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1 Introduction 
 
The following report describes the construction of the second generation snow pack model GamSnow, used 
to simulate snow melt in a distributed hydrological model. GamSnow was originally developed during 2000-
2003, as a module in what later became the Enki modelling platform. It is today also a part of Statkraft’s 
Hydrological Forecasting Toolbox (SHyFT), as well as Powel’s Smart Generation (SmG) suite of water 
management and hydropower scheduling software, used by most larger hydropower producers in 
Scandinavia. This grid distributed model is now challenging the semi-distributed HBV model (Bergström 
and Forsman, 1973) as an operational tool in the Norwegian hydropower sector. 
 
During the development of a distributed inflow model as an alternative to HBV, GamSnow was the first sub-
routine to replace its HBV counterpart HBVSnow, which was originally based on elevation zones and a 
degree-day snowmelt principle. GamSnow extended the spatial distribution scheme to grid cells, and 
replaced the degree-day snowmelt equation with an energy budget approach. It was designed for multi-
variable calibration and validation; and was used in a series of papers investigating the assimilation of 
remotely sensed snow cover information (e.g. Kolberg et al., 2006; Kolberg and Gottschalk, 2010). 
At the core of GamSnow was the Snow Depletion Curve (SDC); replacing HBV’s piecewise linear snow 
distribution function. The SDC concept has been discussed by, among others, Luce et al (1998) and Liston 
(1998); and its reconstruction from remotely sensed data by e.g. Durand et al., (2008). Based on extensive 
snow surveys, a Gamma model was selected for the probability density function underlying the SDC; hence 
the name of the routine. 
 
As Enki continued to develop, more of its originally HBV-based routines were replaced by new and simpler 
formulations. The simplification in terms of number of parameters and state variables is considered 
necessary given the expanding from an elevation zone based to a grid based spatial distribution scheme. 
Eventually it became clear that the original GamSnow routine was by far the most complex routine in the 
model; and it indeed contained a number of parameters which were not identifiable during calibration.  
A revision of GamSnow has therefore been desirable and was identified as a specific sub-objective for the 
SnowHow project. The ambition has been to strengthen its adherence to physical principles, to increase the 
observability of its internal states, and to reduce its dependency of calibration by removing poorly 
identifiable parameters. 
 

2 Model description 
 
The 2nd generation GamSnow routine is, as its predecessor, a grid distributed snow accumulation and melt 
model designed for hydrological modelling with emphasis on assimilating remotely sensed information. It 
employs a Snow Depletion Curve (SDC) to describe the small-scale heterogeneity in each grid cell. The 
purpose of the SDC is to keep track of the snow storage and fractional snow covered area during the winter 
and the snow melt season. GamSnow does not aspire to simulate lateral transport or distribution of snow 
explicitly, only a statistical representation of sub-grid snow distribution is employed. The spatial resolution 
(grid cell size) is therefore best selected so that net transport into or out from any grid cell is negligible. A 
grid size commonly used in maritime-mountainous regions is 1*1 km. In regions of dry/colder winters where 
snow transport may extend over long distances, the grid cell size needed for the same assumptions to hold 
may be several kilometres. 
 
Simulating sub-grid snow distribution in 1*1 km grid cells is considerably more detailed than required for 
runoff prediction in typical hydropower catchments. It is, however, necessary in order to extract quantitative 
snow storage mass balance information from satellite imagery, which as is provides only snow covered area. 
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It is also necessary to correctly represent the surface energy fluxes in atmospheric modelling (Liston et al., 
1999). Recently, remotely sensed information products on fractional snow cover have become available on a 
daily basis at sub-km resolution from MODIS and several other sensors.  

2.1 Spatial distribution 
The 2nd generation GamSnow routine is implemented within the Enki framework, and inherits from it the 
possible spatial distribution schemes. The typical case is a rectangular spatial grid with square cells aligned 
with its coordinates, but GamSnow itself does not require these restrictions. It can also be run for any list of 
locations; for instance subcatchments or elevation zones. GamSnow/Enki assumes all variables to be 
completely georeferenced, and will verify that all distributed variables share a common geodetic projection 
system and a common spatial geometry.  

2.2 Necessary inputs 
The 2nd generation GamSnow routine can be run with any time step length. It needs distributed input time 
series for precipitation [mm], temperature [°C] relative humidity [%], wind speed [m/s] and global radiation 
[W/m2]. GamSnow does not create proxy values or otherwise respond properly to missing input values; it is 
assumed that such deficiencies are handled in the surrounding Enki framework. Neither does GamSnow 
perform any input modifications like altitude-based temperature adjustment or correction for precipitation 
catch deficit. The precipitation form, however, is classified as solid or liquid using a threshold temperature 
supplied as a calibration-enabled parameter.  
 
A rudimentary land cover map is required as a static input, but only masked-out areas (code 0) and 
lakes/open water (code 1) are recognised and handled specifically in the equations. All other codes in the 
land cover map are simulated in the same way in both the original GamSnow and the new version presented 
here. Future development may extend GamSnow to taking vegetation type into account. 
 
A map of minimum bare-ground fraction is needed, specifying for each grid cell the areal fraction that stays 
uncovered by snow, even at mid-winter. Usually below 0.05 except for very steep topography. 
 
A glacier map is optional, and provides the glaciated fraction of each cell. Glaciers will only influence 
simulation when the snow covered fraction in a grid cell is smaller than its glacier fraction. If no map is 
supplied, glaciers are assumed not to exist. 
 
In addition, 2nd generation GamSnow requires initial values for all state variables, and values for all 
parameters. The parameters can be chosen as either scalar values, which are available for Enki’s calibration 
functionality, or as distributed maps in which the local values are not calibratable. Typically, the latter is 
chosen for parameters which can be estimated from e.g. satellite images, e.g. those in the sub-grid snow 
distribution. 

2.3 Simulated responses 
The primary response variable of the 2nd generation GamSnow routine is the simulated water outflow from 
the snow pack [mm]. Secondary response variables are snow covered area SCA [-] and snow albedo [-]. In 
addition, four effect components in the snow melt equation are exported for diagnostic monitoring; net 
shortwave radiation, net longwave radiation, net turbulent energy flux and energy flux from precipitation (all 
in [W/m2] and positive downward). 
 
Internally, GamSnow simulates the snow storage and its sub-grid coefficient of variation, the snow grain 
size, the snow surface temperature and the liquid water content of both the bulk snow pack and the topmost 
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layer, the accumulated melt depth (since spring onset) and the magnitude of an ephemeral new-snow layer 
appearing on top of the distributed snow pack following spring snow events. 
 
The Enki framework allows any exposed variable in each routine to be evaluated and used in calibration. In 
the current investigation, this is limited to grid cell snow covered area and catchment discharge. A range of 
performance criteria is available, including likelihood measures for use in estimation algorithms based on 
strict statistical formulation. 
 

2.4 The melt equation 
GamSnow’s melt equation can best be described as an energy sum approach. In principle, it resembles a full 
energy balance approach, summing up the flux components net shortwave radiation, net longwave radiation, 
turbulent (latent and sensible) heat fluxes and precipitation heat flux (figure 1 and equation 1). Unlike a full 
energy balance equation however, the negative feedback mechanism represented by the snow surface 
temperature is not simulated. Instead, the snow surface temperature needed to estimate the upward 
components of longwave radiation and turbulent transfer, is simulated as a function of the wet-bulb 
temperature, as given by air temperature and relative humidity. This simplification avoids simulating detailed 
heat flux and storage within a snow pack of poorly known and highly heterogeneous depth and properties. 
 

 
Figure 1: The forcing variables, main states, and energy terms of the snow melt equation. Ground flux 
and influence of clouds on short- and longwave radiation are not simulated in GamSnow. 

 
 
The energy balance equation for snow melt can be formulated as (e.g. Lundquist et al., 2013): 

𝑄𝑄𝑀𝑀 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 +  𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 +  𝑄𝑄𝐸𝐸 +  𝑄𝑄𝐻𝐻 +  𝑄𝑄𝑅𝑅 +  𝑄𝑄𝐺𝐺 −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

where QM is the energy flux consumed in melting snow, Lnet and Snet are net longwave and shortwave 
radiation, respectively; QE and QH are the turbulent terms (sensible and latent heat flux), QR is energy flux 
from precipitation, QG is energy flux from the ground, and dU/dt is the rate of change in internal energy. All 
terms in [W/m2], expressing energy flux, or rate of energy transfer per unit area. 
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2.4.1 Shortwave radiation 
Shortwave radiation represents a large part of the energy available for snow melt; in particular in 
mountainous areas. Estimation of local solar radiation values is external to the second generation GamSnow 
as well as to the original formulation. It is usually measured as global radiation; hemisphere-integrated flux 
across a horizontal surface. Global radiation is a function of solar elevation, clear-sky atmospheric 
transmissivity, and cloud cover. The solar elevation is important, but it is known with high precision and thus 
not a source of uncertainty. The clear-sky transmissivity is less well known, but has a modest influence. On 
the other hand, the influence of clouds (fractional coverage, height and other characteristics) is both highly 
important and difficult to quantify using operationally available data. Improved knowledge of cloud cover 
properties over a region, for instance from satellite data, can therefore be of great help in creating local 
values for solar radiation. Shortwave radiation flux is also very dependent of the snow albedo, which 
represents one of the major changes in the second generation GamSnow presented here. 

2.4.2 Longwave radiation 
Just like shortwave radiation, longwave radiation is a net effect of incoming and outgoing components. In 
both versions of GamSnow, incoming longwave radiation is simulated from air temperature, with 
atmospheric emissivity modelled from vapor pressure. Cloud coverage is not represented. Outgoing 
longwave radiation is simulated as a function of snow surface temperature, assuming a snow emissivity of 
1.0. The snow surface temperature driving the outgoing flux is another aspect which is changed in the new 
GamSnow formulation. In this case the general approach is kept, but the amount of information behind the 
new formulation is stronger than in the original GamSnow routine. 

2.4.3 Turbulent energy flux 
The turbulent energy flux consists of sensible and latent heat flux components, for which the circulation of 
air above the snow pack is the most important transport process. The two depend on a turbulence function, 
which in both versions of GamSnow is a linear transformatin of wind speed, with free parameters WindScale 
and WindConst. The turbulence function is multiplied with surface vs reference height gradients in 
temperature and vapour pressure to generate sensible and latent heat flux, respectively. It is assumed that the 
air immediately above the snow surface is saturated and at snow temperature. Vapour pressure is a function 
of temperature and relative humidity.  

2.4.4  Internal energy and liquid water content 
The total energy flux from the four main components is either positive or negative, and will increase or 
decrease the energy content of the snow surface layer. The surface layer is assumed to insulate the deeper 
snow pack from temperature changes, and has a thickness regulated by a free parameter. The energy content 
of a dry snow surface layer at 0°C is zero. Negative energy content in the surface layer means that its 
temperature is also negative, positive energy content that it contains liquid water. Snow surface energy 
content exceeding what corresponds to maximum liquid water holding capacity, is made available for snow 
melt in the underlying bulk snow pack. The bulk snow pack has the same maximum water holding capacity, 
and runoff occurs when it is exceeded. Liquid water content in the bulk snow pack can only be reduced by 
new snowfall, not by refreezing, since the bulk snow pack is assumed thermally insulated from the 
atmosphere. The bulk snowpack liquid water content therefore delays melt onset at the seasonal scale, but 
not at the diurnal. 
 

2.5 Sub-grid snow distribution 
The parameterisation of snow storage and spatial distribution is divided between small- and large-scale 
variation components, with the grid cell size separating the two. The large scale variability is maintained by 
each grid cell keeping track of its own mass balance, hence more or less given by the spatial variability of 
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input forcing. The sub-grid distribution is described by a snow depletion curve (figure 2), as is used by e.g. 
Liston (1999) and Luce et al (1999). The SDC represents both the cumulative probability distribution of 
point snow storage at melt season start, and the bare-ground fraction of the grid cell as a function of 
accumulated melt depth throughout the spring season. A necessary condition for these to be equivalent is that 
snow melt intensity is spatially homogeneous within each grid cell. The only state variable active through the 
melt season is the accumulated melt depth (λ), whereas snow covered area SCA, runoff and remaining snow 
storage are functions of λ,  
 

 

Figure 2: The snow depletion curve expressed as a cumulative probability distribution, parameterised 
by its mean value m, coefficient of variation cv, and the initial bare-ground fraction y0 (from Kolberg 
el al., 2006). During the melt season, λ(t) is the accumulated melt depth, the functional value y(t) = 1-
SCA is the fraction of bare ground, whereas the mass balance is found by integrating (1-y(x)) from 0 to 
λ for melted volume (dark blue); from λ to ∞ for remaining snow storage (light blue). 

 
A parametric SDC with a limited number of parameters cannot follow all possible events. In particular when 
new snow falls on a partly snow covered grid cell, the new SDC will ideally have a break point at the old 
SCA value. This singularity cannot be represented in a 3-parameter SDC model. To avoid excessive special 
case handling, the SDC operates in different modes during accumulation and melt seasons, and treat each 
season’s unusual events in a simplified manner. In winter mode, a snow melt event lowers the curve itself 
rather than truncating it, hence maintaining full SCA unless the storage is completely emptied. In spring 
mode, a snowfall event on reduced SCA generates an additional, spatially homogeneous temporary layer. All 
subsequent melt occurs from this temporary layer until it is emptied; only then the SCA changes back to the 
value it had before the melt event. These simplifications are usually active only in the edges of each season, 
and helps maintaining a parametrically simple SDC as a stable relation between SCA and mass balance. This 
in turn is a prerequisite for using satellite snow coverage data to update snow cover mas balance. It may, 
however, be overly crude in regions where the snow cover appears and disappears through the cold season. 
 
In principle, any monotonous function can be used as SDC model. If the SDC is applied to a small, well-
monitored catchment, it could be advantageous to increase its flexibility by adding more parameters. When 
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applied to every grid cell in a regional model, however, the SDC should be simple and robust. This increases 
the probability for satellite image information to identify biases in the important mass balance state, rather 
than just tuning the distribution form. 
 
Both the original and the new GamSnow use a 2-parameter Gamma distribution (hence the name), with an 
additional, term y0 to account for steep ridges and slopes on which snow does not accumulate. This y0 
parameter is usually small to negligible in a pure simulation context. In updating, however, it helps avoiding 
drastic reduction of snow storage to comply with early-spring satellite images showing small but significant 
bare ground at high elevation. 
 
Of the three SDC parameters in GamSnow, the mean value (m) is clearly season-specific. The sub-grid 
coefficient of variation (cv) and the all-winter bare ground fraction (y0) are regarded as model parameters, 
which can be estimated as heterogeneous maps if a sufficient number of melt-season satellite images are 
available for a calibration period. Kolberg and Gottschalk (2010) has shown that the inter-annual stability of 
these parameters is high, with considerable advantages for building strong confidence. This again increases 
the probability that observed SCA in a real-time situation can be reliably used to update the snow storage. 
 

2.6 Runoff from glaciers 
GamSnow includes a simple mechanism for simulating glacier runoff. A glacier is represented as an infinite 
storage with constant spatial extent. No simulation of mass balance, varying glacier extent, or ice transport is 
provided. A glacier map must be supplied which for each pixel quantifies the fraction covered by glaciers. It 
is assumed that the seasonal snow disappears from all non-glaciated areas before the glacier ice is exposed. 
Hence the glaciers are only active when the SCA is lower than the glacier percentage. Melt intensity is 
calculated as for snow, but with a temporally constant glacier albedo value rather than the simulated snow 
albedo. In glaciated grid cells, remaining snow after a summer is not carried over to the next year’s snow 
storage as in non-glaciated cells, but assumed to be lost to the glacier.  
 
 

3 A new albedo formulation 
 
In the existing GamSnow model, albedo development is simulated in dry and wet snow by using simple 
decay rates with two different time constants. In addition, free calibration parameters include maximum and 
minimum albedo as well as the amount of new snow needed to reset the albedo. Also calibrated is glacier 
albedo, giving six parameters in total. Even when using numerous catchments and several seasons’ time 
series of satellite snow cover images to estimate a single parameter set, no calibration exercise has been even 
close to identifying clear optima for these. A strong simplification of the albedo model was thus seen as 
necessary to reduce the parameter equifinality and gain confidence in the optimised values (see discussions 
by Beven etc). 
 
It is in the radiation terms that the main differences with respect to the original GamSnow equation is found. 
Incoming short wave radiation is readily available both as ground measurements and as remotely sensed 
values (Trigo et al, 2011); the major source of uncertainty is the albedo conceptualisation. Albedo is known 
to depend strongly on snow grain size (Wiscombe and Warren, 1980), the content of black carbon and other 
impurities, the incidence angle, and the spectral composition of the solar radiation. In particular, the 
reduction in albedo in ageing snow is driven primarily by the grain size growth. The dependency of 
incidence angle and spectral composition, however, mean that the decomposition of solar radiation into 
direct and diffuse components plays an important role for more than terrain correcting of incoming radiation.  
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3.1.1 Grain size modelling, dry snow 
Flanner and Zender (2006) and Flanner et al (2007) discuss the parameterisation and development of snow 
grain size. Based on the concept of specific surface area (SSA or 𝑆̂𝑆), they demonstrate that the optical 
properties for a collection of snow grains with different sizes and shapes can be developed theoretically for 
an effective grain size ratio inversely related to SSA. This is the basis for their model SNICAR; a complex, 
multi-layer simulator of grain size growth in dry snow. They also propose a simpler parameterisation shown 
to closely replicate SNICAR's results for surface grain size development, as needed in climate and snow melt 
models. This parameterisation appears in somewhat different transformations in various papers, the 
formulation used in this report coincides with the version used in Kuipers Munneke et al, 2011, and states: 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0
∗ (

𝜏𝜏
(𝑟𝑟 − 𝑟𝑟0) + 𝜏𝜏

)1 𝜅𝜅�  

 
This is a simple, 3-parameter equation for the rate of change in specific surface area. However, the three 
parameters are not constants, they are themselves functions of four properties of the snow cover: 
Temperature, temperature gradient, density and fresh snow grain size. Flanner and Zender (2006) provide 
these functions as lookup tables, spanning the interval -50 – 0 °C, 0 – 300 °C/m, 0 – 400 kg/m3, and 60 – 100 
m2/kg; in 11, 31, 8, and 3 steps, respectively. The tables are available at 
http://snow.engin.umich.edu/snowaging/ (accessed at 2016-09-15).  
 
The coefficients in this 4-dimensional table are tuned by minimising the sum of squared errors of the 
simplified equation versus the full SNICAR model over a two-week simulation period (336 hourly values). 
The estimation of the three parameters was done independently for each of the 8184 different combinations 
of the four snowpack properties (M. Flanner, personal communication 2016). 
 
Strictly speaking, this means that the simplified SNICAR model has more than 24 000 estimated parameters. 
These are tuned under controlled conditions to full- SNICAR simulated values; and mostly they vary 
smoothly along their dimensions. In some intervals, however, the parameters as well as the resulting grain 
growth rate depend in a non-monotonous manner to some of its snow-property forcing, as is illustrated in 
figure 3. This behaviour is not realistic, and probably arises from different subsets of the 336 hourly residuals 
being most influential on the estimation. The assumption of unchanged forcing conditions over the 2-week 
period is itself unrealistic, at least for some of the value combinations. 
 

http://snow.engin.umich.edu/snowaging/
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Figure 3: Non-monotony in the simplified 3-parameter SNICAR equation; parameters κ and τ versus 
gT (left), and predicted grain size versus time for different gT (right). The latter show smooth 
behaviour for strong gradients, but shifts abruptly as gradient decreases below 60 K/m. 

 
Switching from a synthetic experiment to real-world application, the four forcing variables are in part 
difficult to measure and simulate. In practice they are left to simulation within the snow model which 
SNICAR is meant to serve; relying on all input variables used by the complete snow model. Even for a 
single, well-instrumented experiment plot, this is likely to induce errors well beyond those of the simplified 
3-parameter equation. In particular, the uncertainty increases if the conditions include thawing and possibly 
refreezing of surface snow crystals. 
 
For this reason, some effort was made to tie this formally large number of lookup-table values together in 
new parametric models, in which monotony could be enforced and the degrees of freedom reduced. The 
simplification was tuned against the simplified 3-parameter equation with lookup table values, not with 
respect to the full SNICAR model. 
 
The most influential parameter is �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0
, which dependency of snow temperature T can be expressed as 2-

order polynomial 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0

= 𝐴𝐴𝑇𝑇2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 

 
The coefficients A to C depend on the remaining snow properties 𝑔𝑔𝑇𝑇, 𝑆𝑆0, and 𝜌𝜌; and can be modelled as: 
 

𝐴𝐴 =  𝐴𝐴0 +  𝐴𝐴1 ⋅ 𝑔𝑔𝑇𝑇 
 
𝐴𝐴0 = 0.002835 ∗ ln(𝑆𝑆0) − 0.008411 

 

𝐴𝐴1 = 3.74 ⋅ 10−4 ⋅ (0.405− 𝜌𝜌) ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝑆𝑆0

28.63
� 

 
𝐵𝐵 = 𝐵𝐵0 + 𝐵𝐵1 ⋅ 𝑔𝑔𝑇𝑇 

 
𝐵𝐵0 = 0.0051 ⋅ 𝑆𝑆0 

 
𝐵𝐵1 = (0.00095 ln(𝑆𝑆0) − 0.00468) ⋅ ln(𝜌𝜌) − 0.00579 ln(𝑆𝑆0) + 0.02842 

 
𝐶𝐶 = 𝐶𝐶0 +  𝐶𝐶1 ⋅ 𝑔𝑔𝑇𝑇 
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𝐶𝐶0 = 0.1362 ⋅ 𝑆𝑆0 

 
𝐶𝐶1 =  (0.0188 ⋅ ln(𝑆𝑆0)− 0.09662) ⋅ 𝑙𝑙𝑙𝑙(𝜌𝜌) − 0.1109 ln(𝑆𝑆0) + 0.5706 

 
where 𝑔𝑔𝑇𝑇 is the temperature gradient, S0 is the initial (fresh-snow) SSA, and 𝜌𝜌 is the snow density. The 
modelled values for �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0
 fit the table values to a Nash-Sutcliffe value of 0.968. It took, however, 15 

parameters to reach this correspondence. 
 
Next, we need to model the remaining parameters τ and κ in the simplified SNICAR equation. These 
parameters exhibit the non-monotonous dependency of snow properties, and models are therefore fitted to 
restricted intervals for some snow property values. The restricted snow density interval extends from 100 to 
350 kg/m3, snow temperature from -30 to -5 °C, and temperature gradient from 30 to 250 °C/m. In addition, 
some combinations within these intervals are also removed.   
 
The parameter τ is modelled by its natural logarithm as (Coefficients A-D are different from those above): 
 

𝑙𝑙𝑙𝑙(𝜏𝜏) = 𝐴𝐴 ⋅ (−𝑇𝑇)𝐵𝐵 ⋅ 𝜌𝜌2 + 𝐶𝐶 ⋅ 𝑔𝑔𝑇𝑇 + 𝐷𝐷 
 
where A = - 0.00001886, B = 0.756, C = 0.037, and D = -0.0193. The modelled ln(τ) values fit their 
tabulated counterparts to a Nash-Sutcliffe R2 value of 0.825, for τ the R2 value is 0.53. 
 
The parameter κ is also modelled by its natural logarithm (again coefficients A-E are different from above): 
 

𝑙𝑙𝑙𝑙(𝜏𝜏) = 𝐴𝐴 ⋅ (−𝑇𝑇)𝐵𝐵 ⋅ 𝜌𝜌 + 𝐶𝐶 ⋅ 𝑔𝑔𝑇𝑇 + 𝐷𝐷 ⋅ 𝑆𝑆0 + 𝐸𝐸 
 
where A = 0.000335, B = 0.734, C = - 0.00224, D = -0.00506, and E = 0.805 The modelled ln(κ) values fit 
their tabulated counterparts to a Nash-Sutcliffe R2 value of 0.825, for τ the R2 value is 0.737. 
 
The models for τ and κ has four and five parameters, respectively; one more than their number of predictor 
variables. They clearly do not match the performance of the 15-parameter model for �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0
.  This is 

reasonable given that certain aspects of the tabular values’ behaviour were deliberately not included in the 
model, with increased residuals as an obvious result. 
 
In total, the simplification of the simplified SNICAR model still possesses 24 free parameters. The 
identifiability of these is not investigated, given that the reference to which they are calibrated is itself a 
synthetic data set. but at least they are ensured to have monotonous influence. In a snowmelt model for 
temperate, seasonally snow covered regions, however, 24 free parameters is probably still an order of 
magnitude higher than one should expect to be identifiable within a realistic amount and diversity of 
calibration information. Highly uncertain and heterogeneous forcing, occasional thawing, and frequent new 
snow events with high small-scale variability, are all processes which may impact the development of 
surface reflectance more than realistic variations of snowpack density and temperature gradient. 
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3.1.2 Grain size modelling, wet snow 
Compared to the theoretical development of a crystal growth rate model for dry snow; the models developed 
for simulating wet snow grain size growth has been simpler and more empirically based. “Simpler” here does 
not apply to the experiments, which require special techniques to keep the samples at constant wetness.  
 
Brun (1989) conducted a laboratory experiment in which dry snow was brought to 0°C and further exposed 
to heat to achieve a desired liquid water content, before the sample containers were put in an insulated ice-
water bath to avoid further phase change. Over the next two weeks the crystal growth rate was studied for 
snow samples with different liquid water content, by taking out sub-samples from the originally 7-litre 
samples and analysing their grain structure. 
 
The analysis of Brun (1989) showed that the initial phase of metamorphism involved more change of crystal 
shape than of size; changing the specific surface area more than grain size itself, while also the snow density 
increased. After the initial phase, the average crystal volume increased approximately linearly with time, and 
with liquid water content raised to the power of 3. Beyond the maximum liquid water content of snow at 
approximately 9 percent by mass, percolation drained the snow and prevented further increase in both 
wetness and grain growth rate.  
 
The model proposed by Brun (1989) on the basis of these investigations is then expressed in terms of grain 
volume as  
 

𝜈𝜈(𝑡𝑡) =  𝜈𝜈0 + 𝜈𝜈′ ⋅ 𝑡𝑡 
 

𝜈𝜈′ =  𝜈𝜈0′ +  𝜈𝜈1′ ⋅  𝐿𝐿3 
 
𝜈𝜈0′ = 1.28 ⋅ 10−8𝑚𝑚𝑚𝑚3𝑠𝑠−1 
 
𝜈𝜈1′ = 4.22 ⋅ 10−10𝑚𝑚𝑚𝑚3𝑠𝑠−1 

 
where 𝜈𝜈0 is the initial average grain volume in mm3, t is time in seconds since this initial state, and L is liquid 
water content in percent by mass. Using the chain rule and the formula for volume of a sphere, Brun’s (1989) 
model can be expressed in grain radius r: 
 

𝑟𝑟(𝑡𝑡) =  𝑟𝑟0 +
(𝜈𝜈0′ +  𝜈𝜈1′ ⋅  𝐿𝐿3)

4𝜋𝜋𝑟𝑟2
 ⋅  𝑡𝑡 

 
where 𝑣𝑣0′  and 𝑣𝑣1′  are as above, and r is in mm. If 𝑣𝑣0′ 4𝜋𝜋𝑟𝑟2⁄  is seen as the growth rate when L = 0 and replaced 
with SNICAR’s equation for dry snow, we arrive at the equation adopted by Kuipers Munneke et al. (2011), 
with 𝑣𝑣1′  now named C, and L named fliq. 
 

𝑑𝑑𝑟𝑟𝑒𝑒,𝑤𝑤𝑤𝑤𝑤𝑤

𝑑𝑑𝑑𝑑
=  

𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙3

4𝜋𝜋𝑟𝑟𝑒𝑒2
 

 
This approach assumes that for wet snow, the moisture-driven grain growth is added to the dry snow growth, 
rather than replacing it. In the 2nd generation GamSnow, C is kept as a tuneable parameter alomg with the 
grain size of new snow, effectively targeting the melt and accumulation season, repsctively.  
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The Brun (1989) model contains a strong negative feedback, in that dr/dt is proportional to r-2. This means 
that the grain size growth quickly flattens out. Starting from a grain size of 50µm, the model reaches 378 µm 
(albedo=0.748) after around six days, but it takes another 25 days to reduce albedo to 0.72. 
 
For small and intermediate grain sizes, the Brun (1989) wet growth model is highly sensitive to snow 
wetness, which enters the scaling raised to the power of 3. This means that for any grain size, the snow at the 
maximum of 10% liquid water content (lwc) grows 1000 times faster than snow with 1% lwc. For ripe snow, 
this high sensitivity is counterbalanced by the grain size feedback, but for fresh snow, this is a very high 
sensitivity to a state which difficult to simulate. Not only is production of the first meIt water difficult to 
predict due to the uncertainty in grain size and snow pack internal energy, but the vertical distribution of this 
liquid water over the top snow layer interacting with radiation brings additional challenges.  
 
Figure 4 illustrates the albedo and grain size development in Brun’s (1989) model versus the exponential 
decay used in the original GamSnow albedo routine. We see that Brun’s (1989) model rapidly reduces the 
albedo as the wet snow is fresh, whereas after six days it is caught up by the original formulation. The 
exponential model, however, quickly flattens out towards the user-set minimum albedo value, whereas 
Brun’s model will continue (albeit very slowly) to reduce the albedo. 
 
 

 
Figure 4: Grain size and albedo development over time in wet (saturated) snow in GamSnow1 and 
according to Brun (1989). Grain size does not appear in the original GamSnow routine, but is 
calculated from albedo using the inverted relation. 

 

3.1.3 Albedo model 
Based on the previously developed equations for dry and wet snow grain growth rate; Gardner and Sharp 
(2010) propose the following model for broad-range snow albedo: 
 

𝛼𝛼 =  𝛼𝛼𝑆𝑆 + 𝑑𝑑𝑑𝑑𝑐𝑐 + 𝑑𝑑𝑑𝑑𝑢𝑢′ +  𝑑𝑑𝑑𝑑𝜏𝜏 
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Here, 𝛼𝛼𝑆𝑆 is the albedo of pure snow due to grain size only, and the additional terms describe the effect of 
impurities, zenith angle, and clouds, respectively. A similar model is used by Kuipers Munneke et al (2011) 
with some adjustments to the thinner atmosphere found in Antarctica. The four terms are modelled as: 
 

 𝛼𝛼𝑆̂𝑆 =  1.48− 𝑆̂𝑆0.07 
 
where 𝑆̂𝑆 is the specific surface area; 
 

𝑑𝑑𝑑𝑑𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0.04−  𝛼𝛼𝑆̂𝑆 ,
−𝑐𝑐0.55

0.16 + 0.6𝑆̂𝑆0.5 + 1.8𝑐𝑐0.6𝑆̂𝑆−0.25� 

 
where c is the concentration of black carbon [ppmw]; 
 

𝑑𝑑𝑑𝑑𝑢𝑢′ = 0.53 𝛼𝛼𝑆𝑆 (1 −  𝛼𝛼𝑆̂𝑆)(1 − 𝑢𝑢′)1.2 
 
where 𝑢𝑢′ is an effective value for cosine of the solar zenith angle, given by: 
 

𝑢𝑢′ = 0.64 ⋅ 𝑥𝑥 + (1 − 𝑥𝑥) ⋅ 𝑢𝑢 
 

where 𝑥𝑥 =  𝑚𝑚𝑚𝑚𝑚𝑚 �1, � 𝜏𝜏
3𝑢𝑢
�
0.5
� and u is the nominal cosine of the solar zenith angle; 

 

𝑑𝑑𝛼𝛼𝜏𝜏 =  
0.1 ⋅ 𝜏𝜏 ⋅ 𝛼𝛼𝑐𝑐1.3

(1 + 1.5𝜏𝜏) 𝛼𝛼𝑆𝑆�
 

 
where 𝜏𝜏 is the cloud optical thickness ranging from 0 to 30, and αc =  𝛼𝛼𝑆̂𝑆 + 𝑑𝑑𝛼𝛼𝑐𝑐 . Hence, in addition to the 
properties of the snow surface itself (grain size and carbon concentration), this model also accounts for solar 
incident angle and the change in spectral composition of sunlight during cloudy conditions.  
 
In addition to the grain size and albedo parameterisations themselves, some pragmatic choices have to be 
made before the model is complete: What is the SSA in fresh snow under different conditions, to what extent 
is grain size reset to fresh-snow value after a thin new snowfall, how does rain events or repeated freeze/thaw 
cycles affect the grain size, etc. 
 
Kuipers Munneke et al (2011) set the grain size of refrozen snow to 1500 µm, admitting the arbitrariness of 
this choice. A special treatment for refrozen snow crystals is reasonable, since these are created and grown 
by freezing of water droplets, not by sublimation. In the spring snow packs of temperate regions this process 
is probably also ubiquitous and highly influencial, compared to the Antarctic snow pack for which the 
Kuipers Munneke (2011) model was developed. 
 
However, the effect is quite dramatic, with grain size simply set to 1500 um (albedo approx.. 0.674) as soon 
as the snow is characterised as refrozen. In comparison, Brun's wet snow model does not reach grain size 
above 805 um or albedo below 0.71 even after two months with continuously saturated snow. Extreme 
sensitivity to thresholds is not a desirable property for a model simulating under considerable uncertainty. 
The most dramatic effect is not the minimum albedo, but the fact that refreezing is likely to take place during 
the very first night after melting has generated some liquid water available for refreezing. Effectively, this 
means that Brun's (1989) equation rarely comes into play when combined with the concept of refrozen grain 
size, since the snow usually goes more or less directly from a cold state to a refrozen state. This also means 
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that the one free parameter in Brun's (1989) equation would be non-influential, which was confirmed during 
calibration attempts with this model. 
 
This and similar assumptions add to uncertainty in parameters and forcing; and makes albedo modelling 
difficult, in particular when the snow melt season is also targeted.  
 
For hydrologic model applications, it would therefore be beneficial if albedo could be measured extensively 
to either replace or verify the model’s behaviour. Recent algorithm development based on spaceborne 
spectrometer information have shown good results in producing grain size estimates based on reflectivity 
(Painter et al., 2009). 
 

4 Results 

4.1 Experiment setup 
The 2nd generation GamSnow model was evaluated against measured runoff and observed snow covered 
area; and compared to the original model formulation. The data set used in the comparison covers a 
mountainous region in western Norway, with six catchments between 11 and 110 km2 in size. The spatial 
resolution was 1*1 km, temporal resolution daily, and the selected period 2009 and 2015. For precipitation 
and temperature, gridded values from the SeNorge data set were downloaded from the Norwegian met office 
and used directly. For global radiation, wind speed and relative humidity; gridded values were interpolated 
using Kriging.  
 
The region is seasonally snow covered; with stable snow cover typically starting in December. Elevation 
ranges from 0 to 1700 m a.s.l., with tree line at approximately 1000 m a.s.l. The snow melt season usually 
starts in April at the low altitudes, May in the mountains. The climate is maritime, and lower-lying 
catchments may experience occasional runoff events during some winters. 
 
The two models were set up in parallel within the Enki modelling platform. Apart from the two snow 
routines the two models were identical, using a power-law response routine based on Kirchner (2009) and no 
routing routine due to the relatively small catchments and daily data. The Dream algorithm (Vrugt et al, 
2009) was used for estimation of posterior parameter distributions, but due to long execution times, the 
results did not suffice for complete distribution estimations. Instead, optimal values and the corresponding 
performance were noted, and plots of performance versus single-parameter values were examined visually.  
 
The parameter set was calibrated as regional, that is, the same values were applied anywhere, meaning that 
the optimal parameter set is a compromise between the catchments. In addition to the discharge series, 19 
images from the MODIS sensors through the 2010 melt season were used to evaluate the simulation of snow 
covered area.  A likelihood measure was formulated and used in the Dream runs, but only traditional 
squared-differences based performance measures were taken out and analysed. 
 
The two snow routine versions differed in a number of free parameters; all of which in the albedo subroutine: 
The original formulation included four free parameters for maximum and minimum albedo, slow and fast 
albedo decay rate, while the new formulation included one free parameter (wet-snow grain growth rate). 
Both routines had parameters for glacier albedo and new snow depth needed to reset albedo to fresh-snow 
value. Apart from the albedo routine, the models were identical in terms of free parameters. 
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4.2 Calibration results and performance statistics: 
The Dream algorithm was run for around 1000 model evaluations, and seemed to have converged after 
approximately 500. This sample size is too small to make inference about the multivariate posterior 
distribution which Dream aims at. However, each parameter’s approximate optimum and level of 
identification can be read out of the results. Overall, the new GamSnow formulation was able to reach higher 
performance than the traditional; evaluated by Nash-Sutcliffe R2 for discharge Q and snow covered area 
SCA. Figure 5 shows the performance results for the two models; averaged over 6 catchments for Q, and 
over 19 satellite images for SCA. In addition to the better performance along both axes, the new model 
avoids the quite large pareto front visible for the traditional; in which there appears to be a trade-off between 
better discharge simulations and better SCA simulations. 
 
However, the absolute level of the results is not highly impressive, and inspection of the six catchments from 
which figure 5 shows an average, indicates that there are issues with the data quality for some of the 
catchments.  
 
 

    
Figure 5: Pareto plots showing the combined performance for snow coverage (SCA) and discharge for 
the original GamSnow model (left) and the new version (right). The new model achieves higher 
performance for both variables. In addition, the agreement between the two criteria is better for the 
new model, wheras the best Q performance for the old model appear for non-optial SCA performance. 

 

4.2.1 Identifiability of albedo-model parameters 
The 2nd generation GamSnow routine has three albedo parameters, one of which unique to this routine (wet 
snow grain growth rate). The other two (albedo reset snowfall depth and glacier albedo) are shared by the 
original model. The original-model parameter most similar to the new model’s wet snow grain growth rate is 
the fast albedo decay. Both of these regulate the metamorphosis when the snow surface is wet, hence these 
will be compared here. 
 
This means that except for the response to new snowfall, the re-parameterisation of the simplified SNICAR 
equation replaces all calibration freedom for cold snow conditions. To some extent, this corresponds to the 
validation data set, which consists of spring-season SCA images and catchment runoff. Neither of these 
contain much information on the cold-snow behavior. Remotely sensed observations of albedo or grain size 
as is demonstrated using the MODSCAG algorithm (Painter et al., 2013) would improve this situation, and 
could possibly justify a free parameter also in the dry-snow section of GamSnow’s albedo routine. 
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Figure 6 shows that the parameter regulating how large snowfall is required to reset the albedo to its fresh-
snow value, is more or less non-influential in both models for these two evaluation criteria. Direct evaluation 
to albedo measurements might have shown some sensitivity, but for the two variables used in the current 
experiment, this parameter is redundant. 
 
 

   
 

   
Figure 6: Model sensitivity to the albedo reset snowfall depth for old (left column) and new (right 
column) model; with respect to discharge (top row) and SCA (bottom row). Both models are 
insensitive to this parameter for both simulated variables. 

 
Figure 7 shows how the two models respond to their respective parameters for snow metamorphosis rate 
during wet conditions. Note that the value in model 1 is a time scale (low values meaning rapid decay) 
whereas for model 2 the opposite is the case. Again, the sensitivity is low. For the new GamSnow 
parameterization (Model 2), a reason for insensitivity to this parameter is the grain size of 1500 µm used for 
refrozen snow; originally abruptly, in the current implementation asymptotically with a 1-day time scale. 
Since refreezing is likely to occur as soon as melt has produced some wet snow, the albedo development is 
very often taken over by the refreezing process, leaving the wet snow growth rate largely unused. This will 
be even more the case if simulation is performed for hourly time steps. 
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Figure 7: Model sensitivity to the wet-condition albedo decay rate for the old model (left column) and 
grain growth rate for the new model (right column); with respect to discharge (top row) and SCA 
(bottom row). Both models seem insensitive to this parameter 

 
 
Figure 8 shows the original model’s sensitivity to the maximum albedo value, a parameter not present in the 
new model. Evaluated against discharge, there is no visible sensitivity to this parameter. Evaluated against 
SCA, however, there is an identified optimum and a clear signal to avoid fresh-snow albedo values above 
0.9. The optimum is not very strong, the y axis has been stretched to highlight the variation.  
 
 

    
Figure 8: Model 1 sensitivity to maximum albedo value; with respect to discharge (left) and SCA 
(right). Model 2 has no such parameter similar. Note that the y scales are stretched to emphasise the 
differences. This parameter is redundant with respect to Q, but SCA evaluations show a preference for 
values around 0.85, most notable towards the higher end.  

 



 

PROJECT NO. 
502001057 

REPORT NO. 
2018:00218 
 
 

VERSION 
1.1 
 
 

20 of 28 

 

Not shown, and not represented in model 2 are the minimum albedo value, which shows a barely visible 
preference for low values, and the slow albedo decay rate, which appear redundant for both criteria. 
 
The last albedo parameter is the glacier albedo. Three of the catchments have substantial glaciated area 
percentages (30% - 45%), which produce melt water at a higher rate than snow during the entire summer. 
However, the identifiability of the glacier albedo parameter is not very strong (figure 9), even when shown 
only for the catchment Lunde, which has the highest glacier coverage (45%). For SCA, the parameter is 
redundant in both models. A possible reason for limited sensitivity is that the glaciers are located at high 
elevation, where snow may persist through most of the summer. A reason for the difference between the 
models is that Model 1 albedo very quickly levels out at its minimum value, whereas the new model’s albedo 
stays well above the glacier albedo during most of the summer, and hence is more influenced by the 
markedly lower glacier albedo. The redundancy with respect to SCA is obvious, since neither model’s SCA 
predictions are influenced by the glacier albedo in any way.  
 
 

   
 

   
Figure 9: Model sensitivity to the glacier albedo parameter for the old (left column) and the new (right 
column) model; with respect to discharge (top row) and SCA (bottom row). The old model seems 
insensitive to this parameter, the new show a slight preference for high values in discharge simulation, 
no preference for SCA simulation.  
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4.2.2 Identifiability of other snow model parameters 
Just as the albedo reset snowfall depth, the thickness of the thermodynamically active surface snow layer 
appears to be redundant for simulating both of the evaluated variables (not shown). This could possibly have 
been different if this energy content regulated the snow surface temperature (SST) as it does in reality, but in 
both versions of GamSnow, SST is simulated independently of snowpack state. The only effect of this 
variable is on the liquid water content which regulates the grain size ageing in Model 2, and on each day’s 
time from melt onset to runoff start, which is not well represented under daily time steps.  
 
The last snow parameter, apparent in both models, is the wind speed sensitivity in the turbulence function 
governing both sensitive and latent heat flux. Figure 10 shows that this sensitivity is very high for the new 
model, with respect to both evaluated variables. The dramatic difference between the models arises because 
in the new model, this is the only parameter effectively regulating the overall melt intensity, whereas the old 
GamSnow formulation has several parameters available with the same potential. When viewed by their 
marginal distribution as here, the inter-parameter dependency and possible conditional identifiability is 
hidden behind the apparent redundancy. 
 
 
 

   
 

   
Figure 10: Model sensitivity to the wind speed scaling in the turbulent flux terms, for the old (left 
column) and the new (right column) model; with respect to discharge (top row) and SCA (bottom 
row). The old model shows a weak sensitivity to this parameter, whereas the new model is 
dramatically sensitive regarding both Q and SCA. Note the different axis scales. 
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4.3 Differences in albedo model behaviour 
The largest change between the two GamSnow model versions is the albedo model, which in the new 
formulation has a stronger physical basis. In particular this means that the link between albedo and snow 
grain size is explicitly simulated, but also that the model now represents the effects of solar elevation on 
radiation penetration, and cloud cover on the spectral composition. Figure 11 illustrates how the two models 
differ, displaying catchment-average albedo for one of the basins in the investigation (the other catchments 
exhibit similar behavior).  
 
The first feature to note is the considerably higher summer albedo values in the new model. This is partly 
because the old model’s minimum albedo in this case is set to its lowest recommended value of 0.6, but also 
because the new model takes the solar elevation and cloud cover into account. The region is located around 
62°N, and the solar elevation is far from zenith, in particular when averaged over the daily time step. The 
small-scale variability during the summers arises from varying cloud cover, and would be considerably 
larger for hourly data when also solar elevation variability contribute.  
 
 

 
Figure 11: Albedo simulated by the original and the new GamSnow model 

 
In the current implementation, the model does not limit the grain size to the 1500 µm set for refrozen snow, 
but continues to grow the crystals during the summer. This may be disputable, but without it, the continued 
albedo decay after July 1 would probably not occur, and the difference between the models would be even 
larger.  
 
During the winter, the difference between the models are smaller. The new model shows lower small-scale 
variability than the older, and in particular it shows less probability of low albedo values during the winter.  
 

4.4 Differences in longwave parameterization 
In a full energy balance model, the snow surface temperature needed to calculate the longwave radiation and 
turbulent flux terms is simulated from the snow cover energy content. This requires a good representation of 
the thermal conductivity and the temperature depth profile of the snow cover, as well as high-quality forcing 
data. For a grid cell typically located many km away from the nearest weather station, these are unrealistic 
requirements. It is also doubtful that the involved processes would be meaningfully represented for daily 
simulation, with temporal disaggregation and sub-stepping as a necessary remedy. Instead, the original 
GamSnow model simulated the snow surface temperature SST from air temperature using a simple 
regression model: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚(0.0 , 1.16 ∗  𝑇𝑇𝐴𝐴 − 2.09) 
 
with TA being 2m air temperature in °C. This is a robust approach, avoiding some of the difficulties of 
process-based simulation of the snow cover energy dynamics. A similar approach is evaluated by Raleigh et 
al., (2013) who compare air temperature, wet-bulb temperature and dew point as direct predictors for snow 
surface temperature (with no regression model or bias correction). They analyse data from 7 weather stations 
in different climatic regions, which is a vastly better information basis than the single-site, single-season data 
set behind the model applied in the original GamSnow. Their conclusion is that wet-bulb temperature 
provides the best correlation to measured snow surface temperature, but that dew point produces the smallest 
RMS errors due to lower bias. In addition, the wet-bulb temperature bias shows smaller variability among 
the sites than the dew point bias, although the latter is centered around zero.  
 
In the new GamSnow formulation, an expected bias of 4°C as extracted from Raleigh et al. (2013) is 
compensated for, and the wet-bulb temperature is selected as basis for snow surface temperature estimation:  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚(0.0 ,𝑇𝑇𝑊𝑊 − 4.0) 
 
This SST model will yield lower values than the old TA-based regression equation as long as the air 
temperature is above approx. -12°C for moisture-saturated air. Dryer air lowers this threshold. For the 
climate of this region, this model change will increase the outgoing (and thus also the net) longwave flux 
under most conditions. When the snow pack is at 0°C, however, the two models are equivalent. 
 
Figure 12 shows catchment-average simulated values for net longwave radiation, for the old and the new 
parameterization. The incoming longwave radiation is identical in the two models, as is the outgoing 
radiation when the snow temperature is at its 0°C border. Hence, from the time in spring when the entire 
catchment is melting, the two models produce the same. As expected, the new SST model lead to less 
negative net longwave flux during the entire winter, compared to what the old SST model predicted. 
 
 

 
Figure 12: Catchment average net longwave flux using the old (blue) and new (orange) mechanism for 
estimating snow surface temperature. The new version’s net radiation is generally larger or equal to 
that of the old model.  
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4.5 Hydrological simulations 
 
Figures 13 and 14 show simulated states and responses during 01.09.2009 to 01.09.2012 for the old 
GamSnow (Model 1) and the new version (Model 2). The old model is a bit more likely to produce runoff 
events during the cold season, losing a bit more snow. Overall, however, the two models make quite similar 
predictions, the difference is not larger than parameter variability within the equifinality of each model could 
produce.  
 
 
 

 

 

 
Figure 13: Water balance components for catchment Nessedalselv during 01.09.2009-01.09.2012.  
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Figure 14: The major energy terms for the same period and catchment as in figure 13. We see that the 
shortwave fluxes are higher in the old model (1) than in the new (2), and that the opposite is the case 
for longwave and turbulent fluxes in the cold seasons. Note that GamSnow1 does not calculate these 
averages in the period from snowpack reset at September 1 until the new snow season starts. 

It is worth noticing that shortwave radiation has its highest values concentrated earlier in the season than the 
temperature-driven energy components. This is a typical feature of maritime climates where the highest 
average temperatures usually occur in July and August; 1-2 months after solar radiation maximum. 
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5 Conclusions 
 
The changes to the GamSnow routine, motivated by increased physical coherence and less dependency on 
calibration, have provided better fit to measurements than the traditional formulation. The improvement is 
not dramatic, and must be seen in the context of rather mediocre absolute values. Still they encourage a 
broader set of experiments and further improvement of input and validation data to increase the confidence. 
Satellite-based estimates of both short- and longwave incoming radiation may be one source of improved 
data; remotely sensed snow surface temperature and grain size another. These are all available data sets, 
most of which in operational state. 
 
More important than the performance increase is the fact that these improvements are produced by a 
considerably lower number of free parameters; the flexibility being replaced by better physical knowledge. 
This indicates that physically based modelling can avoid the tendency of being overly sensitive to poorly 
known quantities, and justify its use both in operational water management and in climate studies where 
stationarity is questionable. 
 
A side effect of fewer parameters is that the ones remaining tend to be better identified. In this investigation, 
this is clearly the case for the wind sensitivity in the turbulence function which govern sensible and latent 
heat flux calculation. Given that no attempt is made to modify the wind data according to exposure or 
sheltering characteristics, there is no reason to expect this parameter to be stationary in space.  
 
Another positive tendency in the results is that the pareto front created by the performance in terms of 
discharge and snow coverage has been markedly reduced in the new model compared to the original. This 
means that different validation data agree on which parameters are optimal, which in turn gives confidence in 
the model structure. It also suggests that the model is likely to profit from updating; a feature not always 
present in heavily calibrated models. This, however, has not been tested in the current investigation. 
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