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Abstract

Electricity grid infrastructures provides valuable flexibility in power systems

with high shares of variable supply due to its ability to distribute low-cost

supply to load centers (spatial), in addition to interlinking a variety of sup-

ply and demand characteristics that potentially offset each others’ negative

impact on system balance (temporal). In this paper, we present a framework

to investigate the benefits of alternative flexibility providers, such as fast-

ramping gas turbines, hydropower and demand side management, by using a

generation and transmission capacity expansion planning model. We demon-

strate our findings with a multinational case study of the North Sea Offshore

Grid with an infrastructure typology from year 2016 and operational data for

year 2030 — considering a range of renewable capacity levels spanning from

0% to 100%. First, we show how different flexibility providers are allocated

geographically by the model. Second, operational cost savings are quantified

per incremental unit of flexible capacity. Finally, we present a way to rank

different flexibility providers by considering their marginal contribution to

aggregate cost savings, reduced CO2 emissions, and increased utilization of

renewable energy sources in the system. The Shapley Value from cooperative
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game theory allows us to assess the latter benefits accounting for all possible

sequences of technology deployment, in contrast to traditional approaches.

The presented framework could help to gain insights for energy policy designs

or risk assessments.

Keywords: Energy Policy, North Sea Offshore Grid, Power System

Flexibility, Renewable Integration, Shapley Value, Transmission Expansion

Planning

1. Introduction

The European power system is exposed to large-scale integration of renew-

ables the coming decades (European Commission, 2011), demanding more

flexibility in order to distribute, consume, or store variable levels of power

feed-in (Auer and Haas, 2016). An adequate grid infrastructure can con-

tribute with spatial flexibility by distributing power surpluses over larger

geographical areas, which in turn connects the variable generation to dis-

tant load centers and potential energy storage (temporal flexibility) reducing

system imbalances (Lund et al., 2015). Hence, increased flexibility in both

space (spatial) and time (temporal) could be achieved with grid expansion.

In addition to a more efficient use of clean resources and decreased green

house gas (GHG) emissions, this is the reason why the North Sea Offshore

Grid (NSOG) has been identified by the EU Commission as one of the strate-

gic trans-European energy infrastructure priorities in the EU Regulation No

347/2013. Potentially serving the twofold purpose of integrating offshore

wind power generation while, at the same time, facilitating for increased

cross-border trade.
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Spatial and temporal flexibility are a key elements to maintain security

of supply and ensuring cost-efficient utilization of variable renewable energy

sources (VRES) feed-in (Cochran et al., 2014). More electricity grid is needed

in order to reach future energy- and climate targets and ENTSO-E estimates

e150bn worth of pan-European energy infrastructure investments the next

decade, with current supply and demand projections. A large share these

investments comprise multinational electricity grid expansion (ENTSO-E,

2016). One of the main challenges when it comes to planning for such invest-

ments is the geographical span that needs to be considered (Lumbreras and

Ramos, 2016). That is, by connecting larger geographical areas through an

infrastructure means that multivariate characteristics from multiple coun-

tries, with their respective supply- and demand mix, has to be accounted

for in order to capture underlying values of larger system dynamics. For in-

stance, the synergy value of VRES, such as offshore wind in the coastal areas

of Great Britain, and energy storage facilities, such as hydropower located

in the Norwegian mountains (Huertas-Hernando et al., 2017).

The geographical span does not only affect the computational complexity

in long-term planning models, but it also induces tighter market integration

between countries. When building a new, or expanding an old, transmission

corridor — price effects will occur at adjacent connection points (Hogan,

2011). These adjacent points are, in our case, countries that experience a

change in welfare, i.e. consumer surplus and producer surplus. In turn,

this might lead to impact on neighbouring regions or countries as shown in

(Sauma and Oren, 2007) focusing on distributional effects of transmission

expansion. In Egerer et al. (2013) they study the welfare implications of
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grid expansion in the NSOG. Other similar studies, but in context of renew-

able portfolio standards, includes an assessment of the Western Electricity

Coordinating Council (WECC) in the US (Perez et al., 2016).

Evaluating the need for, and impact of, flexibility options is thus a com-

plex task considering the size and dynamics of a power system, and its eco-

nomic implications. Moreover, as technology matures and costs decreases,

other flexibility options might evolve as cost competitive compared with grid

expansion. Hence, there is an uncertainty element that should be incor-

porated when assessing the added value of flexibility sources over a long

economic lifetime (Konstantelos and Strbac, 2015). For instance, the de-

ployment sequence of different flexibility providers might have an economic

impact on previous, and future, deployments of other technologies.

This paper presents a generic framework for geographical- and economic

evaluation of flexibility options. We use a generation and transmission expan-

sion planning (GTEP) model and leverage methods from cooperative game

theory (Ferguson, 2014) in order to cope with the aforementioned context.

More precisely, we exploit the properties of The Shapley Value (SV) (Lloyd

S. Shapley, 1953) in order to account for different deployment sequences and,

consequently, use this information to assess the contribution from each flex-

ibility provider to system benefits. To this end, we are able to somewhat

account for future uncertainty in, e.g., innovation and deployment sequence

without the need of sophisticated, stochastic programming tools. However,

we do not claim that the presented approach is a substitute for the latter

— rather a complement. We demonstrate the added value in terms of more

insights to the problem at hand.
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The remaining parts of this paper is structured as follows. Section 2

overviews existing literature on how to quantify the need for system flexi-

bility and its contributions on system level, extended with recent work on

cooperative game theory for power system applications. Section 3 presents

the GTEP expansion planning model, case study setup, and a brief introduc-

tion on how the SV is calculated. Finally, results from the NSOG case study

is presented in Section 4 followed by a conclusion with recommendations for

future work in Section 5.

2. Literature

This section overviews existing literature and power system flexibility

analyses, with a particular focus on long-term planning models that are used

for GTEP. Together with a review on relevant applications of cooperative

game theory, we derive our contributions in the end of the section.

2.1. Long-term planning models and flexibility analysis

As already mentioned in the introduction, novel GTEP models has to

incorporate a significant level of details in order to account for current and

future market characteristics. At the same time, they have to include larger

geographical areas as discussed in prominent TEP reviewes by Lumbreras

and Ramos (2016) and, with a focus on multinational offshore grids like the

NSOG by Gorenstein Dedecca and Hakvoort (2016). It has been shown that

there is an underlying value in capturing system dynamics over larger areas

due to smoothing effects (Hasche, 2010). For instance, by aggregating VRES

generation over a larger geographical area the net feed-in on system level

tends to be smoother than for smaller areas due to weather variations. This
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effect could offset some need for flexibility, at least temporal, whereas spatial

flexibility has to be in place in order to link those interdependencies.

Moreover, the material price impact of lumpy grid investments creates

incentives for generators to respond with changes in their generation mix

due to potential price arbitrage (Hogan, 2011), meaning that cost-efficient

equilibria are not met if not considering both transmission and generation

expansion due to its synergies on cost recovery (Munoz et al., 2012). Other

challenges in the GTEP literature include, but is not limited to, incorpora-

tion of uncertainty (Munoz et al., 2014), representation of loop flows (O’Neill

et al., 2011), distributed generation, demand side management, detailed en-

ergy storage handling, and FACTS devices (Hemmati et al., 2013). The main

challenge is that operational details comes with an expense of the larger and

more complex optimization programs, consequently leading to mathematical

difficulties such as non-convexity and intractable models.

Flexibility is referred to as the key term of the future by Auer and Haas

(2016) and has received increasing attention over the last years. One occur-

ring topic is the mapping of different metrics to quantify the level of flexibility

in a power system (Electric Power Research Institute, 2014). High-level met-

rics such as peak demand, regional grid strength, interconnections with other

areas, the number of power markets, and the generation mix are identified as

the most important ones (Cochran et al., 2014). Subsequently, this could be

broken down to individual flexibility providers such as demand side manage-

ment (DSM), fast-ramping generators, or energy storage. A comprehensive

review of different technologies and strategies is presented in (Lund et al.,

2015).
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The most prominent contributor to a cost-efficient and reliable develop-

ment of the power system is grid expansion. This has been demonstrated for

the European case by Fürsch et al. (2013). Moreover, Huber et al. (2014) has

investigated short-term aspects of flexibility on an hourly scale with different

levels of VRES and geographical span, concluding that flexibility needs are

smaller for interconnected, transnational power systems. The same concep-

tion of grid infrastructures being a significant contributor to the availabil-

ity of flexibility, both in temporal and spatial form, is shown by Lannoye

et al. (2015) using Insufficient Ramping Resource Expectation (IRRE) and

the Periods of Flexibility Deficit (PFD) as explanatory metrics. However,

uncertainty is left out of scope in the aforementioned literature.

Konstantelos and Strbac (2015) acknowledge that transmission grid in-

vestments are important for the future power system development, but ques-

tions its competitive edge compared with other flexible network technolo-

gies. They demonstrate the value of incorporating multiple flexibility op-

tions where costly grid reinforcements could be avoided, and that models

ignoring uncertainty could systematically undervalue benefits of flexibility

options. The approach of considering multiple options under uncertainty has

reached a consensus as one of the most frequent shortcomings in the existing

literature (Kondziella and Bruckner, 2016). The latter review paper high-

lights learning curves and innovation, where a majority of planning models,

especially static ones, might yield inefficient lock-in of established technol-

ogy options. In this paper, we will to some extent account for the reviewed

shortcomings, by utilizing a relatively simple approach compared to using,

e.g., a multi-stage stochastic program or robust optimization.
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2.2. Cooperative game theory in power system applications

Cooperative game theory has been used for various applications in power

systems and dates back to Hobbs and Kelly (1992) analyzing fair transmis-

sion pricing policies, followed by the first applications on transmission expan-

sion planning by Contreras and Wu (1999) calculating fair cost allocations.

Both papers applies The Shapley Value (Lloyd S. Shapley, 1953) in order to

find fair solutions with respect to marginal contributions from each player

entering full cooperation (grand coalition), in all possible sequences, for a

N-player game. Other applications in power systems include the allocation

of firm energy rights among hydro plants (Faria et al., 2009) and benefit-

based expansion cost allocation in context of renewable integration (Hasan

et al., 2014). All with players whose incentives are to maximize their own

payoff, which is somewhat different from our approach viewing players as

technologies (flexibility options) under multinational welfare maximization.

In recent years, there has been an increasing amount of applications in

distribution systems. For instance, profit allocations among distributed en-

ergy sources acting as virtual power plants (Dabbagh and Sheikh-El-Eslami,

2015), remuneration to participants in demand response programs (O’Brien

et al., 2015), or for calculating fair allocations of costs and benefits among mi-

crogrid agents (Lo Prete and Hobbs, 2016). Still, no applications considering

flexibility technologies.

Banez-Chicharro et al. (2017b,a) views transmission projects as players

using an extension of the SV approach, called Aumann-Shapley (AS). The

main difference between the SV and AS is that the latter accounts for frac-

tional contributions from different players, in addition to being easily scalable
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to larger problems (Junqueira et al., 2007). Although computational efforts

is not an issue in this paper, there are other properties of AS that might be

beneficial for studies like the one presented in this paper. We will discuss

this later.

2.3. Contributions

We extend the reviewed literature by applying SV in context of power

system flexibility analysis, defining flexibility providers as players in a N-

person cooperative game. Moreover, our generic step-by-step approach is

demonstrated with a North Sea Offshore Grid case study highlighting the

added value and insights that could be gained. This with limited information

about future costs and decision support tools that easily could be solved with

off-the-shelf software. Hence, our contribution is two-folded:

1. Present an approach for a comparative analysis of different levels of

VRES, while maintaining consistent capacity- and energy levels in the

system.

2. Apply the SV from cooperative game theory in order to evaluate the

competitive edge of transmission capacity as a flexibility provider, com-

pared with other potential flexibility options.

This means that we also are able to cope with some of the most frequent

shortcomings in the existing literature. That is, present alternative ways to

account for uncertainty in learning and innovation, using a GTEP model

that incorporates multivariate correlations in load and variable generation as

opposed to static models (Kondziella and Bruckner, 2016).
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3. Methodology

To carry out the evaluation of different flexibility options we use a GTEP

model (PowerGIM). In turn, we use results from this model in order to calcu-

late the SV. The GTEP model is based an extension of the planning models in

(Trötscher and Korp̊as, 2011) and more recently (Kristiansen et al., 2017b),

which is available online in the same git repository as the pan-European

market simulator; PowerGAMA (Svendsen and Spro, 2016). A list of nota-

tions for the GTEP model presented in following subsections can be found

in Appendix A.

Figure 1: Base case for North Sea grid infrastructure (year 2016). Demand and generation

capacities are given for year 2030 (ENTSO-E, 2014).

3.1. Generation and transmission expansion planning model

The mathematical formulation, (1a)-(1k), is adapted to the 25-bus NSOG

case study comprising six countries in total, namely; Norway (NO), Den-

mark (DK), Germany (DE), The Netherlands (NL), Belgium (BE), and Great

Britain (GB), as depicted in Figure 1.
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The model originates from a bi-level structure where generators respond

to transmission investments. Due to assumptions of perfect competition,

inelastic demand and a welfare maximizing transmission infrastructure in-

vestor, we can recast this bi-level equilibrium model as an optimization pro-

gram that co-optimize both investment- (IC) and operational costs (OC)

(Samuelson, 1952). In turn, we assume that investment costs (1b) and market

operation (1c) reach cost-efficient equilibrium by minimizing the net present

value (NPV) of total system costs (1a) measured in e. Operational costs are

calculated for one representative year, multiplied with an annuity factor a in

order to convert annual costs to NPV.

min
x,y,z,g,f,s

IC + a ·OC (1a)

where

IC =
∑
b∈B

(Cfix
b ynum

b + Cvar
b ycapb ) +

∑
n∈N

CZnzn +
∑
i∈G

CXixi (1b)

OC =
∑
t∈T

ωt(
∑
i∈G

(MCi + CO2i)git +
∑
n∈N

V OLLsnt) (1c)

Cfix
b = B +BdDb + 2CSb ∀b ∈ B (1d)

Cvar
b = BdpDb + 2CSp

b ∀b ∈ B (1e)

subject to∑
i∈Gn

git +
∑

b∈Bin
n

fbt(1− lb)−
∑

b∈Bout
n

fbt + snt =
∑
l∈Ln

Dlt ∀n, t ∈ N,T (1f)

Pmin
i ≤ git ≤ γit(P e

i + xi) ∀i, t ∈ G,T (1g)∑
t∈T

ωtgit ≤ Ei ∀i ∈ G (1h)

− (P e
b + ycapb ) ≤ fbt ≤ (P e

b + ycapb ) ∀b, t ∈ B, T (1i)

ycapb ≤ Pn,max
b ynum

b ∀b ∈ B (1j)∑
b∈Bn

ynum
b ≤Mzn ∀n ∈ N (1k)

xi, y
cap
b , git, snt ∈ R+, fbt ∈ R, ynum

b ∈ Z+, zn ∈ {0, 1}
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The GTEP model is targeted for system characteristics in the North Sea

region where both offshore grid technology costs and hydro representation

plays an important role. Equations (1d) and (1e) represents the fixed- and

variable cost functions, respectively, incorporating distance and power rating,

denoted d and p, in addition to end-point switch-gear costs, CS. The fixed

costs, Cfix
b , are multiplied with the number of new cables, ynumb , and the

variable costs, Cvar
b , with the accumulated new cable capacity, ycapb , as shown

by (1b). Moreover, in cases where new nodes, e.g. offshore platforms, needs

to be installed we use a binary variable, zn, that is enforced by new cables

connected to this node (1k). Finally, generation expansion is represented

by continuous variables, xi, which all together with operational variables for

generation, git, branch flow, fbt, and load shedding, snt, yield a mixed-integer

linear program (MILP).

We ignore Kirchhoff’s voltage law (KVL) since a majority of the system

infrastructure consists of high voltage direct current (HVDC) branches that

are fully controllable. This results in a transport model with no loop-flows

(1i). However, linear losses are incorporated to reflect both the transmission

distance and use of necessary voltage transformers and power electronics, as

seen from the nodal energy balance (1f), i.e. Kirchhoff’s current law (KCL).

The nodal energy balance (1f) ensures that demand is met by the sum of

generation, power flow, and/or load shedding, in each country. Hence, input

data is given at national level using a discount rate amounting to 5% and an

economic lifetime spanning 30 years (ENTSO-E, 2014).

The variability of wind, solar, hydropower, and load is incorporated us-
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ing full-year, hourly profiles from both historical data and numerical weather

data, where the latter source is particularly relevant for offshore coordinates

with limited historical data (Kristiansen et al., 2016). The hourly profiles

are reflected in (1g) with a factor, γit, ranging from 0 to 1 inflow/availability

and multiplied with the maximum existing capacity, P e
i , plus any additional

capacity investments, xi. We use agglomerative hierarchical clustering tech-

nique in order to reduce the hourly time series from 8760 hours to 8760/24

= 548 hours, while still maintaining a relatively high level of multivariate

correlations between the time series and between the different geographical

coordinates (Härtel et al., 2017; Kristiansen et al., 2017a). This improves the

models ability to capture underlying values of smoothing effects and variable

flow patterns at system level.

3.2. Varying the share of renewables from 0% to 100%

All flexibility options are evaluated under different shares of renewable

capacity. The base case renewable capacity is given by ENTSO-E Vision

4 (ENTSO-E, 2014), i.e. 100% VRES will be equivalent to this data set.

For 0% VRES, the base case VRES capacity is allocated over to a fictive

RES-thermal generator restricted by yearly energy inflow (1h) corresponding

to the capacity-weighted average of all VRES inflow (yielding an average

utilization factor 0.34); offshore wind, onshore wind, and solar PV. Hence,

the available capacity and yearly energy inflow is about the same for all

cases with VRES capacity ranging from 0-100%. Moreover, RES-thermal

capacity operates with a marginal cost (37.30 e/MWh on average) and CO2

emission rate (0.31 tonCO2/MWhe on average) equal to the most expensive

thermal generator in each country. The latter approach is used to reflect

13



the operational costs of switching a share of the peak (thermal) capacity mix

from dispatchable to variable, utilizing the merit-order effect in each country.

3.3. Incorporating multiple flexibility options

The following assertions describes the different case studies. Each case

study is ran with the GTEP model including, and excluding, the option to

invest in new capacity under a varying share of VRES capacity as discussed

in the previous subsection. This means that each level of VRES is evaluated

with, and without, the option to invest in additional capacity. Moreover,

investment costs are set to zero, meaning that the marginal impact on system

operation does not reflect investment costs, but could rather be viewed as

break-even thresholds. Hence, our approach is independent of capital cost

data.

1. Grid: Grid investments are the only options that increase avialabil-

ity of both temporal and spatial flexibility, simultaneously, among the

considered alternatives. We allow radial typologies for offshore HVDC

interconnectors, and onshore AC grid reinforcements. Capacities to

offshore wind nodes are kept fixed at a high level in order to isolate

those from the analysis.

2. Gas CCS: Fast-ramping gas units with carbon capture and storage

(CCS) technology can be utilized to balance out the increasing mis-

match between VRES power feed-in and demand. We assume that the

generators are available at full capacity, all hours during the year.

3. DSM: Demand side management (DSM) is simply included as gener-

ation capacity at a marginal cost equivalent to the levelized costs of
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saved energy (LCSE), approximately 45 e/MWh (Ian Hoffman et al.,

2015). The maximum capacity of this flexible load is restricted to 10%

of the average load for a given country over a full year. 1 Hence, only

a small portion of the total load is assumed to be flexible, while the

rest of the load can be curtailed at a price ceiling amounting to 1000

e/MWh (VOLL).

4. Hydro: We disregard pumping in this case study, meaning that we can

only invest in additional hydropower production capacity. Additional

capacity is restricted to 10% of the capacity provided by Vision 4, and

the yearly utilization is restricted to 50% where we use time-series to

reflect the seasonal variation in water value (i.e. marginal costs). 2

Note that Norway is the only country that possess any considerable

amount of hydro in this data set.

5. Combined: The aforementioned options (1-4) are included in groups,

or all together. The GTEP model expands the most cost-efficient op-

tion(s), accounting for both spatial- and temporal benefits. The case

when all options are considered together represents what is referred to

as the grand coalition in cooperative game theory. The SV will account

for all possible ways to reach this grand coalition.

1Applications of DSM is expected to reduce peak load with 13% and, if combined

with demand response (DR), its potential increases to 17.4% in year 2020 (Moura and

de Almeida, 2010). This corresponds to 10.3% reduction in yearly energy consumption.
2The capacity expansion potential and yearly energy disposal are based on data from

ENTSO-E Vision 4 (ENTSO-E, 2014), in addition to an assessment of Norway as a green

battery in 2030 (Grøv et al., 2011), studying the potential for hydropower expansion.
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3.4. The Shapley Value

The SV is a method that calculates allocations of costs or benefits that

are considered to be fair for cooperative solutions. A famous example is

The Airport Game (Littlechild and Owen, 1973) where the SV is used to

calculate a fair airfield maintenance fee to airplanes of different sizes, i, since

each airplane has different impact on airfield requirements and maintenance

cost. Another example is The Bankruptcy Game (O’Neill, 1982) where a

small company owes money to creditors, i, but the remaining assets cannot

cover the total debt. Here, the SV is used to find a fair allocation of debt

payback to creditors, considering the average value of all possible paybacks

to creditors with remaining company values.

In this paper, we think of different flexibility providers as players, i, and

assess their contribution towards a solution where all technologies are de-

ployed in the power system. To this end, the SV will account for differ-

ent sequences in which technologies are deployed, which makes sense from

a perspective of uncertainty regarding learning and innovation, as well as

lead-time. For instance, some technologies (e.g. grid) might require a longer

lead-time from day of decision to day of operation, compared to other al-

ternatives (e.g. gas plants). The SV for a given technology, i, is shown in

Equation (2).

φi(N, v) =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)![v(S ∪ i)− v(S)] (2)

The characteristic functions v(·) in Equation (2) are collected for each

possible combination of flexibility options from the GTEP model. The pro-

cedure for calculating the SV is; weight different ways where technology i can
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add value to a combination of technologies S, which is a subset of all tech-

nologies N (grand coalition). This captures the marginal contributions from

technology i for different sequences, [v(S ∪ i) − v(S)], weighted by the |S|!

different ways the combination S could have been formed prior to technology

i joining it and by the (|N |− |S|− 1)! ways the remaining technologies could

join the same coalition, summed over all combinations of subsets excluding i

(S ⊆ N \ {i}) and averaged by dividing with |N |!, where |N |! is the number

off possible orderings of all technologies. The resulting payoff, in our case

contribution to system benefits, is given by φi(N, v) for each technology i.

This means that the GTEP model optimize expansion plans considering

availability of different flexibility options, individually (as i) and in combi-

nations with each other (as S or N). Another alternative is to let the GTEP

model decide which flexibility alternatives to invest in, in one run, equivalent

to the grand coalition, N , hereby referred to as the traditional approach.

The latter will differ from the SV since it ignores aspects of ordering and

technologies’ contribution to smaller subcoalitions, S ⊂ N .

Note that the GTEP model will expand bulky capacities of different flexi-

bility options, e.g. 1000 MW grid. This is where AS differs from SV, whereas

the former calculates the marginal contributions by uniformly increasing the

size of different flexibility providers from zero to its current value. For in-

stance, other flexibility options are included before grid reach a bulky value

of 1000 MW. However, since our GTEP model contains integer variables

we cannot exploit sensitivity information from its capacity constraints (dual

variables), which is necessary in order to use AS. One could, of course, relax

all integer variables in the GTEP model.
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3.5. Measuring the benefits of flexibility providers

Based on the case study setup presented in the previous subsections, we

quantify the benefits of different flexibility providers with the GTEP model.

This is done for different levels of VRES, ranging from 0-100%. The benefits

are simply measured in relation to the base case GTEP results, i.e. where

flexibility options are excluded. For instance, when considering the impact of

grid expansion, we simply calculate the difference from the base case, which

most likely involve higher operational costs due to grid congestion.

In the following results section we present i) the geographical need for

flexibility options, ii) the marginal value of each flexibility provider at sys-

tem level (cost savings per unit capacity), and iii), the accumulated system

benefits from each flexibility provider (total cost savings, emission reduc-

tions, VRES utilization). The latter is calculated in two ways; first with

respect to one GTEP optimization with all flexibility options available, and

second, calculating the SV based on 24 = 16 different GTEP optimizations,

i.e. different combinations (S ⊆ N) of the four flexibility providers.

4. Results

First, a brief discussion of the base case is presented, followed by our

findings on the metrics listed in the end of previous section.

4.1. Base case

The base cases comprise 0, 25, 50, 75, and 100% VRES excluding the

option to invest in flexibility. We use current grid typology from year 2016,

and generation and demand for 2030 (ENTSO-E, 2014), yielding inefficient

grid capacity. However, we allow for load shedding at VOLL e/MWh.
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With low shares renewables in the system, the supply mix is perfectly

able to balance with load due to the availability of RES-thermal, which is

more flexible than the original VRES capacity although the yearly energy

availability is approximately the same. However, RES-thermal can be dis-

patch freely over all hours, in contrast to VRES that is bounded by its energy

inflow (e.g. wind speed). There is zero load shedding in the system, but the

dispatch comprise of a more costly generation mix as well as high emission

levels in contrast to system operation with high levels of VRES.

For each base case with different shares of VRES, we consider all possible

flexibility options and quantify their impact on system operation, alone and in

combination with each other. For instance, if we allow for grid expansion, we

see that more grid is introduced as the share of renewables increase, yielding

lower average price levels and, at the same time, higher price volatility due

to more variable supply capacity. This is also in line with the reviewed

literature. However, note that grid will have a smoothing effect on price

variations, i.e. it is the level of VRES that is the main driver for price

volatility.

Throughout the remaining parts of this section the low- and high VRES

scenarios represents 25% and 100% VRES capacity, respectively, relative to

ENTSO-E Vision 4 (ENTSO-E, 2014).

4.2. Geographical spread of flexibility needs

Figure 2 illustrates how the flexibility needs are allocated by technology

and by country. The left part of the figure shows the allocation under low

shares of renewables where, for instance, interconnectors (i.e. cross-border)

grid expansion is allocated in larger portions to NO and GB (see upper left
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Figure 2: Relative capacity by technology (upper plots) and by country (lower plots) under

low share (left part) and high share (right part) of renewables. Relative values sums to

one. Input data from ENTSO-E Vision 4 (ENTSO-E, 2014).

plot) while a majority of total DSM capacity is deployed in DE, in addition

to hydropower and gas CCS. The upper right plot, i.e. with high share of

renewables, shows approximately the same capacity allocation to each coun-

try, although grid investments seems to be more evenly distributed between

countries bordering the northern part of the North Sea. The latter reflects

the need for a geographically interlinked system exploiting smoothing effects

and multivariate correlations in supply and demand.

Note that hydro stays about the same in both cases due to its resource
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restrictions (we assume that each country can only expand 10% of the given

capacity in Vision 4). Moreover, hydropower is not expanded at all in NO

due to its already high capacity surplus (52 GW) and cross-border trade

limitations (2.4 GW). Hence, grid would be the first priority from NO’s

perspective given the input data.

In order to get a full overview of the allocations in each case, i.e. for

low and high renewable shares, we need to also consider the relative capacity

allocation within a country. This is depicted in the lower part of Figure

2. One occurring observation for most countries is the shift from DSM and

gas CCS to grid expansion when the share of variable generation capacity

increase. A justification for this shift could be that grid provides both spatial

and temporal flexibility, as discussed earlier. The latter observation is most

significant for DK and yields higher availability of cost-efficient supply in the

system.

In summary, Figure 2 demonstrates that the geographical distribution

of different flexibility providers remains more or less stable when comparing

low- and high share of VRES. However, all countries weight their domestic

flexibility mix towards more grid when the share of VRES increases, which

is in line with the findings in, e.g., Lannoye et al. (2015).

4.3. Marginal value of each flexibility provider

Individual flexibility providers are assessed in a system context by quan-

tifying its marginal impact on operational costs, as shown in Figure 3. One

can see from the figure that the marginal value of gas CCS is declining for

increasing shares of variable generation capacity, substituted by an increas-

ing value tradeoffs with grid interconnections, and partly DSM. The latter
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Figure 3: The marginal value per unit capacity (me/MW) for each flexibility provider in

terms of operational cost savings at system level.

stays about constant at m0.9e/MW for all shares of renewable capacity in

the system, while the marginal value of grid interconnections increases with

almost 10%.

The most risky flexibility option seems to be gas CCS. Its relatively high

fuel cost makes it less competitive when low-cost VRES is introduced through

import from transmission corridors that are connected with, e.g., NO and

DK. As a result of grid expansion, the average price levels converge and

might drop below the marginal cost of gas CCS.

The marginal value of hydropower per capacity unit is naturally high due

to i) its limited expansion possibilities, both by region and by capacity (10%

of initial capacity levels), and ii), its low marginal costs which lies in the

”safe” region of the merit-order supply curve. However, the value decreases

significantly when additional VRES capacity is added to the system, since

the price volatility caused by solar and wind substitutes some hydropower
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generation (for instance during hours with very high wind- and solar feed-in,

in combination with low demand).

4.4. Aggregate contribution to system benefits

From previous subsections, we know that grid contributes the most to

operational cost savings at system level, due to its facilitation for other flexi-

bility providers and its positive correlations with increasing shares of VRES.

But what about its impact on CO2 emissions and utilization of power gener-

ation from VRES? The upper part of Figure 4 shows the added value for all

the aforementioned metrics, as a result of hydro, grid, gas CCS, and DSM.

Again, the left part represents low shares of VRES while the right part of

the figure depicts the case with high shares of VRES. As expected for the

high VRES case, the value added by grid expansion increases significantly

relative to its competing alternatives, not only for operational cost savings,

but also in terms of reduced emissions and increased utilization of VRES.

Gas CCS seems to provide a larger fraction of benefits at low levels of

renewables, probably due to its competitive marginal cost for peak genera-

tion. Moreover, it might even lead to decreased utilization of renewables in

high VRES scenario since its occurrence in one region might lead to imports

from another, where cheaper, fossil fueled generation supplies parts of the

exchanged capacity (from e.g. coal).

The lower two plots in Figure 4 shows the added value considering all

possible sequences of technology deployment, i.e. the SV. For instance, X

is deployed first, Y second, Z third, and R forth, where all four flexibility

providers are to be placed into different orders in an equivalent arrangement

as the four variables. This way of calculating a system contribution accounts
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Figure 4: Relative benefit contribution to the system in terms of cost savings, reduced

CO2 emissions, and increased utilization of renewable supply (reduced curtailment). The

upper two plots shows the implicit value added by each technology option (traditional ap-

porach), while the lower two plots shows the value added for a range of possible deployment

sequences (Shapley Value). Both for low- (left) and high (right) levels of VRES.
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Table 1: The difference between the traditional approach and the Shapley Value in Figure

4, measured in % deviation with respect to the traditional approach. A positive number

would imply that the Shapley Value suggests a higher level of contribution from a particular

flexibility provider. All numbers are based on the Low VRES case.

DSM Gas CCS Grid Hydropower

Cost savings 5.13% -8.42% 6.34% -3.06%

CO2 reductions 20.26% 7.51% -27.41% -0.36%

VRES utilization -4.91% -16.63% 21.77% -0.23%

for competitive advantages, which is particularly useful in cases where this

is highly uncertain. Moreover, it implies that one could account for some

uncertainty without relying on any sophisticated, stochastic optimization

programs, although a combination would probably generate more insights

and knowledge.

With the SV results in mind, one could argue that grid is even more

competitive with respect to most of the considered metrics for high shares of

VRES, no matter which technology gets deployed at what time. For instance,

if DSM is found profitable at an early stage, grid would still prove beneficial

despite its disadvantage in terms of longer lead time. However, the added

value of grid is harder to distinguish between traditional- (upper plots) and

the SV approach (lower plots) for low shares of VRES (left part of Figure

4), meaning that the competitive advantage is less significant for a future

with low shares of VRES. Table 1 summarize the main difference between

the SV- and traditional allocation for the low VRES scenario, where positive

numbers implies that SV values a given technology more than the traditional

approach.
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An interesting observation from Table 1 is that, when considering all pos-

sible sequences, grid expansion might actually yield increased CO2 emissions,

on average. For this case, it seems that coal units achieve higher utilization

when, for instance, gas CCS is deployed at an earlier stage than grid since

the marginal flexibility provider (gas) has a higher marginal cost than coal.

In other words, more grid allows for more coal export.

Again, from Figure 4 and Table 1, we see that gas CCS is very sensitive

to market characteristics although it can contribute with significant value in

some cases. Considering the possibility that other flexibility options might

be deployed, gas CCS seems less attractive due to risk of being on the margin

of the market clearing—potentially leading to stranded investments.

4.5. Discussion

Note that our goal is not to provide a detailed analysis of different flexi-

bility providers, but rather present a framework for how it can be done. The

results demonstrate that insights could be gained regarding the geographi-

cal demand for different flexibility technologies, their contribution to system

benefits, and a benchmark for their contributions considering uncertainty in

sequence of deployment (the SV). These insights could be useful for analysts

and policy makers for identifying robust investments and energy policies.

Although the analysis relies on simplifications in operational details it

does, however, reproduce similar observations found in the existing literature.

For instance, grid expansion is shown to be the most prominent option due to

its facilitation for increased availability of spatial flexibility, and consequently

temporal flexibility from other providers that are geographically spread. In

turn, this yields a positive impact on utilization of VRES and, through a more
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cost-efficient operation, also system cost savings. Moreover, by exploiting the

properties of the SV, we can augment to the claim of grid being the most

robust flexibility provider.

5. Conclusion

This paper presents an alternative way to perform an engineering-economic

analysis of power system flexibility over a range of variable renewable energy

source (VRES) capacity levels, ranging from 0-100% of the 2030 scenario

”Vision 4” by ENTSO-E. The use of a fictive thermal unit allow us to ap-

proximate availability of both capacity and yearly energy inflow over this

range of VRES capacities, yielding more reliable analyses for comparison. We

evaluate all scenarios with a generation and transmission expansion planning

(GTEP) model in order to assess individual, and combinations of, flexibility

providers such as Demand Side Management (DSM), Gas CCS, Hydropower,

and high-voltage cross-border transmission grid (Interconnectors).

We demonstrate our results with a North Sea Offshore Grid case study,

discussing the geographical distribution of flexibility needs both by capacity

allocation to individual countries and by capacity within each country. That

is, how much DSM is deployed in country X, and at what share does DSM

represent the capacity mix within country X. This allows us to assess where

different types of flexibility options are most cost efficient.

In addition, we quantify the marginal value of each flexibility alternative

in terms of operational cost savings (e/MW). We ignore investment costs,

meaning that the resulting values can be regarded as break-even thresh-

olds. Moreover, the relative impact on operational cost savings, reduced
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CO2 emissions, and increased utilization of power generation from VRES

are illustrated in relative terms, for each alternative. We apply the Shapley

Value from cooperative game theory in order to analyze the latter impact

incorporating all possible deployment sequences. The Shapley Value does,

for instance, implicitly account for the disadvantages of long lead time or the

advantage of learning rate, e.g. the long lead time of grid investments and

future cost-efficient DSM solutions, respectively.

The authors acknowledge the low level of details in the model used to

quantify those benefits, which is why this work can be viewed as a generic

framework to do equivalent analyses. This framework could easily be repro-

duced with more detailed planning models or market simulators, incorpo-

rating a proper representation of unit commitment, storage, and load flow

equations. An interesting extension of this work could be to use a stochastic

model to calculate characteristic functions for the Shapley Value, and com-

pare this with the deterministic one. This could give an idea about the level

of uncertainty that Shapley Value mange to incorporate in its combinatorial

calculation scheme.

Other interesting extensions includes dynamic investment models. In

this paper, we incorporate different sequences for deployment but ignore the

discounted monetary value with respect to the time between different de-

ployments. Moreover, marginal contributions calculated with SV are based

on bulky capacity investments. This means that each technology is not de-

ployed partially, but in full scale determined by the expansion model. With

Aumann-Shapley (AS), it is possible to capture the marginal contribution at

fractional levels. Hence a comparison of SV and AS would be interesting both
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from a computational perspective and in terms of the resulting allocations.
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Appendix A. Notations for GTEP model (PowerGIM)

Table A.2: Notations for the generation and transmission expansion planning model.

Sets

n ∈ N : nodes

i ∈ G : generators

b ∈ B : branches

l ∈ L : loads, demand, consumers

t ∈ T : time steps, hour

i ∈ Gn, l ∈ Ln : generators/load at node n

n ∈ Bin
n , Bout

n : branch in/out at node n

Parameters

a, ωt : factors for annuity and samplesize hour t [h]

V OLL : value of lost load (cost of load shedding) [e/MWh]

MCi : marginal cost of generation, generator i [e/MWh]

CO2i : CO2 emission costs, generator i [e/MWh]

Dlt : demand at load l, hour t [MW]

Cfix
b , Cvar

b : fixed- and variable capital costs, branch b [e, e/MW]

B,Bd, Bdp : branch mobilization, fixed- and variable cost [e,e/km,e/kmMW]

CSb, CS
p
b : onshore/offshore switchgear (fixed and variable cost), branch b [e,e/MW]

CXi : capital cost for generator capacity, generator i [e/MW]

CZn : onshore/offshore node costs (e.g. platform costs), node n [e]

Pmin
i , P e

i : minimum and maximum existing generation capacity, generator i [MW]

γit : factor for available generator capacity, generator i, hour t

P e
b , P

n,max
b : existing and maximum new branch capacity, branch b [MW]

Db : distance/length, branch b [km]

lb : transmission losses (fixed + variable w.r.t. distance), branch b

Ei : yearly disposable energy (e.g. energy storage), generator i [MWh]

M : a sufficiently large number

Primal variables

IC,OC : investment- and operational costs [e]

ynum
b : number of new transmission lines/cables, branch b

ycapb : new transmission capacity, branch b [MW]

zn : new platform/station, node n

xi : new generation capacity, generator i [MW]

git : power generation dispatch, generator i, hour t [MW]

fbt : power flow, branch b, hour t [MW]

snt : load shedding, node n, hour t [MW]
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