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Abstract—As a reliable and flexible electric power source, hydro-
power can quickly adjust its generation level and provide reserve 
power to balance the power fluctuations in the system. In this pa-
per, we assume that the day-ahead spot market is cleared and the 
obligation for each reserve type is already contracted in a preced-
ing market. Then the question is how to make the optimal decision 
to determine, for each unit and for each time step, the dispatched 
volume for the day-ahead market and the reserved capacity for 
various types of reserve. We formulate the constraints added to 
the optimization problem for distributing reserve obligations. 
The proposed mathematical formulation is based on an opera-
tional hydropower scheduling model used by most large hydro-
power producers in Scandinavia. 

Index Terms—Hydroelectric power generation, mathematical 
programming, optimal scheduling. 

I. INTRODUCTION  
In any electric system, power generated must be maintained 

in constant equilibrium with power consumed. Otherwise, im-
balance between generation and consumption leads to a devia-
tion of the system frequency from its set-point values. Recent 
years have witnessed increasing penetration of wind and solar 
power in the power market. The large amount of production that 
varies within short period increases the need for ancillary ser-
vices to secure the supply of electricity. As a reliable and flexi-
ble electric power source, hydropower can quickly adjust its 
generation level and provide reserve power to balance the 
power fluctuations in the system. Therefore, more and more hy-
dropower producers choose to participate in both energy and 
ancillary services markets. 

This practice brings about the new operational challenges 
for the hydropower producers. Two of the widely discussed 
challenges are: (1) how to develop bidding strategies in one 
market while considering the possibility to trade on other mar-
kets [1], and (2) how to find the feasible production plans with 
capacity allocated in multiple markets [2]. This paper focuses 
on the second challenge. That is, given the cascaded water-
courses that consist of a large number of reservoirs, plants and 

turbines, the producer has to make the optimal decision to de-
termine, for each unit and for each time step, the dispatched 
volume for the day-ahead market and the reserved capacity for 
various types of reserve. We formulate the constraints added to 
the optimization problem for distributing reserve obligations. 
The proposed mathematical formulation is based on an opera-
tional hydropower scheduling model, Short-term Hydro Opti-
mization Program (SHOP), used by most large hydropower 
producers in Scandinavia [3].  

In the literature, optimization models from the perspective 
of a hydropower producer to maximize the expected profit by 
participating in both the energy and the ancillary service mar-
kets have been extensively discussed. In [4] and [5], determin-
istic models are presented, both on the plant level. [6] intro-
duces uncertainties about market participation and price, but 
simplifies the problem by limiting the modeling to non-hydrau-
lically coupled hydroelectric plants. [7] proposes an explicit 
representation of a multi-reservoir system and focuses on the 
secondary regulation reserve market of the Spanish power sys-
tem. [8] develops a method suitable for solving the medium-
term hydropower scheduling problem. In this paper, we extend 
the work of [2] on the allocation of primary reserves to cover 
all the reserves.  To the best of our knowledge, this is the first 
time that reserve constraints are formulated on such a detailed 
level for an operational scheduling model used in the real world.   

Considerable differences exist between the reserve types 
defined in various countries or regions. These differences often 
lead to confusion because they extend not only to the technical 
specification of the reserve services but also to the terms used 
to describe them. To reduce this confusion, in this paper we use 
ENTSO-E terminology [9]. However, it is worth mentioning, 
that although we mainly discuss the operation in Northern Eu-
rope Synchronous Area (comprises Finland, Sweden, Norway 
and Eastern Denmark), the proposed method can be easily 
adapted to achieve the specific requirements of other markets. 

The framework of the load-frequency control (LFC) pro-
cesses consists of Frequency Containment Reserves (FCR), 
Frequency Restoration Reserves (FRR) and Replacement Re-
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serves (RR). They usually can be mapped to three levels of con-
trols, i.e. Primary, Secondary and Tertiary [10]. The frequency 
quality is maintained by keeping the system frequency as close 
as possible to Nominal Frequency (50 Hz). In Northern Europe, 
FCR is defined as two response rates, one for the normal oper-
ating range (FCR_N) and one for disturbance (FCR_D). 
FCR_N will be activated automatically in both directions when 
the frequency is between 50.1 Hz and 49.9 Hz. FCR_D is auto-
matically activated if the frequency falls to the interval of 49.9 
Hz to 49.5 Hz. If the imbalance continues for several minutes, 
FRR will take over to restore the frequency back to 50 Hz. If 
further regulation is necessary, RR will be activated manually 
by the transmission system operators (TSOs).  

Control reserves can be provided both upwards (to increase 
the active power production in case of a low frequency) and 
downwards (to reduce the active power production in case of a 
high frequency), but not necessarily reacts symmetrically in 
both directions. We therefore give a separate definition of up- 
and down-regulation bands for each level of frequency control. 
Note that since FCR_D is activated only when the frequency 
falls, we assume this type of reserve is limited to up-regulation. 
TABLE I lists all the reserve types used in this paper.  

TABLE I ABBREVIATION AND EXPLANATION OF THE RESERVE TYPES  

Abbreviation Explanation 
FCR_N_UP Frequency Containment Reserve for the Normal op-

erating range for Up-regulation 
FCR_N_DOWN Frequency Containment Reserve for the Normal op-

erating range for Down-regulation 
FCR_D_UP Frequency Containment Reserve for the Disturbance 

for Up-regulation 
FRR_UP Frequency Restoration Reserve for Up-regulation 
FRR_DOWN Frequency Restoration Reserve for Down-regulation 
RR_UP Replacement Reserve for Up-regulation 
RR_DOWN Replacement Reserve for Down-regulation 

When the day-ahead spot market is cleared and a bid is ac-
cepted, the load obligation committed in the bid must be pro-
vided. In this paper, we assume that the obligation for each re-
serve type is already contracted in a preceding market. Then the 
question is how to integrate the commitments of generating 
units that participate in the LFC processes as a part of the opti-
mal production scheduling after spot clearing.  

In theory, a generating unit could be simultaneously present 
in all types of reserve services. If there is a need for up-regula-
tion, the unit can increase its power generation from the current 
working point to the full capacity. Similarly, the unit can reduce 
the output to meet the reserve requirements for down-regula-
tion. When providing FCR and FRR, the unit must be produc-
ing electricity (using a fraction of its capacity) in order to spin 
at the right speed to synchronize itself with the electrical grid. 
By contrast, delivery of RR_UP does not have the same require-
ments. 

To cover all the possible combinations of available units to 
deliver reserves, and to represent the fact that capacity of a unit 
assigned for different reserves can change from time to time, 
we introduce a time dependent reserve pool, i.e. Reserve Group, 
to connect the units that can contribute to the reserves with the 
obligation for those reserves. For example (Fig. 1), all the units 

in both Plant A and Plant B can deliver FCR_N_UP (Reserve 
Group 1). Only one unit is dedicated to cover RR_UP (Reserve 
Group 2). In Reserve Group 3, there are obligations to FRR_UP 
and FRR_DOWN. Unit G1 in Plant B can contribute to both of 
the reserves but Unit G2 only contributes to FRR_UP. Once the 
assignment of Reserve Group is given, the optimization prob-
lem becomes how to distribute the reserve obligations among 
the chosen units, and meanwhile, to determine the optimal pro-
duction level for all the units during the planning horizon.     

 

Figure 1. Example of reserve groups in SHOP 

II. MATHEMATICAL FORMULATION 
In this section, we mainly explain how the reserve con-

straints are formulated in SHOP. Because of the page limita-
tion, we only present the basic constraints concerning hydro-
logical balance in the reservoirs and power generation in the 
plants. The non-linear plant head optimization, start and stop 
cost of units, power loss in the tunnels are not included. The 
reserve functionality has also been implemented for Pelton tur-
bines and variable speed pumps, but in this paper we only focus 
on Francis turbines.  

In this paper we use hourly time resolution and the planning 
horizon is one week. In the first 24 hours, the load obligation 
from the day-ahead spot market is given. In the remaining hours, 
the power generation is optimized against the forecasted price 
in the energy market. Reserve obligations are assumed known 
for the whole planning period. The hydrological constraints do 
not take water usage related to activation of reserves into ac-
count.  

A. Sets and Indices 
𝑇𝑇 Set of time periods (hourly resolution), index 𝑡𝑡 ∈ 𝑇𝑇. 
𝑅𝑅 Set of all the reserve types (TABLE I), index 𝑟𝑟 ∈ 𝑅𝑅. 
𝑅𝑅𝑈𝑈𝑈𝑈 Set of reserve types for up-regulation except for 

RR_UP, i.e. FCR_N_UP, FCR_D_UP and FRR_UP.  
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Set of reserve types for down-regulation, i.e. 

FCR_N_DOWN, FRR_DOWN and RR_DOWN. 
𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹  Set of reserve types related to FCR, i.e. FCR_N_UP, 

FCR_N_DOWN and FCR_D_UP. 
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𝐺𝐺 Set of reserve groups, index 𝑔𝑔 ∈ 𝐺𝐺. 
𝑆𝑆 Set of plants, index 𝑠𝑠 ∈ 𝑆𝑆. 
𝐼𝐼𝑠𝑠 Set of units in plant 𝑠𝑠, index 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠. 
𝐼𝐼𝑔𝑔𝑔𝑔𝑟𝑟  Set of units in reserve group 𝑔𝑔 of reserve type 𝑟𝑟 in pe-

riod 𝑡𝑡. 
𝐾𝐾𝑠𝑠 Set of direct upper reservoirs of plant 𝑠𝑠, index 𝑘𝑘 ∈ 𝐾𝐾𝑠𝑠.  

B. Paramters 
𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  Forecasted price in the spot market in period 𝑡𝑡, 𝑡𝑡 =

25, … ,𝑇𝑇, (€/MWh). 
𝑃𝑃𝑘𝑘,𝑇𝑇
𝐸𝐸𝐸𝐸𝐸𝐸  Water value at the end of planning horizon 𝑇𝑇 of the 

reservoir 𝑘𝑘 (€/MWh). 
𝑉𝑉𝑘𝑘,0
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 Initial volume of reservoir 𝑘𝑘 (Mm3). 

𝑁𝑁𝐼𝐼𝑘𝑘𝑘𝑘  Natural inflow forecast at reservoir 𝑘𝑘  in period 𝑡𝑡 
(m3/s). 

𝐸𝐸𝑠𝑠 Energy conversion factor for plant 𝑠𝑠 (MWh/Mm3). 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Maximum production of unit 𝑖𝑖 in plant 𝑠𝑠 in pe-
riod 𝑡𝑡 (MW). 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Minimum production of unit 𝑖𝑖 in plant 𝑠𝑠 in pe-

riod 𝑡𝑡 (MW). 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Nominal production of unit 𝑖𝑖 in plant 𝑠𝑠 (MW). 
𝑀𝑀𝑀𝑀𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Load obligation in period 𝑡𝑡, 𝑡𝑡 = 1, … ,24, (MW). 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 Maximum unit droop of unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡. 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 Minimum unit droop of unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡.  
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 Given unit droop of unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡. 
𝑊𝑊  Minimum unused fraction of maximum capacity for a 

unit delivering FCR (%). 
𝐵𝐵𝑟𝑟  Bandwidth of the regulation limit on reserve type 𝑟𝑟, 

𝑟𝑟 ∈ 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 .  
𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔

𝑟𝑟   Obligation to reserve type 𝑟𝑟 in reserve group 𝑔𝑔 in pe-
riod 𝑡𝑡 (MW). 

𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Cost for not fulfilling the load obligation in period 𝑡𝑡, 
𝑡𝑡 = 1, … ,24, (€/MW). 

𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Cost for exceeding the load obligation in period 𝑡𝑡, 
𝑡𝑡 = 1, … ,24, (€/MW). 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑟𝑟  Cost for not fulfilling the obligation to reserve type 𝑟𝑟 
in reserve group 𝑔𝑔 in period 𝑡𝑡 (€/MW). 

𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑟𝑟  Cost for exceeding the obligation to reserve type 𝑟𝑟 in 
reserve group 𝑔𝑔 in period 𝑡𝑡 (€/MW). 

𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Unit droop cost of unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡 (€). 
𝑋𝑋 A large number used to ensure that a constraint is not 

binding. In SHOP, 𝑋𝑋 = 2 ∙ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.  

C. Variables 
There are two types of variables, binary variables and non-

negative continuous variables. 

𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1} 1 if unit 𝑖𝑖 in plant 𝑠𝑠 is running in period 𝑡𝑡, 0 
otherwise. 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐶𝐶𝐶𝐶 ∈ {0,1} 1 if unit 𝑖𝑖  in plant 𝑠𝑠 contributes to reserve 
types related to FCR in period 𝑡𝑡, 0 otherwise. 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 ∈ {0,1} 1 if unit 𝑖𝑖 in plant 𝑠𝑠 contributes to RR_UP in 

period 𝑡𝑡, 0 otherwise. 
𝑣𝑣𝑘𝑘𝑘𝑘  Water volume of reservoir 𝑘𝑘 at the end of period 𝑡𝑡 

(Mm3). 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Power produced by unit 𝑖𝑖  in plant 𝑠𝑠  in period 𝑡𝑡 
(MW). 

𝑝𝑝𝑝𝑝𝑤𝑤𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Amount of load obligation not fulfilled in period 𝑡𝑡, 
𝑡𝑡 = 1, … ,24, (MW). 

𝑠𝑠𝑠𝑠𝑤𝑤𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Volume exceeding the load obligation in period 𝑡𝑡, 

𝑡𝑡 = 1, … ,24, (MW).  
𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖  Flow going through unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡 (m3/s). 
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  Unit droop of unit 𝑖𝑖 in plant 𝑠𝑠 in period 𝑡𝑡.  
𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  Delivery limit on reserve type 𝑟𝑟 of unit 𝑖𝑖 in plant 𝑠𝑠 in 

period 𝑡𝑡 (MW). 
𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  Power reserved for reserve type 𝑟𝑟 of unit 𝑖𝑖 in plant 𝑠𝑠 

in period 𝑡𝑡 (MW). 
𝑝𝑝𝑝𝑝𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟  Amount of reserve obligation not fulfilled for reserve 

type 𝑟𝑟 in reserve group 𝑔𝑔 in period 𝑡𝑡 (MW). 
𝑠𝑠𝑠𝑠𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟  Volume exceeding the obligation to reserve type 𝑟𝑟 in 

reserve group 𝑔𝑔 in period 𝑡𝑡 (MW).  

D. Constraints 
1) Basic constraints 

In (1) and (2), we model the hydrological balance of reser-
voir 𝑘𝑘 that is directly connected to downstream plant 𝑠𝑠: the end 
water volume of reservoir 𝑘𝑘 in period 𝑡𝑡 is the end volume in pe-
riod 𝑡𝑡 − 1 plus the natural inflow minus the sum of outflow go-
ing through each unit. Flow due to spillage and time delay, and 
discharge from upper objects are not presented here. Hydrolog-
ical laws for reservoirs with pressurized connections between 
each other are irrelevant to this paper and hence omitted. 

𝑣𝑣𝑘𝑘,0 = 𝑉𝑉𝑘𝑘,0
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, ∀𝑘𝑘 ∈ 𝐾𝐾𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆. (1) 

𝑣𝑣𝑘𝑘𝑘𝑘 = 𝑣𝑣𝑘𝑘,𝑡𝑡−1 + 0.0036 ∙ �𝑁𝑁𝐼𝐼𝑘𝑘𝑘𝑘 −�𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑠𝑠

� 

𝑘𝑘 ∈ 𝐾𝐾𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. 

(2) 

For a specific unit, the power generation depends on the net 
plant head and the flow going through that unit. It also relies on 
the generator efficiency and head-dependent turbine efficiency. 
Based on the volume of upstream reservoir 𝑣𝑣𝑘𝑘,𝑡𝑡−1 and the vol-
ume of downstream reservoir 𝑣𝑣𝑘𝑘+1,𝑡𝑡−1 (if water level of down-
stream reservoir is higher than the outlet line of the plant), the 
gross plant head can be calculated in a straightforward way. 
However, the net plant head is influenced by the loss in the main 
tunnel and the penstocks, which is a quadratic equation of the 
total flow going through the tunnels. The detailed calculation is 
beyond the scope of this paper (Interested readers can refer to 
[11]), and therefore, we use the function 
𝑓𝑓�𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑘𝑘,𝑡𝑡−1, 𝑣𝑣𝑘𝑘+1,𝑡𝑡−1� in (3) to represent the transformation 
from the discharge 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖  to the production 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓�𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑘𝑘,𝑡𝑡−1, 𝑣𝑣𝑘𝑘+1,𝑡𝑡−1� 
𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (3) 

In the first 24 hours of the planning horizon, the load obli-
gation comes from the cleared day-ahead spot market. Con-
straint (4) ensures it will be fulfilled.   



 
 

�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖∈𝐼𝐼𝑠𝑠
𝑠𝑠∈𝑆𝑆

+ 𝑝𝑝𝑝𝑝𝑤𝑤𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑠𝑠𝑠𝑠𝑤𝑤𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

 𝑡𝑡 = 1, … ,24. 

(4) 

2) Constraints on regulation limits of FCR 
In Norway, a unit can contribute to reserve types concerning 

FCR (i.e. FCR_N_UP, FCR_N_DOWN and FCR_D_UP) only 
if the unused capacity is no less than 2% (𝑊𝑊%) of the maximum 
capacity [12]. In other countries, the value of 𝑊𝑊 can vary, or 
even no such capacity rule exists. To make it universally appli-
cable, we utilize binary variable 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 in (5) to model the ca-
pacity regulation. If the unused capacity of unit 𝑖𝑖 is less than 
𝑊𝑊% of the maximum production, 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 will be forced to be 0, 
which is expressed as 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑊𝑊 ∙ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 
𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (5) 

In addition, only running units can contribute to the com-
mitment of FCR. This requirement can be modelled as 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (6) 

The unit droop (𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖) usually varies from 1 to 12. It can ei-
ther be given as input data (parameter) or defined as a decision 
variable. In order to avoid non-linearity, in SHOP, it is ex-
pressed as reciprocal 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1  and always treated as a variable. 
Therefore, if 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  is given as a parameter, we fix 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1  to the 
given value, as in  

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1 = (𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹)−1, 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (7) 

If 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  is a decision variable, it should be between a mini-
mum and a maximum value, as shown in (8). 

(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀)−1 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1 ≤ (𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀)−1, 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (8) 

The theoretical values for regulation limits on FCR are cal-
culated on the basis of 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1. They are modelled in (9). 𝐵𝐵𝑟𝑟  is the 
bandwidth of the regulation limit. For instance, in Norway, both 
𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹_𝑁𝑁_𝑈𝑈𝑈𝑈 and 𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹_𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 are 0.1 and 𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹_𝐷𝐷_𝑈𝑈𝑈𝑈 is 0.4. 

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 = 2 ∙ 𝐵𝐵𝑟𝑟 ∙ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1 ∙ 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 ,  

𝑟𝑟 ∈ 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (9) 

To keep the constraint tractable as a standard mixed integer 
programming (MIP) formulation, we split (9) into two con-
straints presented below:  

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ≤ 2 ∙ 𝐵𝐵𝑟𝑟 ∙ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1,  

𝑟𝑟 ∈ 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ≤ 𝑋𝑋 ∙ 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹, 𝑟𝑟 ∈ 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (11) 

Equation (11) secure that the regulation limits 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  will be 0 
if 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 is 0 (e.g., the capacity regulation is activated and the 
production is above 𝑊𝑊% of the maximum limit). Otherwise, 
𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  is restricted by the theoretical value in (10). 

The actual delivery of FCR should be no more than its reg-
ulation limit. This is expressed as 

𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ≤ 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (12) 

3) Constraints on delivery of reserve obligations except for 
RR_UP 

If a unit is running, the unused capacity can contribute to 
the obligations of FCR and FRR for up-regulation. That is, it 
may produce more power in the electric system if needed. If the 
unit is standing still, there is no production or reserve delivery. 
This is represented as 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + � 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟

𝑟𝑟∈𝑅𝑅𝑈𝑈𝑈𝑈
≤ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖  

𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. 
(13) 

As to the reserve obligations for down-regulation, the sum 
of allocated capacities for each reserve type should be within 
the minimum production limit. The following constraint is in-
troduced to achieve this purpose.  

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − � 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟

𝑟𝑟∈𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 

𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. 
(14) 

4) Constraints on delivery of reserve obligation to RR_UP 
Despite the similarity from control point of view, manual 

FRR activation and RR activation lead to different control per-
formances due to different activation time frames. RR includes 
operating reserves with activation time from 15 minutes up to 
hours [10]. Therefore, the units assigned to deliver RR_UP are 
not necessarily running. Instead, they can stand still but be 
started if required. Then we have to take two situations into ac-
count:  

• When a unit is standing still, if it is required to deliver 
RR_UP, the minimum volume should be no less than 
its minimum production and the maximum volume 
should be no greater than its maximum production;  

• When a unit is running, the capacity of providing 
RR_UP must be between 0 and the maximum limit.  

To adequately model these two situations, we introduce fol-
lowing constraints:  

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ �𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 − 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈,  

𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (15) 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + � 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟

𝑟𝑟∈𝑅𝑅𝑈𝑈𝑈𝑈
+ 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 

≤ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. 

(16) 

𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 ≤ 𝑋𝑋 ∙ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈, 𝑖𝑖 ∈ 𝐼𝐼𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇. (17) 

If the unit is standing still (𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 = 0), it still can be commit-
ted to provide RR_UP (𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 = 1). In this case, equation (15) 
indicates the delivery of RR_UP must be above the minimum 
production. Equation (16) ensures that the delivered amount 
will be no more than maximum production, since 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 
∑ 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∈𝑅𝑅𝑈𝑈𝑈𝑈  are both 0 (restricted by (13)).  



 
 

If the unit is running (𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 = 1) and contributes to RR_UP 
(𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 = 1), equations (15) and (16) then imply that the min-
imum delivery of RR_UP can be 0 but the sum of the capacity 
assigned to each reserve type cannot exceed the maximum pro-
duction.  

Constraint (17) is introduced to make sure 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 will be 

0 if 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈 = 0.  

5) Constraints on reserve groups 
For a reserve group 𝑔𝑔 of reserve type 𝑟𝑟, several units will 

be assigned to it for the contribution in the specific reserve mar-
ket. We summarize the actual reserve delivery of these units. 
The penalty and slack variables are used to avoid infeasibilities, 
and expressed in (18):  

� 𝑚𝑚𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟

𝑖𝑖,𝑠𝑠∈𝐼𝐼𝑔𝑔𝑔𝑔
𝑟𝑟

+ 𝑝𝑝𝑝𝑝𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟 − 𝑠𝑠𝑠𝑠𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟 = 𝑀𝑀𝑊𝑊𝑔𝑔𝑔𝑔
𝑟𝑟  

𝑟𝑟 ∈ 𝑅𝑅,𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇. 
(18) 

6) Objective function 
The goal of the model is to maximize the profit during the 

planning horizon for a hydroelectricity producer. The profit is 
the production revenues (first term in (19)) plus the water value 
at the end of planning horizon (second term) and minus the vi-
olation cost for load and reserve obligations (third to sixth terms) 
and minus the droop cost (last term). Note that the droop cost 
usually decreases with the increase of the unit droop.  

The future marginal water value in a reservoir is assumed to 
be a fixed value. However, in practice, this value can be ex-
pressed as a concave piecewise linear function of the water vol-
ume. It is provided by a mid-term scheduling model that would 
integrate the stochastic nature of inflows and spot prices [13].     

𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖∈𝐼𝐼𝑠𝑠
𝑠𝑠∈𝑆𝑆

𝑡𝑡=25,…,𝑇𝑇

+ � 𝑃𝑃𝑘𝑘,𝑇𝑇
𝐸𝐸𝐸𝐸𝐸𝐸 ∙ 𝐸𝐸𝑠𝑠 ∙ 𝑣𝑣𝑘𝑘,𝑇𝑇

𝑘𝑘∈𝐾𝐾𝑠𝑠
𝑠𝑠∈𝑆𝑆

 

− � 𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑡𝑡=1,…,24

∙ 𝑝𝑝𝑝𝑝𝑤𝑤𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − � 𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑡𝑡=1,…,24

∙ 𝑠𝑠𝑠𝑠𝑤𝑤𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

−�𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑟𝑟
𝑟𝑟∈𝑅𝑅
𝑔𝑔∈𝐺𝐺
𝑡𝑡∈𝑇𝑇

∙ 𝑝𝑝𝑝𝑝𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟 −�𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑟𝑟
𝑟𝑟∈𝑅𝑅
𝑔𝑔∈𝐺𝐺
𝑡𝑡∈𝑇𝑇

∙ 𝑠𝑠𝑠𝑠𝑤𝑤𝑔𝑔𝑔𝑔𝑟𝑟  

−�𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑖𝑖∈𝐼𝐼𝑠𝑠
𝑠𝑠∈𝑆𝑆
𝑡𝑡∈𝑇𝑇

 

(19) 

 
III. NUMERICAL RESULTS 

The proposed constraints are implemented in the SHOP 
model and the resulting optimization problems are solved by 
CPLEX. SHOP involves two modelling modes: Unit commit-
ment (UC) mode and Close-in mode. In the first mode, a com-
mitment plan concerning which units are committed to run is 
established by using MIP. After 2 or 3 iterations using succes-
sive linear programming method, the result has normally con-
verged. Then a dispatch plan regarding exact generation level 
is obtained in the Close-in mode [3].  

The test case comprises two reservoirs. Each reservoir has 
one power plant with two identical generating units. The pro-
duction intervals for the units in PLANT 1 are [80 MW, 310 
MW] and nominal production is 310 MW. For the units in 
PLANT 2, production spans from 50 MW to 250 MW and nom-
inal production is 250 MW.  We assume that all the units in both 
plants are assigned to one reserve group and can provide all the 
reserve types. The reserve obligations are constant, i.e.  
FCR_N_UP=40 MW, FCR_N_DOWN=40 MW, FCR_D_UP 
=50 MW, FRR_UP=60 MW, FRR_DOWN=30 MW, RR_UP 
=80, and RR_DOWN=40 MW. The costs for not fulfilling or 
exceeding the load or reserve obligation are 5000 €/MW and 
the unit droop costs are 100 €/MW.  

The test cases are aimed at (A) to examine the result of in-
tegration of reserve obligations into optimal production sched-
uling; (B) to compare the difference in the delivery of FRR_UP 
and RR_UP; (C) to study the impact of the regulation limits on 
the distribution of reserve obligations. 

A. Integration of Reserve Obligations into Optimal 
Production Scheduling 
We first run the model without reserve obligations and then 

add the reserve commitments into the optimization model. Fig. 
2 contrastingly shows the two production plans. In the first 24 
hours, because a load obligation is given and must be followed 
in both situations, the production plans are the same. However, 
in the remaining hours, though the quantity of electricity of-
fered still follows the trend of the forecasted electricity price, 
there is obvious difference after integrating reserve obligations 
into the scheduling. When the price is low, the units have to 
keep running to deliver reserves for down-regulation. On the 
other hand, when the price is high, the units cannot run at the 
maximum capacity in order to be able to provide reserves for 
up-regulation.  

 

Figure 2. Production scheduling without and with reserve obligations 

B. Difference in the Delivery of FRR_UP and RR_UP 
Fig. 3 presents the distribution of obligations to FRR_UP 

and RR_UP among the units in the first 24 hours. As mentioned 
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above, when providing FCR and FRR, a unit must be in opera-
tion. Therefore, the obligation to FRR_UP is allocated to those 
running units for each hour. In contrast to FRR_UP, RR_UP 
can be delivered by units that stand still. In the first 5 hours, 
although Unit G1 in Plant 2 (G1P2) is not running, it is assigned 
to deliver RR_UP. Note that since the minimum production of 
G1P2 is 50 MW, the minimum volume that can be reserved for 
RR_UP when it stands still should be no less than 50 MW, as 
shown in Hour 3 and 5. When it is running, there is no longer 
such limit, e.g. Hour 9, 12, and 17. 

 

Figure 3. Distirbution of obligations to FRR_UP and RR_UP 

C. Impact of the Regulation limits 

 

Figure 4. Distribution of obligation to FCR_N_UP without and with the 
activation of the capacity regulation 

The maximum production of Unit G1 in Plant 1 (G1P1) is 
310 MW. We now assume that G1P1 has a production schedule 
of 305 MW, which means the unused capacity of G1P1 is less 
than 2%. We first run the model by deactivating the capacity 

regulation (𝑊𝑊 = 0) and then run it again by restoring the regu-
lation and setting 𝑊𝑊 = 2%. Fig. 4 displays the resulting distri-
bution of FCR_N_UP delivery without and with the activation 
of the capacity regulation in the second day. When the regula-
tion is not activated, the unused capacity of G1P1 (5 MW) can 
still be reserved to deliver FCR_N_UP. However, when the reg-
ulation is activated, G1P1 is not allowed to contribute to any 
reserves related to FCR.  

IV. CONCLUSION 
This paper integrates the distribution of reserve obligations 

into optimal hydropower scheduling. Detailed mathematical 
formulation of the related constraints is presented. These con-
straints are included in an operational scheduling model that is 
used in the real world. Future developments will focus on inte-
grating the prices for reserves and trading in multiple markets 
under uncertainty. How to ensure there is enough water in the 
reservoirs when the committed up-regulations reserves are de-
livered will be another upcoming subject. 
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