, depicting the thermocline (dashed

lines) shifting from 65 to 40 m, the same shift predicted by SINMOD in

Figure 5. The deep salinity measurements come close to 35.0, suggest-

ing the water is of Atlantic origin, which is distinctly more saline than

FW (⩽32) and CW (32≶ 35). This is also confirmed from the CTDmea-

surements taken from the R/V Gunnerus shown in Figure 17. There is

also a visible difference in surface warming, which is traceable in both

buoy and remote sensing data.

Evaluating the adaptive behavior, as in simulation, node 2 is always

taken as the first node to visit. This is expected as the prior data are

identical at this point, and nomeasurements are assimilated; objective

values for the first node choice in Figure 13a and b confirm this. After

reaching node 2, the recorded data come into consideration because

exposure to the warm water influx is different, each survey will have a
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F IGURE 12 Results from the AUV survey on the May 9th (Survey 1) and May 12th, 2017 (Survey 2). Yo-yo pattern (black line) and the temper-
ature distribution for Survey 1. (b) Map of the executed path for Survey 1, SINMOD realization for May 9th in background. (c) Yo-yo pattern and
temperature for Survey 2. (d) Executed path for Survey 2, SINMOD realization forMay 12th in background. In (a) and (c), temperature distribution in
the survey area and thermocline (white lines) influenced by AW (temperatures are interpolated to cover the plot surface) is shown. In (b) and (d),
the path generated by the GASA algorithm for the two surveys is shown. The gaps in the position on the plots are surfacing events to correct for drift
and navigational errors in the water column

distinctive posterior mean temperature field and hence gradient influ-

ence. Consequently, the intensity and direction of the gradientwill also

be different. After reaching node 2, the first decision with posterior

information is made. This choice is the most intuitive to consider and

interpret, as only the data along the first survey line are assimilated

into the onboard GP model. Evaluated from node 2, a transect toward

node 3 would be most beneficial for reducing the variance (compar-

ing with simulations in Table 2), if no strong temperature trends are

to be observed. This is the case for Survey 1, which tracks to node 3,

after node 2. More interestingly, Survey 2 tracks back toward node 1.

Clearly, this is not optimal for reducing the variance as several mea-

surement locations will be close to the first survey line. One can there-

fore argue that this choice is dominated by the influence from the

recorded temperature data, which is visible as a difference in score at

the second evaluation step in Figure 13b.

Additionally, because the uncertainty is low around the first tran-

sect, this gradient isweighted higher compared to other gradientswith

larger uncertainty. After reaching node 1, the AUV in Survey 2, tracks

toward following the paths associated with Survey 1, visiting nodes 3

and 0, which suggests that the influence of variance is dominant. As

observed in Figure 12b and d, Survey 2 has a hourglass pattern, while

Survey1has amoremixed survey pattern. These characteristicswill be

compared to themodel and external data in the following sections.

5.3 Model correspondencewith AUV data

Deviation between recorded data and the simulated predictions is to

be expected. Considering assimilation back to the model, the question

is as follows: Can the observed discrepancies contain contextual infor-

mation that can augment the model and enhance ocean prediction?
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F IGURE 13 Values for the objective/utility function used to evaluate the different survey alternatives (negative score is preferred). (a) Survey 1
and (b) Survey 2. The choices correspond to the executed paths in Table 3

F IGURE 14 Vertical comparison of AUV measurements with SINMOD nowcast data. (a) Temperatures for Survey 1. (b) Salinity for Survey 1. (c)
Temperatures for Survey 2. (d) Salinity for Survey 2

Although a full diagnosis of the model accuracy is not within the scope

of this work, a general overview and direct comparisons are shown on

which to base further analysis. Because undue reliance on one data

source increases the risk of erroneous comparisons, consequently in

this section we compare SINMOD data and AUV observations, followed

by Section 5.4, where we provide supporting data from ship, buoy, and

remote sensing from the same spatiotemporal domain.

During the field experiment period SINMOD provided nowcasts

(48-hr forecasts) used to cross-validate the in situ measurements and

study the experienced behavior. Comparing the executed paths to the

80-m SINMOD nowcasts (shown in the background in Figure 12b and d)

suggests that Survey 2 accounts for a temperature trend that is warm-

ing toward west, crossing the gradients in a manner one would expect.

More uniform conditions are predicted for Survey 1, which results in a

more variance dominated survey.

Figure 14 presents temperature and salinity measurements from

the AUV with the SINMOD nowcasts superimposed (dashed lines). The

immediate impression is that the model shows a tendency to under-

estimate the surface warming present in the AUV data; a bias in salin-

ity is also present. The correspondence is good in the 70 to 90 m

depth in which the GP data assimilation and GASA algorithm were

active.

The temperature difference is easier to study using Figure 15, pre-

senting the temperature deviation spatially within the survey area

(birds-eye view). Figure 15a and b makes it possible to study, where

in the survey area, the temperature deviation between the nowcasts

and reality was the highest. The northeastern corner of the model

was the weakest in terms of predicting ocean temperature, for both

surveys, being warmer than expected. This may explain why GASA in

both cases chose to cross over from node 3 to node 0. The devia-

tion between the measurements and the nowcast is not influencing

the AUV behavior directly because the objective function only evalu-

ates the balance between variance and gradient. However, if the num-

ber of nodes to visit is higher (e.g., more than 5), we would expect this

region to be revisited as the objective value would favor the tempera-

ture gradient. Indirectly, this would result in a higher sampling density

where model discrepancy would potentially be high, as a result of this

gradient. The region corresponds to the maximum-variance hot spot

(Figure 10), which suggests a connection between temperature varia-

tion and model uncertainty, important for validating our approach in

developing the objective function.

Figures 14 and 15 can be used to give the first impression of

the discrepancies, but cannot be used as the proof of model error,

as a range of sources may contribute to the mismatch, including
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F IGURE 15 Subparts (a) and (b) show the spatial comparison of predicted SINMOD nowcast and the estimated GP temperature field (survey area
seen from above at 80m depth). (a) Temperature discrepancy Survey 1. (b) Temperature discrepancy Survey 2

F IGURE 16 Results from a moored buoy, from May 4 to 11, 2017. Temperature and salinity measurements from the buoy at 1 m depth during
the operational period, overlayed on SINMOD predictions at 3m depth; Surveys 1 and 2 are indicated in grey

errors in initial conditions. The results nevertheless demonstrate how

adaptive and data-driven approaches can improve ocean modeling,

by revising a priori uncertainty assumptions and providing infor-

mation that can greatly focus analysis of model shortcomings and

inaccuracies.

5.4 Buoy, ship-based, and remote sensing data

To get a full picture of the environment and ground truth the SINMOD

and AUV data, supporting data sets from the other marine platforms

are presented in this section. The measurements from a moored

buoy in Figure 16 show the long-term fluctuation in the area. The

buoy is located further inshore, 3 km from the AUV survey area; see

Figure 19b.

The buoy data show a trend of sun-driven surface warming during

the AUV deployments, with Survey 2 having a higher peak tempera-

ture during the deployment corresponding to sea SST products from

remote sensing. The SINMOD nowcast prediction at the buoy location,

shown with the dashed line, follows the trends well albeit with some

bias, although certain events such as the salinity drop before May 9,

2017, is not picked up by themodel.

The results from Surveys 1 and 2 indicate a significant difference in

the influence fromAW, visible in the thermocline line in Figure 12a and

d. Comparing these results with CTD measurements made from the

R/V Gunnerus in Figure 17 and the SINMOD prediction in Figure 5, the

same thermocline dynamics can be found. Most notably for the outer-

most stations (2 and 6), both taken at high tide, there is a large shift in

both temperature and salinity betweenMay 9 and 10, 2017.

A significant difference in chlorophyll a concentration (Figure 18)

for the two deployments is captured in the remote sensing data. Due

to cloud cover, the retrieved data area is patchy; despite this, there is

clearlymore chlorophyll a concentrated in the surface during Survey 1,

in agreement with the in situ chlorophyll measurements from the AUV

and the R/V Gunnerus.

It is important to stress that the peak chlorophyll concentra-

tion at 15 to 20 m depth cannot be detected from space and that

sparse coverage from ship-based sampling can be augmented with

AUV data to render a more precise in-depth picture of chlorophyll
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F IGURE 17 Results from the R/V Gunnerus operations from May 9 to 11, 2017 (a) Temperature profiles. (b) Salinity profiles. (c) CTD cast loca-
tions. Vertical profiles from CTDmeasurements made by Gunneruswith temperature variability showing the influx of AWmoving up and down in
the water column

F IGURE 18 Chlorophyll a concentration for May 9 and 12, 2017, processed from Copernicus Sentinel Data (Sentinel-2A) OC2 (Vanhellemont
& Ruddick, 2016) compared with in situ measurements from AUV and the research vessel (a) Sentinel-2A , CHL OC2, May 9, 2017, 10:56 a.m. (b)
Sentinel-2A , CHLOC2,May 12, 2017, 11:13 a.m. (c) AUV and vessel R/VGunnerus, May 9, 2017

structure. This demonstrates why we need to combine information

from several sources to arrive at a deeper understanding of ongoing

processes.

Comparing across the different measurement platforms, Figure 19

shows the nowcasted temperature for the entire upper 3-m model

area, side by side with remote sensing, AUV, and buoy measure-

ments. The remote sensing data are filtered for quality and only com-

pared to locations within the model domain (Figure 19b, orange area).

Some days had full overcast (May 9, 2017) and therefore no remote

sensing data are available. Some of the variations is related to dif-

ference in space, as the buoy is further inshore compared to the

AUV, and time, because the AUV and remote sensing data were col-

lected somewhat apart. However, there is a clear tendency of SINMOD

to underestimate the surface temperature during the campaign; this

is supported by both AUV data (Figure 14) and buoy time series

(Figure 16).

6 DISCUSSION

Our work shows the synergies to be exploited between data-driven

sampling and synthetic ocean models, making oceanographic obser-

vations and data collection more efficient, by providing comparison

of in-field data to augment and cross-validate model predictability,

while also enabling greater capability to study and understand oceano-

graphic processes and events. Using stochastic surrogatemodels, such

as the GP model derived in this paper, allows the unification of both

in situmeasurements, data assimilation, anduncertaintyquantification

of the full hydrodynamic model, presenting scientists with a powerful

framework for efficient experiment design.

As Zhang and Sukhatme (2007) pointed out, interpolation/kriging

is required to estimate the value where no direct measurements are

available; hence a bias is inevitable. Consequently, the algorithmwill be

exposed tohigh gradients as a result of failing to initialize the priorwith
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F IGURE 19 The 3-mwater temperature nowcast from SINMOD compared to remote sensing SST products (MODIS), buoy measurements at 1 m
depth, andAUVdata from the surface layer 0–3m, at noon. (a) Recorded temperatures at noon. S, R, B, andA denote SINMOD, remote sensing, buoy,
and the AUVmeasurements, respectively. (b) Coverage and locationmap for the campaign at Froan (midway)

realistic values because prior and measured temperatures in unex-

plored locations typically deviate causing each update to generate a

gradient peak that may not actually be realistic. Therefore, the objec-

tive function presented in this work counterbalances the gradient esti-

matewith the corresponding uncertainty in Pt,dj , while also performing

aone-time-only bias correctionof thepriormeanestimate to avoid this

effect.

Independent of the cost function, the algorithm used in this paper

uses a one-step planning horizon, greedily choosing the path with the

best objective value, for which an adverse effect can be attraction to

local optima—there are a number of reasons for making this choice.

First, there are factors related to computational load, which grow

exponentially for recursive approaches, originating from the combina-

toric complexity as the graph network size increases. In the proposed

approach, the graph is small and compute time is not an issue; however,

as the method is devised for larger graphs, this is important to keep

in mind, as some greedy-recursive approaches contemplate solutions

shown to have better performance, see e.g., Ma, Liu, and Sukhatme

(2016). So for larger graphs or limited computation, greedy approaches

may provide “good enough” solutions (Binney et al., 2013) and accept-

able performance, as shown in Krause et al. (2008). Second, as the

methods used depend on ocean models, which are approximate, the

inherentmodel uncertainty and integratederror effectswill reduce the

advantage gained in using a longer planning horizon. In some cases, this

may cause the performance to becomeworse (Binney et al., 2013). The

regional spatial and temporal scales onwhich to operate also come into

consideration as upper water-column and coastal variability can nei-

ther be sampled normodeled on a sustained and substantial basis (Ler-

musiaux, 2006). Some of these constraints can be managed; examples

of nonmyopic approaches, such as Krause (2007) andHoang, Low, Jail-

let, and Kankanhalli (2014), can be used for active sampling, with com-

plexity bounds on the exploration phase.

In terms of applicability, the end-to-end method presented in this

work is general in the sense that the pipeline starting with (a) the dis-

cretization and spatial modeling of the phenomena using ocean model

data, (b) formulation of the objective function toward a scientific con-

text, and (c) algorithmic implementation can easily be tailored to other

environmental attributes or a combination of several, depending on

the phenomena and scientific goals, where the perspective is the com-

bination of ocean model data and in situ measurements. In our field

experiment, both surveys showed a large variation with thermocline

shift from 65 to 40 m, a spread in salinity from 33.0 to 34.9, and

chlorophyll concentrations from 1 to 4 mg/m3. This observed variabil-

ity across a rangeof environmental signatures demonstrates that using

another type of environmental variable is possible and that to resolve

different ocean phenomena measurements from several assets needs

to be considered.

7 CONCLUSIONS AND FUTURE WORK

In this work, we have presented methods for coupling ocean models

with in situ data to achieve efficient sampling of coastal processes,with

specific focus on the physical–biological coupling active in the Froan

region, using ocean temperature as an information utility. Based on

high-resolution hindcast data from the SINMOD oceanmodel, a stochas-

tic proxymodel usingGPswas formulated, anda location-based covari-

ance function was implemented to improve the assimilation of in situ

measurements. To consolidate the GP model with the phenomena of

interest for adaptive sampling, a variance and gradient-based objec-

tive function that accounts for uncertainty in the estimated gradi-

ents was established. The sampling algorithm, being both data- and

model-driven, was tested in simulation and in sea trials, onboard an

AUV. The experiments show that the algorithmdifferentiated between

alternative survey strategies, having good agreement withmodel fore-

casts. The recorded data indicate correspondence between ocean

model and AUV in determining a thermocline shift from influx of AW.

Finally, we present supporting data from remote sensing, buoy, and

ship-basedmeasurements, anddiscuss how the combineddata sources

can be used improve oceanmodels.

Because only information froma specific depth region is utilized,we

plan to extend the integration to several depths, which can be done
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without significantly increasing the complexity of the system. This is

also the case for extending the current GP model to include more

complex spatiotemporal dynamics. A more advanced bias correction

scheme will also be considered as several covariates and information

sources can be included to contribute to augment the prior forecast

coming from the model. Additionally, recursive approaches flanked by

model or phenomena-based heuristics, which have a limited computa-

tional footprint, are also improvements that will be explored.
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